admesh refactoring: replaced various diagnostics outputs with boost::log

This commit is contained in:
bubnikv 2019-06-10 19:45:38 +02:00
parent 6defabea53
commit 313ec7424a
7 changed files with 405 additions and 481 deletions

View file

@ -26,6 +26,7 @@
#include <math.h>
#include <assert.h>
#include <boost/log/trivial.hpp>
#include <boost/nowide/cstdio.hpp>
#include <boost/detail/endian.hpp>
@ -37,118 +38,102 @@
static FILE* stl_open_count_facets(stl_file *stl, const char *file)
{
long file_size;
uint32_t header_num_facets;
uint32_t num_facets;
int i;
size_t s;
unsigned char chtest[128];
int num_lines = 1;
char *error_msg;
// Open the file in binary mode first.
FILE *fp = boost::nowide::fopen(file, "rb");
if (fp == nullptr) {
BOOST_LOG_TRIVIAL(error) << "stl_open_count_facets: Couldn't open " << file << " for reading";
return nullptr;
}
// Find size of file.
fseek(fp, 0, SEEK_END);
long file_size = ftell(fp);
/* Open the file in binary mode first */
FILE *fp = boost::nowide::fopen(file, "rb");
if (fp == nullptr) {
error_msg = (char*)
malloc(81 + strlen(file)); /* Allow 80 chars+file size for message */
sprintf(error_msg, "stl_initialize: Couldn't open %s for reading",
file);
perror(error_msg);
free(error_msg);
return nullptr;
}
/* Find size of file */
fseek(fp, 0, SEEK_END);
file_size = ftell(fp);
// Check for binary or ASCII file.
fseek(fp, HEADER_SIZE, SEEK_SET);
unsigned char chtest[128];
if (! fread(chtest, sizeof(chtest), 1, fp)) {
BOOST_LOG_TRIVIAL(error) << "stl_open_count_facets: The input is an empty file: " << file;
fclose(fp);
return nullptr;
}
stl->stats.type = ascii;
for (size_t s = 0; s < sizeof(chtest); s++) {
if (chtest[s] > 127) {
stl->stats.type = binary;
break;
}
}
rewind(fp);
/* Check for binary or ASCII file */
fseek(fp, HEADER_SIZE, SEEK_SET);
if (!fread(chtest, sizeof(chtest), 1, fp)) {
perror("The input is an empty file");
fclose(fp);
return nullptr;
}
stl->stats.type = ascii;
for(s = 0; s < sizeof(chtest); s++) {
if(chtest[s] > 127) {
stl->stats.type = binary;
break;
}
}
rewind(fp);
uint32_t num_facets = 0;
/* Get the header and the number of facets in the .STL file */
/* If the .STL file is binary, then do the following */
if(stl->stats.type == binary) {
/* Test if the STL file has the right size */
if(((file_size - HEADER_SIZE) % SIZEOF_STL_FACET != 0)
|| (file_size < STL_MIN_FILE_SIZE)) {
fprintf(stderr, "The file %s has the wrong size.\n", file);
fclose(fp);
return nullptr;
}
num_facets = (file_size - HEADER_SIZE) / SIZEOF_STL_FACET;
// Get the header and the number of facets in the .STL file.
// If the .STL file is binary, then do the following:
if (stl->stats.type == binary) {
// Test if the STL file has the right size.
if (((file_size - HEADER_SIZE) % SIZEOF_STL_FACET != 0) || (file_size < STL_MIN_FILE_SIZE)) {
BOOST_LOG_TRIVIAL(error) << "stl_open_count_facets: The file " << file << " has the wrong size.";
fclose(fp);
return nullptr;
}
num_facets = (file_size - HEADER_SIZE) / SIZEOF_STL_FACET;
/* Read the header */
if (fread(stl->stats.header, LABEL_SIZE, 1, fp) > 79) {
stl->stats.header[80] = '\0';
}
// Read the header.
if (fread(stl->stats.header, LABEL_SIZE, 1, fp) > 79)
stl->stats.header[80] = '\0';
/* Read the int following the header. This should contain # of facets */
bool header_num_faces_read = fread(&header_num_facets, sizeof(uint32_t), 1, fp) != 0;
// Read the int following the header. This should contain # of facets.
uint32_t header_num_facets;
bool header_num_faces_read = fread(&header_num_facets, sizeof(uint32_t), 1, fp) != 0;
#ifndef BOOST_LITTLE_ENDIAN
// Convert from little endian to big endian.
stl_internal_reverse_quads((char*)&header_num_facets, 4);
// Convert from little endian to big endian.
stl_internal_reverse_quads((char*)&header_num_facets, 4);
#endif /* BOOST_LITTLE_ENDIAN */
if (! header_num_faces_read || num_facets != header_num_facets) {
fprintf(stderr,
"Warning: File size doesn't match number of facets in the header\n");
}
}
/* Otherwise, if the .STL file is ASCII, then do the following */
else {
/* Reopen the file in text mode (for getting correct newlines on Windows) */
// fix to silence a warning about unused return value.
