Fixed conflicts after merge with master

This commit is contained in:
enricoturri1966 2020-05-27 10:32:02 +02:00
commit 2eb4b2caed
68 changed files with 467 additions and 1030 deletions

View file

@ -1,7 +1,8 @@
#include "Arrange.hpp"
//#include "Geometry.hpp"
#include "SVG.hpp"
#include "BoundingBox.hpp"
#include <libnest2d/backends/clipper/geometries.hpp>
#include <libnest2d/optimizers/nlopt/subplex.hpp>
#include <libnest2d/placers/nfpplacer.hpp>

View file

@ -2,9 +2,12 @@
#define ARRANGE_HPP
#include "ExPolygon.hpp"
#include "BoundingBox.hpp"
namespace Slic3r { namespace arrangement {
namespace Slic3r {
class BoundingBox;
namespace arrangement {
/// A geometry abstraction for a circular print bed. Similarly to BoundingBox.
class CircleBed {

View file

@ -6,7 +6,6 @@
#include <stdint.h>
#include "../libslic3r.h"
#include "../BoundingBox.hpp"
#include "../PrintConfig.hpp"
#include "FillBase.hpp"

View file

@ -901,7 +901,7 @@ static void connect_segment_intersections_by_contours(
const SegmentedIntersectionLine *il_prev = i_vline > 0 ? &segs[i_vline - 1] : nullptr;
const SegmentedIntersectionLine *il_next = i_vline + 1 < segs.size() ? &segs[i_vline + 1] : nullptr;
for (int i_intersection = 0; i_intersection < il.intersections.size(); ++ i_intersection) {
for (int i_intersection = 0; i_intersection < int(il.intersections.size()); ++ i_intersection) {
SegmentIntersection &itsct = il.intersections[i_intersection];
const Polygon &poly = poly_with_offset.contour(itsct.iContour);
const bool forward = itsct.is_low(); // == poly_with_offset.is_contour_ccw(intrsctn->iContour);
@ -914,7 +914,7 @@ static void connect_segment_intersections_by_contours(
int iprev = -1;
int d_prev = std::numeric_limits<int>::max();
if (il_prev) {
for (int i = 0; i < il_prev->intersections.size(); ++ i) {
for (int i = 0; i < int(il_prev->intersections.size()); ++ i) {
const SegmentIntersection &itsct2 = il_prev->intersections[i];
if (itsct.iContour == itsct2.iContour && itsct.type == itsct2.type) {
// The intersection points lie on the same contour and have the same orientation.
@ -932,7 +932,7 @@ static void connect_segment_intersections_by_contours(
int inext = -1;
int d_next = std::numeric_limits<int>::max();
if (il_next) {
for (int i = 0; i < il_next->intersections.size(); ++ i) {
for (int i = 0; i < int(il_next->intersections.size()); ++ i) {
const SegmentIntersection &itsct2 = il_next->intersections[i];
if (itsct.iContour == itsct2.iContour && itsct.type == itsct2.type) {
// The intersection points lie on the same contour and have the same orientation.
@ -950,7 +950,7 @@ static void connect_segment_intersections_by_contours(
bool same_prev = false;
bool same_next = false;
// Does the perimeter intersect the current vertical line above intrsctn?
for (int i = 0; i < il.intersections.size(); ++ i)
for (int i = 0; i < int(il.intersections.size()); ++ i)
if (const SegmentIntersection &it2 = il.intersections[i];
i != i_intersection && it2.iContour == itsct.iContour && it2.type != itsct.type) {
int d = distance_of_segmens(poly, it2.iSegment, itsct.iSegment, forward);
@ -1040,7 +1040,7 @@ static void connect_segment_intersections_by_contours(
}
// Make the LinkQuality::Invalid symmetric on vertical connections.
for (int i_intersection = 0; i_intersection < il.intersections.size(); ++ i_intersection) {
for (int i_intersection = 0; i_intersection < int(il.intersections.size()); ++ i_intersection) {
SegmentIntersection &it = il.intersections[i_intersection];
if (it.has_left_vertical() && it.prev_on_contour_quality == SegmentIntersection::LinkQuality::Invalid) {
SegmentIntersection &it2 = il.intersections[it.left_vertical()];
@ -1157,9 +1157,9 @@ static void traverse_graph_generate_polylines(
{
// For each outer only chords, measure their maximum distance to the bow of the outer contour.
// Mark an outer only chord as consumed, if the distance is low.
for (int i_vline = 0; i_vline < segs.size(); ++ i_vline) {
for (int i_vline = 0; i_vline < int(segs.size()); ++ i_vline) {
SegmentedIntersectionLine &vline = segs[i_vline];
for (int i_intersection = 0; i_intersection + 1 < vline.intersections.size(); ++ i_intersection) {
