Merge remote-tracking branch 'origin/master' into feature_arrange_with_libnest2d

This commit is contained in:
tamasmeszaros 2018-08-27 10:20:48 +02:00
commit 3144cba5f9
283 changed files with 105244 additions and 300 deletions

View file

@ -202,7 +202,9 @@ const float GLVolume::SELECTED_OUTSIDE_COLOR[4] = { 0.19f, 0.58f, 1.0f, 1.0f };
GLVolume::GLVolume(float r, float g, float b, float a)
: m_angle_z(0.0f)
, m_scale_factor(1.0f)
, m_dirty(true)
, m_transformed_bounding_box_dirty(true)
, m_transformed_convex_hull_bounding_box_dirty(true)
, m_convex_hull(nullptr)
, composite_id(-1)
, select_group_id(-1)
, drag_group_id(-1)
@ -219,8 +221,6 @@ GLVolume::GLVolume(float r, float g, float b, float a)
, tverts_range(0, size_t(-1))
, qverts_range(0, size_t(-1))
{
m_world_mat = std::vector<float>(UNIT_MATRIX, std::end(UNIT_MATRIX));
color[0] = r;
color[1] = g;
color[2] = b;
@ -264,45 +264,76 @@ const Pointf3& GLVolume::get_origin() const
void GLVolume::set_origin(const Pointf3& origin)
{
m_origin = origin;
m_dirty = true;
if (m_origin != origin)
{
m_origin = origin;
m_transformed_bounding_box_dirty = true;
m_transformed_convex_hull_bounding_box_dirty = true;
}
}
void GLVolume::set_angle_z(float angle_z)
{
m_angle_z = angle_z;
m_dirty = true;
if (m_angle_z != angle_z)
{
m_angle_z = angle_z;
m_transformed_bounding_box_dirty = true;
m_transformed_convex_hull_bounding_box_dirty = true;
}
}
void GLVolume::set_scale_factor(float scale_factor)
{
m_scale_factor = scale_factor;
m_dirty = true;
if (m_scale_factor != scale_factor)
{
m_scale_factor = scale_factor;
m_transformed_bounding_box_dirty = true;
m_transformed_convex_hull_bounding_box_dirty = true;
}
}
const std::vector<float>& GLVolume::world_matrix() const
void GLVolume::set_convex_hull(const TriangleMesh& convex_hull)
{
if (m_dirty)
{
Eigen::Transform<float, 3, Eigen::Affine> m = Eigen::Transform<float, 3, Eigen::Affine>::Identity();
m.translate(Eigen::Vector3f((float)m_origin.x, (float)m_origin.y, (float)m_origin.z));
m.rotate(Eigen::AngleAxisf(m_angle_z, Eigen::Vector3f::UnitZ()));
m.scale(m_scale_factor);
::memcpy((void*)m_world_mat.data(), (const void*)m.data(), 16 * sizeof(float));
m_dirty = false;
}
m_convex_hull = &convex_hull;
}
return m_world_mat;
std::vector<float> GLVolume::world_matrix() const
{
std::vector<float> world_mat(UNIT_MATRIX, std::end(UNIT_MATRIX));
Eigen::Transform<float, 3, Eigen::Affine> m = Eigen::Transform<float, 3, Eigen::Affine>::Identity();
m.translate(Eigen::Vector3f((float)m_origin.x, (float)m_origin.y, (float)m_origin.z));
m.rotate(Eigen::AngleAxisf(m_angle_z, Eigen::Vector3f::UnitZ()));
m.scale(m_scale_factor);
::memcpy((void*)world_mat.data(), (const void*)m.data(), 16 * sizeof(float));
return world_mat;
}
BoundingBoxf3 GLVolume::transformed_bounding_box() const
{
if (m_dirty)
if (m_transformed_bounding_box_dirty)
{
m_transformed_bounding_box = bounding_box.transformed(world_matrix());
m_transformed_bounding_box_dirty = false;
}
return m_transformed_bounding_box;
}
BoundingBoxf3 GLVolume::transformed_convex_hull_bounding_box() const
{
if (m_transformed_convex_hull_bounding_box_dirty)
{
if ((m_convex_hull != nullptr) && (m_convex_hull->stl.stats.number_of_facets > 0))
m_transformed_convex_hull_bounding_box = m_convex_hull->transformed_bounding_box(world_matrix());
else
m_transformed_convex_hull_bounding_box = bounding_box.transformed(world_matrix());
m_transformed_convex_hull_bounding_box_dirty = false;
}
return m_transformed_convex_hull_bounding_box;
}
void GLVolume::set_range(double min_z, double max_z)
{
this->qverts_range.first = 0;
@ -629,6 +660,7 @@ std::vector<int> GLVolumeCollection::load_object(
if (!model_volume->modifier)
{
v.set_convex_hull(model_volume->get_convex_hull());
v.layer_height_texture = layer_height_texture;
if (extruder_id != -1)
v.extruder_id = extruder_id;
@ -801,9 +833,9 @@ bool GLVolumeCollection::check_outside_state(const DynamicPrintConfig* config, M
for (GLVolume* volume : this->volumes)
{
if ((volume != nullptr) && !volume->is_modifier)
if ((volume != nullptr) && !volume->is_modifier && (!volume->is_wipe_tower || (volume->is_wipe_tower && volume->shader_outside_printer_detection_enabled)))
{
const BoundingBoxf3& bb = volume->transformed_bounding_box();
const BoundingBoxf3& bb = volume->transformed_convex_hull_bounding_box();
bool contained = print_volume.contains(bb);
all_contained &= contained;