// obviously if it fails we have problems....
fp = boost::nowide::freopen(file, "r", fp);
if (! header_num_faces_read || num_facets != header_num_facets)
BOOST_LOG_TRIVIAL(info) << "stl_open_count_facets: Warning: File size doesn't match number of facets in the header: " << file;
}
// Otherwise, if the .STL file is ASCII, then do the following:
else
{
// Reopen the file in text mode (for getting correct newlines on Windows)
// fix to silence a warning about unused return value.
// obviously if it fails we have problems....
fp = boost::nowide::freopen(file, "r", fp);
// do another null check to be safe
if(fp == nullptr) {
error_msg = (char*)
malloc(81 + strlen(file)); /* Allow 80 chars+file size for message */
sprintf(error_msg, "stl_initialize: Couldn't open %s for reading",
file);
perror(error_msg);
free(error_msg);
fclose(fp);
return nullptr;
}
// do another null check to be safe
if (fp == nullptr) {
BOOST_LOG_TRIVIAL(error) << "stl_open_count_facets: Couldn't open " << file << " for reading";
fclose(fp);
return nullptr;
}
/* Find the number of facets */
char linebuf[100];
while (fgets(linebuf, 100, fp) != nullptr) {
/* don't count short lines */
if (strlen(linebuf) <= 4) continue;
/* skip solid/endsolid lines as broken STL file generators may put several of them */
if (strncmp(linebuf, "solid", 5) == 0 || strncmp(linebuf, "endsolid", 8) == 0) continue;
++num_lines;
}
rewind(fp);
/* Get the header */
for(i = 0;
(i < 80) && (stl->stats.header[i] = getc(fp)) != '\n'; i++);
stl->stats.header[i] = '\0'; /* Lose the '\n' */
stl->stats.header[80] = '\0';
// Find the number of facets.
char linebuf[100];
int num_lines = 1;
while (fgets(linebuf, 100, fp) != nullptr) {
// Don't count short lines.
if (strlen(linebuf) <= 4)
continue;
// Skip solid/endsolid lines as broken STL file generators may put several of them.
if (strncmp(linebuf, "solid", 5) == 0 || strncmp(linebuf, "endsolid", 8) == 0)
continue;
++ num_lines;
}
num_facets = num_lines / ASCII_LINES_PER_FACET;
}
stl->stats.number_of_facets += num_facets;
stl->stats.original_num_facets = stl->stats.number_of_facets;
return fp;
rewind(fp);
// Get the header.
int i = 0;
for (; i < 80 && (stl->stats.header[i] = getc(fp)) != '\n'; ++ i) ;
stl->stats.header[i] = '\0'; // Lose the '\n'
stl->stats.header[80] = '\0';
num_facets = num_lines / ASCII_LINES_PER_FACET;
}
stl->stats.number_of_facets += num_facets;
stl->stats.original_num_facets = stl->stats.number_of_facets;
return fp;
}
/* Reads the contents of the file pointed to by fp into the stl structure,
@ -156,85 +141,82 @@ static FILE* stl_open_count_facets(stl_file *stl, const char *file)
time running this for the stl and therefore we should reset our max and min stats. */
static bool stl_read(stl_file *stl, FILE *fp, int first_facet, bool first)
{
stl_facet facet;
if (stl->stats.type == binary)
fseek(fp, HEADER_SIZE, SEEK_SET);
else
rewind(fp);
if(stl->stats.type == binary) {
fseek(fp, HEADER_SIZE, SEEK_SET);
} else {
rewind(fp);
}
char normal_buf[3][32];
for (uint32_t i = first_facet; i < stl->stats.number_of_facets; ++i) {
stl_facet facet;
char normal_buf[3][32];
for(uint32_t i = first_facet; i < stl->stats.number_of_facets; i++) {
if(stl->stats.type == binary)
/* Read a single facet from a binary .STL file */
{
/* we assume little-endian architecture! */
if (fread(&facet, 1, SIZEOF_STL_FACET, fp) != SIZEOF_STL_FACET)
return false;
if (stl->stats.type == binary) {
// Read a single facet from a binary .STL file. We assume little-endian architecture!