for (int i_intersection = 0; i_intersection + 1 < int(vline.intersections.size()); ++ i_intersection) {
if (vline.intersections[i_intersection].type == SegmentIntersection::OUTER_LOW &&
vline.intersections[i_intersection + 1].type == SegmentIntersection::OUTER_HIGH) {
bool consumed = false;
@ -1189,14 +1189,14 @@ static void traverse_graph_generate_polylines(
if (i_intersection == -1) {
// The path has been interrupted. Find a next starting point, closest to the previous extruder position.
coordf_t dist2min = std::numeric_limits<coordf_t>().max();
for (int i_vline2 = 0; i_vline2 < segs.size(); ++ i_vline2) {
for (int i_vline2 = 0; i_vline2 < int(segs.size()); ++ i_vline2) {
const SegmentedIntersectionLine &vline = segs[i_vline2];
if (! vline.intersections.empty()) {
assert(vline.intersections.size() > 1);
// Even number of intersections with the loops.
assert((vline.intersections.size() & 1) == 0);
assert(vline.intersections.front().type == SegmentIntersection::OUTER_LOW);
for (int i = 0; i < vline.intersections.size(); ++ i) {
for (int i = 0; i < int(vline.intersections.size()); ++ i) {
const SegmentIntersection& intrsctn = vline.intersections[i];
if (intrsctn.is_outer()) {
assert(intrsctn.is_low() || i > 0);
@ -1674,13 +1674,13 @@ static std::vector<MonotonousRegion> generate_montonous_regions(std::vector<Segm
auto test_overlap = [](int, int, int) { return false; };
#endif
for (int i_vline_seed = 0; i_vline_seed < segs.size(); ++ i_vline_seed) {
for (int i_vline_seed = 0; i_vline_seed < int(segs.size()); ++ i_vline_seed) {
SegmentedIntersectionLine &vline_seed = segs[i_vline_seed];
for (int i_intersection_seed = 1; i_intersection_seed + 1 < vline_seed.intersections.size(); ) {
while (i_intersection_seed < vline_seed.intersections.size() &&
for (int i_intersection_seed = 1; i_intersection_seed + 1 < int(vline_seed.intersections.size()); ) {
while (i_intersection_seed < int(vline_seed.intersections.size()) &&
vline_seed.intersections[i_intersection_seed].type != SegmentIntersection::INNER_LOW)
++ i_intersection_seed;
if (i_intersection_seed == vline_seed.intersections.size())
if (i_intersection_seed == int(vline_seed.intersections.size()))
break;
SegmentIntersection *start = &vline_seed.intersections[i_intersection_seed];
SegmentIntersection *end = &end_of_vertical_run(vline_seed, *start);
@ -1697,7 +1697,7 @@ static std::vector<MonotonousRegion> generate_montonous_regions(std::vector<Segm
assert(! test_overlap(region.left.vline, region.left.low, region.left.high));
start->consumed_vertical_up = true;
int num_lines = 1;
while (++ i_vline < segs.size()) {
while (++ i_vline < int(segs.size())) {
SegmentedIntersectionLine &vline_left = segs[i_vline - 1];
SegmentedIntersectionLine &vline_right = segs[i_vline];
std::pair<SegmentIntersection*, SegmentIntersection*> right = right_overlap(left, vline_left, vline_right);
@ -1860,7 +1860,7 @@ static void connect_monotonous_regions(std::vector<MonotonousRegion> &regions, c
}
}
}
if (region.right.vline + 1 < segs.size()) {
if (region.right.vline + 1 < int(segs.size())) {
auto &vline = segs[region.right.vline];
auto &vline_right = segs[region.right.vline + 1];
auto [rbegin, rend] = right_overlap(vline.intersections[region.right.low], vline.intersections[region.right.high], vline, vline_right);
@ -2100,7 +2100,7 @@ static std::vector<MonotonousRegionLink> chain_monotonous_regions(
AntPath &path2 = path_matrix(region, dir, *next, true);
if (path1.visibility > next_candidate.probability)
next_candidate = { next, &path1, &path1, path1.visibility, false };
if (path2.visibility > next_candidate.probability)
if (path2.visibility > next_candidate.probability)
next_candidate = { next, &path2, &path2, path2.visibility, true };
}
}
@ -2111,7 +2111,7 @@ static std::vector<MonotonousRegionLink> chain_monotonous_regions(
AntPath &path2 = path_matrix(region, dir, *next, true);
if (path1.visibility > next_candidate.probability)
next_candidate = { next, &path1, &path1, path1.visibility, false };
if (path2.visibility > next_candidate.probability)
if (path2.visibility > next_candidate.probability)
next_candidate = { next, &path2, &path2, path2.visibility, true };
}
}