View file

@ -260,12 +260,16 @@ private:
float m_angle_z;
// Scale factor of the volume to be rendered.
float m_scale_factor;
// World matrix of the volume to be rendered.
std::vector<float> m_world_mat;
// Bounding box of this volume, in unscaled coordinates.
mutable BoundingBoxf3 m_transformed_bounding_box;
// Whether or not is needed to recalculate the world matrix.
mutable bool m_dirty;
// Whether or not is needed to recalculate the transformed bounding box.
mutable bool m_transformed_bounding_box_dirty;
// Pointer to convex hull of the original mesh, if any.
const TriangleMesh* m_convex_hull;
// Bounding box of this volume, in unscaled coordinates.
mutable BoundingBoxf3 m_transformed_convex_hull_bounding_box;
// Whether or not is needed to recalculate the transformed convex hull bounding box.
mutable bool m_transformed_convex_hull_bounding_box_dirty;
public:
@ -323,13 +327,15 @@ public:
void set_origin(const Pointf3& origin);
void set_angle_z(float angle_z);
void set_scale_factor(float scale_factor);
void set_convex_hull(const TriangleMesh& convex_hull);
int object_idx() const { return this->composite_id / 1000000; }
int volume_idx() const { return (this->composite_id / 1000) % 1000; }
int instance_idx() const { return this->composite_id % 1000; }
const std::vector<float>& world_matrix() const;
std::vector<float> world_matrix() const;
BoundingBoxf3 transformed_bounding_box() const;
BoundingBoxf3 transformed_convex_hull_bounding_box() const;
bool empty() const { return this->indexed_vertex_array.empty(); }
bool indexed() const { return this->indexed_vertex_array.indexed(); }

View file

@ -551,8 +551,10 @@ void FirmwareDialog::priv::perform_upload()
// because the dialog ensures it doesn't exit before the background thread is done.
auto q = this->q;
this->avrdude = avrdude
.on_run([this]() {
avrdude
.on_run([this](AvrDude::Ptr avrdude) {
this->avrdude = std::move(avrdude);
try {
switch (this->hex_file.device) {
case HexFile::DEV_MK3:

View file

@ -1,5 +1,6 @@
#include "GLCanvas3D.hpp"
#include "../../admesh/stl.h"
#include "../../libslic3r/libslic3r.h"
#include "../../slic3r/GUI/3DScene.hpp"
#include "../../slic3r/GUI/GLShader.hpp"
@ -1154,6 +1155,18 @@ bool GLCanvas3D::Gizmos::init()
m_gizmos.insert(GizmosMap::value_type(Rotate, gizmo));
gizmo = new GLGizmoFlatten;
if (gizmo == nullptr)
return false;
if (!gizmo->init()) {
_reset();
return false;
}
m_gizmos.insert(GizmosMap::value_type(Flatten, gizmo));
return true;
}
@ -1387,22 +1400,46 @@ void GLCanvas3D::Gizmos::set_angle_z(float angle_z)
reinterpret_cast<GLGizmoRotate*>(it->second)->set_angle_z(angle_z);
}
void GLCanvas3D::Gizmos::render(const GLCanvas3D& canvas, const BoundingBoxf3& box) const
Pointf3 GLCanvas3D::Gizmos::get_flattening_normal() const
{
if (!m_enabled)
return Pointf3(0.f, 0.f, 0.f);
GizmosMap::const_iterator it = m_gizmos.find(Flatten);
return (it != m_gizmos.end()) ? reinterpret_cast<GLGizmoFlatten*>(it->second)->get_flattening_normal() : Pointf3(0.f, 0.f, 0.f);
}
void GLCanvas3D::Gizmos::set_flattening_data(const ModelObject* model_object)
{
if (!m_enabled)
return;
GizmosMap::const_iterator it = m_gizmos.find(Flatten);
if (it != m_gizmos.end())
reinterpret_cast<GLGizmoFlatten*>(it->second)->set_flattening_data(model_object);
}
void GLCanvas3D::Gizmos::render(const GLCanvas3D& canvas, const BoundingBoxf3& box, RenderOrder render_order) const
{
if (!m_enabled)
return;
::glDisable(GL_DEPTH_TEST);
if (box.radius() > 0.0)
_render_current_gizmo(box);
if ((render_order == BeforeBed && dynamic_cast<GLGizmoFlatten*>(_get_current()))
|| (render_order == AfterBed && !dynamic_cast<GLGizmoFlatten*>(_get_current()))) {
if (box.radius() > 0.0)
_render_current_gizmo(box);
}
::glPushMatrix();
::glLoadIdentity();
if (render_order == AfterBed) {
::glPushMatrix();
::glLoadIdentity();
_render_overlay(canvas);
_render_overlay(canvas);
::glPopMatrix();
::glPopMatrix();
}
}
void GLCanvas3D::Gizmos::render_current_gizmo_for_picking_pass(const BoundingBoxf3& box) const
@ -2170,6 +2207,7 @@ void GLCanvas3D::update_gizmos_data()
{
m_gizmos.set_scale(model_instance->scaling_factor);
m_gizmos.set_angle_z(model_instance->rotation);
m_gizmos.set_flattening_data(model_object);
}
}
}
@ -2177,6 +2215,7 @@ void GLCanvas3D::update_gizmos_data()
{
m_gizmos.set_scale(1.0f);
m_gizmos.set_angle_z(0.0f);
m_gizmos.set_flattening_data(nullptr);
}
}
@ -2215,6 +2254,7 @@ void GLCanvas3D::render()
_render_axes(false);
}
_render_objects();
_render_gizmo(Gizmos::RenderOrder::BeforeBed);
// textured bed needs to be rendered after objects
if (!is_custom_bed)
{
@ -2224,7 +2264,7 @@ void GLCanvas3D::render()
_render_cutting_plane();
_render_warning_texture();
_render_legend_texture();
_render_gizmo();
_render_gizmo(Gizmos::RenderOrder::AfterBed);
_render_layer_editing_overlay();
m_canvas->SwapBuffers();
@ -2760,6 +2800,16 @@ void GLCanvas3D::on_mouse(wxMouseEvent& evt)
m_gizmos.start_dragging();
m_mouse.drag.gizmo_volume_idx = _get_first_selected_volume_id(selected_object_idx);
m_dirty = true;
if (m_gizmos.get_current_type() == Gizmos::Flatten) {
// Rotate the object so the normal points downward:
Pointf3 normal = m_gizmos.get_flattening_normal();
if (normal.x != 0.f || normal.y != 0.f || normal.z != 0.f) {
Pointf3 axis = normal.z > 0.999f ? Pointf3(1, 0, 0) : cross(normal, Pointf3(0.f, 0.f, -1.f));
float angle = -acos(-normal.z);
m_on_gizmo_rotate_callback.call(angle, axis.x, axis.y, axis.z);
}
}
}
else
{
@ -3017,6 +3067,10 @@ void GLCanvas3D::on_mouse(wxMouseEvent& evt)
}
_on_move(volume_idxs);
// force re-selection of the wipe tower, if needed
if ((volume_idxs.size() == 1) && m_volumes.volumes[volume_idxs[0]]->is_wipe_tower)
select_volume(volume_idxs[0]);
}
else if (!m_mouse.dragging && (m_hover_volume_id == -1) && !gizmos_overlay_contains_mouse && !m_gizmos.is_dragging() && !is_layers_editing_enabled())
{
@ -3243,7 +3297,7 @@ BoundingBoxf3 GLCanvas3D::_selected_volumes_bounding_box() const
{
for (const GLVolume* volume : selected_volumes)
{
bb.merge(volume->transformed_bounding_box());
bb.merge(volume->transformed_convex_hull_bounding_box());
}
}
@ -3708,9 +3762,9 @@ void GLCanvas3D::_render_volumes(bool fake_colors) const
::glDisable(GL_LIGHTING);
}
void GLCanvas3D::_render_gizmo() const
void GLCanvas3D::_render_gizmo(Gizmos::RenderOrder render_order) const
{
m_gizmos.render(*this, _selected_volumes_bounding_box());
m_gizmos.render(*this, _selected_volumes_bounding_box(), render_order);
}
float GLCanvas3D::_get_layers_editing_cursor_z_relative() const