if (fread(&facet, 1, SIZEOF_STL_FACET, fp) != SIZEOF_STL_FACET)
return false;
#ifndef BOOST_LITTLE_ENDIAN
// Convert the loaded little endian data to big endian.
stl_internal_reverse_quads((char*)&facet, 48);
// Convert the loaded little endian data to big endian.
stl_internal_reverse_quads((char*)&facet, 48);
#endif /* BOOST_LITTLE_ENDIAN */
} else
/* Read a single facet from an ASCII .STL file */
{
// skip solid/endsolid
// (in this order, otherwise it won't work when they are paired in the middle of a file)
fscanf(fp, "endsolid%*[^\n]\n");
fscanf(fp, "solid%*[^\n]\n"); // name might contain spaces so %*s doesn't work and it also can be empty (just "solid")
// Leading space in the fscanf format skips all leading white spaces including numerous new lines and tabs.
int res_normal = fscanf(fp, " facet normal %31s %31s %31s", normal_buf[0], normal_buf[1], normal_buf[2]);
assert(res_normal == 3);
int res_outer_loop = fscanf(fp, " outer loop");
assert(res_outer_loop == 0);
int res_vertex1 = fscanf(fp, " vertex %f %f %f", &facet.vertex[0](0), &facet.vertex[0](1), &facet.vertex[0](2));
assert(res_vertex1 == 3);
int res_vertex2 = fscanf(fp, " vertex %f %f %f", &facet.vertex[1](0), &facet.vertex[1](1), &facet.vertex[1](2));
assert(res_vertex2 == 3);
int res_vertex3 = fscanf(fp, " vertex %f %f %f", &facet.vertex[2](0), &facet.vertex[2](1), &facet.vertex[2](2));
assert(res_vertex3 == 3);
int res_endloop = fscanf(fp, " endloop");
assert(res_endloop == 0);
// There is a leading and trailing white space around endfacet to eat up all leading and trailing white spaces including numerous tabs and new lines.
int res_endfacet = fscanf(fp, " endfacet ");
if (res_normal != 3 || res_outer_loop != 0 || res_vertex1 != 3 || res_vertex2 != 3 || res_vertex3 != 3 || res_endloop != 0 || res_endfacet != 0) {
perror("Something is syntactically very wrong with this ASCII STL!");
return false;
}
} else {
// Read a single facet from an ASCII .STL file
// skip solid/endsolid
// (in this order, otherwise it won't work when they are paired in the middle of a file)
fscanf(fp, "endsolid%*[^\n]\n");
fscanf(fp, "solid%*[^\n]\n"); // name might contain spaces so %*s doesn't work and it also can be empty (just "solid")
// Leading space in the fscanf format skips all leading white spaces including numerous new lines and tabs.
int res_normal = fscanf(fp, " facet normal %31s %31s %31s", normal_buf[0], normal_buf[1], normal_buf[2]);
assert(res_normal == 3);
int res_outer_loop = fscanf(fp, " outer loop");
assert(res_outer_loop == 0);
int res_vertex1 = fscanf(fp, " vertex %f %f %f", &facet.vertex[0](0), &facet.vertex[0](1), &facet.vertex[0](2));
assert(res_vertex1 == 3);
int res_vertex2 = fscanf(fp, " vertex %f %f %f", &facet.vertex[1](0), &facet.vertex[1](1), &facet.vertex[1](2));
assert(res_vertex2 == 3);
int res_vertex3 = fscanf(fp, " vertex %f %f %f", &facet.vertex[2](0), &facet.vertex[2](1), &facet.vertex[2](2));
assert(res_vertex3 == 3);
int res_endloop = fscanf(fp, " endloop");
assert(res_endloop == 0);
// There is a leading and trailing white space around endfacet to eat up all leading and trailing white spaces including numerous tabs and new lines.
int res_endfacet = fscanf(fp, " endfacet ");
if (res_normal != 3 || res_outer_loop != 0 || res_vertex1 != 3 || res_vertex2 != 3 || res_vertex3 != 3 || res_endloop != 0 || res_endfacet != 0) {
BOOST_LOG_TRIVIAL(error) << "Something is syntactically very wrong with this ASCII STL! ";
return false;
}
// The facet normal has been parsed as a single string as to workaround for not a numbers in the normal definition.
if (sscanf(normal_buf[0], "%f", &facet.normal(0)) != 1 ||
sscanf(normal_buf[1], "%f", &facet.normal(1)) != 1 ||
sscanf(normal_buf[2], "%f", &facet.normal(2)) != 1) {
// Normal was mangled. Maybe denormals or "not a number" were stored?