View file

@ -7,6 +7,7 @@
#include "GCode/PrintExtents.hpp"
#include "GCode/WipeTower.hpp"
#include "ShortestPath.hpp"
#include "Print.hpp"
#include "Utils.hpp"
#include "libslic3r.h"

View file

@ -8,7 +8,6 @@
#include "MotionPlanner.hpp"
#include "Point.hpp"
#include "PlaceholderParser.hpp"
#include "Print.hpp"
#include "PrintConfig.hpp"
#include "GCode/CoolingBuffer.hpp"
#include "GCode/SpiralVase.hpp"
@ -38,6 +37,10 @@ class GCode;
class GCodePreviewData;
#endif // !ENABLE_GCODE_VIEWER
namespace { struct Item; }
struct PrintInstance;
using PrintObjectPtrs = std::vector<PrintObject*>;
class AvoidCrossingPerimeters {
public:

View file

@ -6,6 +6,7 @@
#include "../BoundingBox.hpp"
#include "../ExtrusionEntity.hpp"
#include "../ExtrusionEntityCollection.hpp"
#include "../Layer.hpp"
#include "../Print.hpp"
#include "PrintExtents.hpp"

View file

@ -1,4 +1,3 @@
#include "libslic3r/libslic3r.h"
#include "ThumbnailData.hpp"
namespace Slic3r {

View file

@ -24,4 +24,4 @@ typedef std::function<void(ThumbnailsList & thumbnails, const Vec2ds & sizes, bo
} // namespace Slic3r
#endif // slic3r_ThumbnailData_hpp_
#endif // slic3r_ThumbnailData_hpp_

View file

@ -1,5 +1,6 @@
#include "Print.hpp"
#include "ToolOrdering.hpp"
#include "Layer.hpp"
// #define SLIC3R_DEBUG
@ -15,7 +16,6 @@
#include <libslic3r.h>
#include "../GCodeWriter.hpp"
namespace Slic3r {

View file

@ -14,6 +14,8 @@ namespace Slic3r {
class Print;
class PrintObject;
class LayerTools;
namespace CustomGCode { struct Item; }
class PrintRegion;

View file

@ -282,7 +282,7 @@ namespace Slic3r {
};
GCodeReader parser;
unsigned int g1_lines_count = 0;
int g1_lines_count = 0;
int normal_g1_line_id = 0;
float normal_last_recorded_time = 0.0f;
int silent_g1_line_id = 0;

View file

@ -10,8 +10,6 @@
#include <cmath>
#include "libslic3r.h"
#include "Point.hpp"
#include "BoundingBox.hpp"
namespace Slic3r {

View file

@ -1385,8 +1385,8 @@ unsigned int ModelObject::check_instances_print_volume_state(const BoundingBoxf3
inside_outside |= OUTSIDE;
}
model_instance->print_volume_state =
(inside_outside == (INSIDE | OUTSIDE)) ? ModelInstance::PVS_Partly_Outside :
(inside_outside == INSIDE) ? ModelInstance::PVS_Inside : ModelInstance::PVS_Fully_Outside;
(inside_outside == (INSIDE | OUTSIDE)) ? ModelInstancePVS_Partly_Outside :
(inside_outside == INSIDE) ? ModelInstancePVS_Inside : ModelInstancePVS_Fully_Outside;
if (inside_outside == INSIDE)
++ num_printable;
}