View file

@ -338,8 +338,13 @@ public:
Undefined,
Scale,
Rotate,
Flatten,
Num_Types
};
enum RenderOrder : unsigned char {
BeforeBed,
AfterBed
};
private:
bool m_enabled;
@ -382,7 +387,10 @@ public:
float get_angle_z() const;
void set_angle_z(float angle_z);
void render(const GLCanvas3D& canvas, const BoundingBoxf3& box) const;
void set_flattening_data(const ModelObject* model_object);
Pointf3 get_flattening_normal() const;
void render(const GLCanvas3D& canvas, const BoundingBoxf3& box, RenderOrder render_order) const;
void render_current_gizmo_for_picking_pass(const BoundingBoxf3& box) const;
private:
@ -629,7 +637,7 @@ private:
void _render_legend_texture() const;
void _render_layer_editing_overlay() const;
void _render_volumes(bool fake_colors) const;
void _render_gizmo() const;
void _render_gizmo(Gizmos::RenderOrder render_order) const;
float _get_layers_editing_cursor_z_relative() const;
void _perform_layer_editing_action(wxMouseEvent* evt = nullptr);

View file

@ -2,10 +2,13 @@
#include "../../libslic3r/Utils.hpp"
#include "../../libslic3r/BoundingBox.hpp"
#include "../../libslic3r/Model.hpp"
#include "../../libslic3r/Geometry.hpp"
#include <GL/glew.h>
#include <iostream>
#include <numeric>
namespace Slic3r {
namespace GUI {
@ -110,7 +113,7 @@ int GLGizmoBase::get_hover_id() const
void GLGizmoBase::set_hover_id(int id)
{
if (id < (int)m_grabbers.size())
//if (id < (int)m_grabbers.size())
m_hover_id = id;
}
@ -189,7 +192,7 @@ GLGizmoRotate::GLGizmoRotate()
, m_angle_z(0.0f)
, m_center(Pointf(0.0, 0.0))
, m_radius(0.0f)
, m_keep_radius(false)
, m_keep_initial_values(false)
{
}
@ -229,7 +232,7 @@ bool GLGizmoRotate::on_init()
void GLGizmoRotate::on_set_state()
{
m_keep_radius = (m_state == On) ? false : true;
m_keep_initial_values = (m_state == On) ? false : true;
}
void GLGizmoRotate::on_update(const Pointf& mouse_pos)
@ -255,19 +258,19 @@ void GLGizmoRotate::on_update(const Pointf& mouse_pos)
void GLGizmoRotate::on_refresh()
{
m_keep_radius = false;
m_keep_initial_values = false;
}
void GLGizmoRotate::on_render(const BoundingBoxf3& box) const
{
::glDisable(GL_DEPTH_TEST);
const Pointf3& size = box.size();
m_center = box.center();
if (!m_keep_radius)
if (!m_keep_initial_values)
{
const Pointf3& size = box.size();
m_center = box.center();
m_radius = Offset + ::sqrt(sqr(0.5f * size.x) + sqr(0.5f * size.y));
m_keep_radius = true;
m_keep_initial_values = true;
}
::glLineWidth(2.0f);
@ -502,5 +505,326 @@ void GLGizmoScale::on_render_for_picking(const BoundingBoxf3& box) const
render_grabbers();
}
GLGizmoFlatten::GLGizmoFlatten()
: GLGizmoBase(),
m_normal(Pointf3(0.f, 0.f, 0.f))
{}
bool GLGizmoFlatten::on_init()
{
std::string path = resources_dir() + "/icons/overlay/";
std::string filename = path + "layflat_off.png";
if (!m_textures[Off].load_from_file(filename, false))
return false;
filename = path + "layflat_hover.png";
if (!m_textures[Hover].load_from_file(filename, false))
return false;
filename = path + "layflat_on.png";
if (!m_textures[On].load_from_file(filename, false))
return false;
return true;
}
void GLGizmoFlatten::on_start_dragging()
{
if (m_hover_id != -1)
m_normal = m_planes[m_hover_id].normal;
}
void GLGizmoFlatten::on_render(const BoundingBoxf3& box) const
{
// the dragged_offset is a vector measuring where was the object moved
// with the gizmo being on. This is reset in set_flattening_data and
// does not work correctly when there are multiple copies.
if (!m_center) // this is the first bounding box that we see
m_center.reset(new Pointf3(box.center().x, box.center().y));
Pointf3 dragged_offset = box.center() - *m_center;