// Just reset the normal and silently ignore it.
memset(&facet.normal, 0, sizeof(facet.normal));
}
}
// The facet normal has been parsed as a single string as to workaround for not a numbers in the normal definition.
if (sscanf(normal_buf[0], "%f", &facet.normal(0)) != 1 ||
sscanf(normal_buf[1], "%f", &facet.normal(1)) != 1 ||
sscanf(normal_buf[2], "%f", &facet.normal(2)) != 1) {
// Normal was mangled. Maybe denormals or "not a number" were stored?
// Just reset the normal and silently ignore it.
memset(&facet.normal, 0, sizeof(facet.normal));
}
}
#if 0
// Report close to zero vertex coordinates. Due to the nature of the floating point numbers,
// close to zero values may be represented with singificantly higher precision than the rest of the vertices.
// It may be worth to round these numbers to zero during loading to reduce the number of errors reported
// during the STL import.
for (size_t j = 0; j < 3; ++ j) {
if (facet.vertex[j](0) > -1e-12f && facet.vertex[j](0) < 1e-12f)
printf("stl_read: facet %d(0) = %e\r\n", j, facet.vertex[j](0));
if (facet.vertex[j](1) > -1e-12f && facet.vertex[j](1) < 1e-12f)
printf("stl_read: facet %d(1) = %e\r\n", j, facet.vertex[j](1));
if (facet.vertex[j](2) > -1e-12f && facet.vertex[j](2) < 1e-12f)
printf("stl_read: facet %d(2) = %e\r\n", j, facet.vertex[j](2));
}
// Report close to zero vertex coordinates. Due to the nature of the floating point numbers,
// close to zero values may be represented with singificantly higher precision than the rest of the vertices.
// It may be worth to round these numbers to zero during loading to reduce the number of errors reported
// during the STL import.
for (size_t j = 0; j < 3; ++ j) {
if (facet.vertex[j](0) > -1e-12f && facet.vertex[j](0) < 1e-12f)
printf("stl_read: facet %d(0) = %e\r\n", j, facet.vertex[j](0));
if (facet.vertex[j](1) > -1e-12f && facet.vertex[j](1) < 1e-12f)
printf("stl_read: facet %d(1) = %e\r\n", j, facet.vertex[j](1));
if (facet.vertex[j](2) > -1e-12f && facet.vertex[j](2) < 1e-12f)
printf("stl_read: facet %d(2) = %e\r\n", j, facet.vertex[j](2));
}
#endif
/* Write the facet into memory. */
stl->facet_start[i] = facet;
stl_facet_stats(stl, facet, first);
}
stl->stats.size = stl->stats.max - stl->stats.min;
stl->stats.bounding_diameter = stl->stats.size.norm();
return true;
// Write the facet into memory.
stl->facet_start[i] = facet;
stl_facet_stats(stl, facet, first);
}
stl->stats.size = stl->stats.max - stl->stats.min;
stl->stats.bounding_diameter = stl->stats.size.norm();
return true;
}
bool stl_open(stl_file *stl, const char *file)
@ -277,21 +259,21 @@ void stl_reallocate(stl_file *stl)
void stl_facet_stats(stl_file *stl, stl_facet facet, bool &first)
{
// While we are going through all of the facets, let's find the
// maximum and minimum values for x, y, and z
// While we are going through all of the facets, let's find the
// maximum and minimum values for x, y, and z
if (first) {
// Initialize the max and min values the first time through
stl->stats.min = facet.vertex[0];
stl->stats.max = facet.vertex[0];
stl_vertex diff = (facet.vertex[1] - facet.vertex[0]).cwiseAbs();
stl->stats.shortest_edge = std::max(diff(0), std::max(diff(1), diff(2)));
first = false;
}
if (first) {
// Initialize the max and min values the first time through
stl->stats.min = facet.vertex[0];
stl->stats.max = facet.vertex[0];
stl_vertex diff = (facet.vertex[1] - facet.vertex[0]).cwiseAbs();
stl->stats.shortest_edge = std::max(diff(0), std::max(diff(1), diff(2)));
first = false;
}
// Now find the max and min values.
for (size_t i = 0; i < 3; ++ i) {
stl->stats.min = stl->stats.min.cwiseMin(facet.vertex[i]);
stl->stats.max = stl->stats.max.cwiseMax(facet.vertex[i]);
}
// Now find the max and min values.
for (size_t i = 0; i < 3; ++ i) {
stl->stats.min = stl->stats.min.cwiseMin(facet.vertex[i]);
stl->stats.max = stl->stats.max.cwiseMax(facet.vertex[i]);
}
}