View file

@ -3,7 +3,6 @@
#include "libslic3r.h"
#include "Geometry.hpp"
#include "Layer.hpp"
#include "ObjectID.hpp"
#include "Point.hpp"
#include "PrintConfig.hpp"
@ -641,25 +640,26 @@ private:
}
};
enum ModelInstanceEPrintVolumeState : unsigned char
{
ModelInstancePVS_Inside,
ModelInstancePVS_Partly_Outside,
ModelInstancePVS_Fully_Outside,
ModelInstanceNum_BedStates
};
// A single instance of a ModelObject.
// Knows the affine transformation of an object.
class ModelInstance final : public ObjectBase
{
public:
enum EPrintVolumeState : unsigned char
{
PVS_Inside,
PVS_Partly_Outside,
PVS_Fully_Outside,
Num_BedStates
};
private:
Geometry::Transformation m_transformation;
public:
// flag showing the position of this instance with respect to the print volume (set by Print::validate() using ModelObject::check_instances_print_volume_state())
EPrintVolumeState print_volume_state;
ModelInstanceEPrintVolumeState print_volume_state;
// Whether or not this instance is printable
bool printable;
@ -706,7 +706,7 @@ public:
const Transform3d& get_matrix(bool dont_translate = false, bool dont_rotate = false, bool dont_scale = false, bool dont_mirror = false) const { return m_transformation.get_matrix(dont_translate, dont_rotate, dont_scale, dont_mirror); }
bool is_printable() const { return object->printable && printable && (print_volume_state == PVS_Inside); }
bool is_printable() const { return object->printable && printable && (print_volume_state == ModelInstancePVS_Inside); }
// Getting the input polygon for arrange
arrangement::ArrangePolygon get_arrange_polygon() const;
@ -735,10 +735,10 @@ private:
ModelObject* object;
// Constructor, which assigns a new unique ID.
explicit ModelInstance(ModelObject* object) : print_volume_state(PVS_Inside), printable(true), object(object) { assert(this->id().valid()); }
explicit ModelInstance(ModelObject* object) : print_volume_state(ModelInstancePVS_Inside), printable(true), object(object) { assert(this->id().valid()); }
// Constructor, which assigns a new unique ID.
explicit ModelInstance(ModelObject *object, const ModelInstance &other) :
m_transformation(other.m_transformation), print_volume_state(PVS_Inside), printable(other.printable), object(object) { assert(this->id().valid() && this->id() != other.id()); }
m_transformation(other.m_transformation), print_volume_state(ModelInstancePVS_Inside), printable(other.printable), object(object) { assert(this->id().valid() && this->id() != other.id()); }
explicit ModelInstance(ModelInstance &&rhs) = delete;
ModelInstance& operator=(const ModelInstance &rhs) = delete;
@ -753,6 +753,7 @@ private:
}
};
class ModelWipeTower final : public ObjectBase
{
public:

View file

@ -4,10 +4,9 @@
#include "PrintBase.hpp"
#include "BoundingBox.hpp"
#include "ExtrusionEntityCollection.hpp"
#include "Flow.hpp"
#include "Point.hpp"
#include "Layer.hpp"
#include "Model.hpp"
#include "Slicing.hpp"
#include "GCode/ToolOrdering.hpp"
#include "GCode/WipeTower.hpp"
@ -28,6 +27,8 @@ class GCode;
class GCodePreviewData;
#endif // !ENABLE_GCODE_VIEWER
enum class SlicingMode : uint32_t;
class Layer;
class SupportLayer;
// Print step IDs for keeping track of the print state.
enum PrintStep {
@ -152,18 +153,11 @@ public:
const Layer* get_layer(int idx) const { return m_layers[idx]; }
Layer* get_layer(int idx) { return m_layers[idx]; }
// Get a layer exactly at print_z.
const Layer* get_layer_at_printz(coordf_t print_z) const {
auto it = Slic3r::lower_bound_by_predicate(m_layers.begin(), m_layers.end(), [print_z](const Layer *layer) { return layer->print_z < print_z; });
return (it == m_layers.end() || (*it)->print_z != print_z) ? nullptr : *it;
}
Layer* get_layer_at_printz(coordf_t print_z) { return const_cast<Layer*>(std::as_const(*this).get_layer_at_printz(print_z)); }
const Layer* get_layer_at_printz(coordf_t print_z) const;
Layer* get_layer_at_printz(coordf_t print_z);
// Get a layer approximately at print_z.
const Layer* get_layer_at_printz(coordf_t print_z, coordf_t epsilon) const {
coordf_t limit = print_z - epsilon;
auto it = Slic3r::lower_bound_by_predicate(m_layers.begin(), m_layers.end(), [limit](const Layer *layer) { return layer->print_z < limit; });
return (it == m_layers.end() || (*it)->print_z > print_z + epsilon) ? nullptr : *it;
}
Layer* get_layer_at_printz(coordf_t print_z, coordf_t epsilon) { return const_cast<Layer*>(std::as_const(*this).get_layer_at_printz(print_z, epsilon)); }
const Layer* get_layer_at_printz(coordf_t print_z, coordf_t epsilon) const;
Layer* get_layer_at_printz(coordf_t print_z, coordf_t epsilon);
// print_z: top of the layer; slice_z: center of the layer.
Layer* add_layer(int id, coordf_t height, coordf_t print_z, coordf_t slice_z);