bool blending_was_enabled = ::glIsEnabled(GL_BLEND);
bool depth_test_was_enabled = ::glIsEnabled(GL_DEPTH_TEST);
::glEnable(GL_BLEND);
::glEnable(GL_DEPTH_TEST);
for (int i=0; i<(int)m_planes.size(); ++i) {
if (i == m_hover_id)
::glColor4f(0.9f, 0.9f, 0.9f, 0.75f);
else
::glColor4f(0.9f, 0.9f, 0.9f, 0.5f);
for (Pointf offset : m_instances_positions) {
offset += dragged_offset;
::glBegin(GL_POLYGON);
for (const auto& vertex : m_planes[i].vertices)
::glVertex3f((GLfloat)vertex.x + offset.x, (GLfloat)vertex.y + offset.y, (GLfloat)vertex.z);
::glEnd();
}
}
if (!blending_was_enabled)
::glDisable(GL_BLEND);
if (!depth_test_was_enabled)
::glDisable(GL_DEPTH_TEST);
}
void GLGizmoFlatten::on_render_for_picking(const BoundingBoxf3& box) const
{
static const GLfloat INV_255 = 1.0f / 255.0f;
::glDisable(GL_DEPTH_TEST);
for (unsigned int i = 0; i < m_planes.size(); ++i)
{
::glColor3f(1.f, 1.f, (254.0f - (float)i) * INV_255);
for (const Pointf& offset : m_instances_positions) {
::glBegin(GL_POLYGON);
for (const auto& vertex : m_planes[i].vertices)
::glVertex3f((GLfloat)vertex.x + offset.x, (GLfloat)vertex.y + offset.y, (GLfloat)vertex.z);
::glEnd();
}
}
}
// TODO - remove and use Eigen instead
static Pointf3 super_rotation(Pointf3 axis, float angle, const Pointf3& point)
{
axis = normalize(axis);
const float& x = axis.x;
const float& y = axis.y;
const float& z = axis.z;
float s = sin(angle);
float c = cos(angle);
float D = 1-c;
float matrix[3][3] = { { c + x*x*D, x*y*D-z*s, x*z*D+y*s },
{ y*x*D+z*s, c+y*y*D, y*z*D-x*s },
{ z*x*D-y*s, z*y*D+x*s, c+z*z*D } };
float in[3] = { (float)point.x, (float)point.y, (float)point.z };
float out[3] = { 0, 0, 0 };
for (unsigned char i=0; i<3; ++i)
for (unsigned char j=0; j<3; ++j)
out[i] += matrix[i][j] * in[j];
return Pointf3(out[0], out[1], out[2]);
}
void GLGizmoFlatten::set_flattening_data(const ModelObject* model_object)
{
m_center.release(); // object is not being dragged (this would not be called otherwise) - we must forget about the bounding box position...
m_model_object = model_object;
// ...and save the updated positions of the object instances:
if (m_model_object && !m_model_object->instances.empty()) {
m_instances_positions.clear();
for (const auto* instance : m_model_object->instances)
m_instances_positions.emplace_back(instance->offset);
}
if (is_plane_update_necessary())
update_planes();
}
void GLGizmoFlatten::update_planes()
{
TriangleMesh ch;
for (const ModelVolume* vol : m_model_object->volumes)
ch.merge(vol->get_convex_hull());
ch = ch.convex_hull_3d();
ch.scale(m_model_object->instances.front()->scaling_factor);
ch.rotate_z(m_model_object->instances.front()->rotation);
m_planes.clear();
// Now we'll go through all the facets and append Points of facets sharing the same normal:
const int num_of_facets = ch.stl.stats.number_of_facets;
std::vector<int> facet_queue(num_of_facets, 0);
std::vector<bool> facet_visited(num_of_facets, false);
int facet_queue_cnt = 0;
const stl_normal* normal_ptr = nullptr;
while (1) {
// Find next unvisited triangle:
int facet_idx = 0;
for (; facet_idx < num_of_facets; ++ facet_idx)
if (!facet_visited[facet_idx]) {
facet_queue[facet_queue_cnt ++] = facet_idx;
facet_visited[facet_idx] = true;
normal_ptr = &ch.stl.facet_start[facet_idx].normal;
m_planes.emplace_back();
break;
}
if (facet_idx == num_of_facets)
break; // Everything was visited already
while (facet_queue_cnt > 0) {
int facet_idx = facet_queue[-- facet_queue_cnt];
const stl_normal* this_normal_ptr = &ch.stl.facet_start[facet_idx].normal;
//if (this_normal_ptr->x == normal_ptr->x && this_normal_ptr->y == normal_ptr->y && this_normal_ptr->z == normal_ptr->z) {
if (std::abs(this_normal_ptr->x-normal_ptr->x) < 0.001 && std::abs(this_normal_ptr->y-normal_ptr->y) < 0.001 && std::abs(this_normal_ptr->z-normal_ptr->z) < 0.001) {
stl_vertex* first_vertex = ch.stl.facet_start[facet_idx].vertex;
for (int j=0; j<3; ++j)
m_planes.back().vertices.emplace_back(first_vertex[j].x, first_vertex[j].y, first_vertex[j].z);
facet_visited[facet_idx] = true;
for (int j = 0; j < 3; ++ j) {
int neighbor_idx = ch.stl.neighbors_start[facet_idx].neighbor[j];
if (! facet_visited[neighbor_idx])
facet_queue[facet_queue_cnt ++] = neighbor_idx;
}
}
}
m_planes.back().normal = Pointf3(normal_ptr->x, normal_ptr->y, normal_ptr->z);
// if this is a just a very small triangle, remove it to speed up further calculations (it would be rejected anyway):
if (m_planes.back().vertices.size() == 3 &&
( m_planes.back().vertices[0].distance_to(m_planes.back().vertices[1]) < 1.f
|| m_planes.back().vertices[0].distance_to(m_planes.back().vertices[2]) < 1.f))
m_planes.pop_back();
}
// Now we'll go through all the polygons, transform the points into xy plane to process them:
for (unsigned int polygon_id=0; polygon_id < m_planes.size(); ++polygon_id) {
Pointf3s& polygon = m_planes[polygon_id].vertices;
const Pointf3& normal = m_planes[polygon_id].normal;
// We are going to rotate about z and y to flatten the plane
float angle_z = 0.f;
float angle_y = 0.f;
if (std::abs(normal.y) > 0.001)
angle_z = -atan2(normal.y, normal.x); // angle to rotate so that normal ends up in xz-plane
if (std::abs(normal.x*cos(angle_z)-normal.y*sin(angle_z)) > 0.001)
angle_y = - atan2(normal.x*cos(angle_z)-normal.y*sin(angle_z), normal.z); // angle to rotate to make normal point upwards
else {
// In case it already was in z-direction, we must ensure it is not the wrong way:
angle_y = normal.z > 0.f ? 0 : -M_PI;
}
// Rotate all points to the xy plane:
for (auto& vertex : polygon) {
vertex = super_rotation(Pointf3(0,0,1), angle_z, vertex);
vertex = super_rotation(Pointf3(0,1,0), angle_y, vertex);
}
polygon = Slic3r::Geometry::convex_hull(polygon); // To remove the inner points
// We will calculate area of the polygon and discard ones that are too small
// The limit is more forgiving in case the normal is in the direction of the coordinate axes
const float minimal_area = (std::abs(normal.x) > 0.999f || std::abs(normal.y) > 0.999f || std::abs(normal.z) > 0.999f) ? 1.f : 20.f;
float& area = m_planes[polygon_id].area;
area = 0.f;
for (unsigned int i = 0; i < polygon.size(); i++) // Shoelace formula
area += polygon[i].x*polygon[i+1 < polygon.size() ? i+1 : 0 ].y - polygon[i+1 < polygon.size() ? i+1 : 0].x*polygon[i].y;
area = std::abs(area/2.f);
if (area < minimal_area) {
m_planes.erase(m_planes.begin()+(polygon_id--));
continue;
}
// We will shrink the polygon a little bit so it does not touch the object edges:
Pointf3 centroid = std::accumulate(polygon.begin(), polygon.end(), Pointf3(0.f, 0.f, 0.f));
centroid.scale(1.f/polygon.size());
for (auto& vertex : polygon)
vertex = 0.9f*vertex + 0.1f*centroid;
// Polygon is now simple and convex, we'll round the corners to make them look nicer.
// The algorithm takes a vertex, calculates middles of respective sides and moves the vertex
// towards their average (controlled by 'aggressivity'). This is repeated k times.
// In next iterations, the neighbours are not always taken at the middle (to increase the
// rounding effect at the corners, where we need it most).
const unsigned int k = 10; // number of iterations
const float aggressivity = 0.2f; // agressivity
const unsigned int N = polygon.size();
std::vector<std::pair<unsigned int, unsigned int>> neighbours;
if (k != 0) {
Pointf3s points_out(2*k*N); // vector long enough to store the future vertices
for (unsigned int j=0; j<N; ++j) {
points_out[j*2*k] = polygon[j];
neighbours.push_back(std::make_pair((int)(j*2*k-k) < 0 ? (N-1)*2*k+k : j*2*k-k, j*2*k+k));
}
for (unsigned int i=0; i<k; ++i) {
// Calculate middle of each edge so that neighbours points to something useful:
for (unsigned int j=0; j<N; ++j)
if (i==0)
points_out[j*2*k+k] = 0.5f * (points_out[j*2*k] + points_out[j==N-1 ? 0 : (j+1)*2*k]);
else {
float r = 0.2+0.3/(k-1)*i; // the neighbours are not always taken in the middle
points_out[neighbours[j].first] = r*points_out[j*2*k] + (1-r) * points_out[neighbours[j].first-1];
points_out[neighbours[j].second] = r*points_out[j*2*k] + (1-r) * points_out[neighbours[j].second+1];
}
// Now we have a triangle and valid neighbours, we can do an iteration:
for (unsigned int j=0; j<N; ++j)
points_out[2*k*j] = (1-aggressivity) * points_out[2*k*j] +
aggressivity*0.5f*(points_out[neighbours[j].first] + points_out[neighbours[j].second]);
for (auto& n : neighbours) {
++n.first;
--n.second;
}
}
polygon = points_out; // replace the coarse polygon with the smooth one that we just created
}
// Transform back to 3D;
for (auto& b : polygon) {
b.z += 0.1f; // raise a bit above the object surface to avoid flickering
b = super_rotation(Pointf3(0,1,0), -angle_y, b);
b = super_rotation(Pointf3(0,0,1), -angle_z, b);
}
}
// We'll sort the planes by area and only keep the 255 largest ones (because of the picking pass limitations):
std::sort(m_planes.rbegin(), m_planes.rend(), [](const PlaneData& a, const PlaneData& b) { return a.area < b.area; });
m_planes.resize(std::min((int)m_planes.size(), 255));
// Planes are finished - let's save what we calculated it from:
m_source_data.bounding_boxes.clear();
for (const auto& vol : m_model_object->volumes)
m_source_data.bounding_boxes.push_back(vol->get_convex_hull().bounding_box());
m_source_data.scaling_factor = m_model_object->instances.front()->scaling_factor;
m_source_data.rotation = m_model_object->instances.front()->rotation;
const float* first_vertex = m_model_object->volumes.front()->get_convex_hull().first_vertex();
m_source_data.mesh_first_point = Pointf3(first_vertex[0], first_vertex[1], first_vertex[2]);
}
// Check if the bounding boxes of each volume's convex hull is the same as before
// and that scaling and rotation has not changed. In that case we don't have to recalculate it.
bool GLGizmoFlatten::is_plane_update_necessary() const
{
if (m_state != On || !m_model_object || m_model_object->instances.empty())
return false;
if (m_model_object->volumes.size() != m_source_data.bounding_boxes.size()
|| m_model_object->instances.front()->scaling_factor != m_source_data.scaling_factor
|| m_model_object->instances.front()->rotation != m_source_data.rotation)
return true;
// now compare the bounding boxes:
for (unsigned int i=0; i<m_model_object->volumes.size(); ++i)
if (m_model_object->volumes[i]->get_convex_hull().bounding_box() != m_source_data.bounding_boxes[i])
return true;
const float* first_vertex = m_model_object->volumes.front()->get_convex_hull().first_vertex();
Pointf3 first_point(first_vertex[0], first_vertex[1], first_vertex[2]);
if (first_point != m_source_data.mesh_first_point)
return true;
return false;
}
Pointf3 GLGizmoFlatten::get_flattening_normal() const {
Pointf3 normal = m_normal;
normal.rotate(-m_model_object->instances.front()->rotation);
m_normal = Pointf3(0.f, 0.f, 0.f);
return normal;
}
} // namespace GUI
} // namespace Slic3r

View file

@ -10,6 +10,7 @@ namespace Slic3r {
class BoundingBoxf3;
class Pointf3;
class ModelObject;
namespace GUI {
@ -101,7 +102,7 @@ class GLGizmoRotate : public GLGizmoBase
mutable Pointf m_center;
mutable float m_radius;
mutable bool m_keep_radius;
mutable bool m_keep_initial_values;
public:
GLGizmoRotate();
@ -149,6 +150,56 @@ protected:
virtual void on_render_for_picking(const BoundingBoxf3& box) const;
};
class GLGizmoFlatten : public GLGizmoBase
{
// This gizmo does not use grabbers. The m_hover_id relates to polygon managed by the class itself.
private:
mutable Pointf3 m_normal;
struct PlaneData {
std::vector<Pointf3> vertices;
Pointf3 normal;
float area;
};
struct SourceDataSummary {
std::vector<BoundingBoxf3> bounding_boxes; // bounding boxes of convex hulls of individual volumes
float scaling_factor;
float rotation;
Pointf3 mesh_first_point;
};
// This holds information to decide whether recalculation is necessary:
SourceDataSummary m_source_data;
std::vector<PlaneData> m_planes;
std::vector<Pointf> m_instances_positions;
mutable std::unique_ptr<Pointf3> m_center = nullptr;
const ModelObject* m_model_object = nullptr;
void update_planes();
bool is_plane_update_necessary() const;
public:
GLGizmoFlatten();
void set_flattening_data(const ModelObject* model_object);
Pointf3 get_flattening_normal() const;
protected:
bool on_init() override;
void on_start_dragging() override;
void on_update(const Pointf& mouse_pos) override {};
void on_render(const BoundingBoxf3& box) const override;
void on_render_for_picking(const BoundingBoxf3& box) const override;
void on_set_state() override {
if (m_state == On && is_plane_update_necessary())
update_planes();
}
};
} // namespace GUI
} // namespace Slic3r

View file

@ -313,13 +313,12 @@ const std::vector<std::string>& Preset::filament_options()
{
static std::vector<std::string> s_opts {
"filament_colour", "filament_diameter", "filament_type", "filament_soluble", "filament_notes", "filament_max_volumetric_speed",
"extrusion_multiplier", "filament_density", "filament_cost",
"filament_loading_speed", "filament_load_time", "filament_unloading_speed", "filament_unload_time", "filament_toolchange_delay",
"filament_cooling_moves", "filament_cooling_initial_speed", "filament_cooling_final_speed", "filament_ramming_parameters",
"filament_minimal_purge_on_wipe_tower", "temperature", "first_layer_temperature", "bed_temperature", "first_layer_bed_temperature",
"fan_always_on", "cooling", "min_fan_speed", "max_fan_speed", "bridge_fan_speed", "disable_fan_first_layers", "fan_below_layer_time",
"slowdown_below_layer_time", "min_print_speed", "start_filament_gcode", "end_filament_gcode","compatible_printers", "compatible_printers_condition",
"inherits"
"extrusion_multiplier", "filament_density", "filament_cost", "filament_loading_speed", "filament_loading_speed_start", "filament_load_time",
"filament_unloading_speed", "filament_unloading_speed_start", "filament_unload_time", "filament_toolchange_delay", "filament_cooling_moves",
"filament_cooling_initial_speed", "filament_cooling_final_speed", "filament_ramming_parameters", "filament_minimal_purge_on_wipe_tower",
"temperature", "first_layer_temperature", "bed_temperature", "first_layer_bed_temperature", "fan_always_on", "cooling", "min_fan_speed",
"max_fan_speed", "bridge_fan_speed", "disable_fan_first_layers", "fan_below_layer_time", "slowdown_below_layer_time", "min_print_speed",
"start_filament_gcode", "end_filament_gcode","compatible_printers", "compatible_printers_condition", "inherits"
};
return s_opts;
}

View file

@ -1290,7 +1290,9 @@ void TabFilament::build()
optgroup->append_line(line);
optgroup = page->new_optgroup(_(L("Toolchange parameters with single extruder MM printers")));
optgroup->append_single_option_line("filament_loading_speed");
optgroup->append_single_option_line("filament_loading_speed_start");
optgroup->append_single_option_line("filament_loading_speed");
optgroup->append_single_option_line("filament_unloading_speed_start");
optgroup->append_single_option_line("filament_unloading_speed");
optgroup->append_single_option_line("filament_load_time");
optgroup->append_single_option_line("filament_unload_time");