View file

@ -4,6 +4,7 @@
#include "ElephantFootCompensation.hpp"
#include "Geometry.hpp"
#include "I18N.hpp"
#include "Layer.hpp"
#include "SupportMaterial.hpp"
#include "Surface.hpp"
#include "Slicing.hpp"
@ -2829,4 +2830,28 @@ void PrintObject::project_and_append_custom_supports(
} // loop over ModelVolumes
}
const Layer* PrintObject::get_layer_at_printz(coordf_t print_z) const {
auto it = Slic3r::lower_bound_by_predicate(m_layers.begin(), m_layers.end(), [print_z](const Layer *layer) { return layer->print_z < print_z; });
return (it == m_layers.end() || (*it)->print_z != print_z) ? nullptr : *it;
}
Layer* PrintObject::get_layer_at_printz(coordf_t print_z) { return const_cast<Layer*>(std::as_const(*this).get_layer_at_printz(print_z)); }
// Get a layer approximately at print_z.
const Layer* PrintObject::get_layer_at_printz(coordf_t print_z, coordf_t epsilon) const {
coordf_t limit = print_z - epsilon;
auto it = Slic3r::lower_bound_by_predicate(m_layers.begin(), m_layers.end(), [limit](const Layer *layer) { return layer->print_z < limit; });
return (it == m_layers.end() || (*it)->print_z > print_z + epsilon) ? nullptr : *it;
}
Layer* PrintObject::get_layer_at_printz(coordf_t print_z, coordf_t epsilon) { return const_cast<Layer*>(std::as_const(*this).get_layer_at_printz(print_z, epsilon)); }
} // namespace Slic3r

View file

@ -1,18 +1,11 @@
#include <cmath>
#include <libslic3r/SLA/Common.hpp>
#include <libslic3r/SLA/Concurrency.hpp>
#include <libslic3r/SLA/SupportTree.hpp>
#include <libslic3r/SLA/SpatIndex.hpp>
#include <libslic3r/SLA/EigenMesh3D.hpp>
#include <libslic3r/SLA/Contour3D.hpp>
#include <libslic3r/SLA/Clustering.hpp>
#include <libslic3r/SLA/Hollowing.hpp>
// Workaround: IGL signed_distance.h will define PI in the igl namespace.
#undef PI
// HEAVY headers... takes eternity to compile
#include <libslic3r/AABBTreeIndirect.hpp>
// for concave hull merging decisions
#include <libslic3r/SLA/BoostAdapter.hpp>
@ -23,24 +16,23 @@
#pragma warning(disable: 4244)
#pragma warning(disable: 4267)
#endif
#include <igl/ray_mesh_intersect.h>
#include <igl/point_mesh_squared_distance.h>
#include <igl/remove_duplicate_vertices.h>
#include <igl/collapse_small_triangles.h>
#include <igl/signed_distance.h>
#ifdef SLIC3R_HOLE_RAYCASTER
#include <libslic3r/SLA/Hollowing.hpp>
#endif
#ifdef _MSC_VER
#pragma warning(pop)
#endif
#include <tbb/parallel_for.h>
#include "ClipperUtils.hpp"
namespace Slic3r {
namespace sla {
// Bring back PI from the igl namespace
using igl::PI;
/* **************************************************************************
* PointIndex implementation
@ -188,100 +180,72 @@ void BoxIndex::foreach(std::function<void (const BoxIndexEl &)> fn)
* EigenMesh3D implementation
* ****************************************************************************/
class EigenMesh3D::AABBImpl: public igl::AABB<Eigen::MatrixXd, 3> {
class EigenMesh3D::AABBImpl {
private:
AABBTreeIndirect::Tree3f m_tree;
public:
#ifdef SLIC3R_SLA_NEEDS_WINDTREE
igl::WindingNumberAABB<Vec3d, Eigen::MatrixXd, Eigen::MatrixXi> windtree;
#endif /* SLIC3R_SLA_NEEDS_WINDTREE */
void init(const TriangleMesh& tm)
{
m_tree = AABBTreeIndirect::build_aabb_tree_over_indexed_triangle_set(
tm.its.vertices, tm.its.indices);
}
void intersect_ray(const TriangleMesh& tm,
const Vec3d& s, const Vec3d& dir, igl::Hit& hit)
{
AABBTreeIndirect::intersect_ray_first_hit(tm.its.vertices,
tm.its.indices,
m_tree,
s, dir, hit);
}
void intersect_ray(const TriangleMesh& tm,
const Vec3d& s, const Vec3d& dir, std::vector<igl::Hit>& hits)
{
AABBTreeIndirect::intersect_ray_all_hits(tm.its.vertices,
tm.its.indices,
m_tree,
s, dir, hits);
}
double squared_distance(const TriangleMesh& tm,
const Vec3d& point, int& i, Eigen::Matrix<double, 1, 3>& closest) {
size_t idx_unsigned = 0;
Vec3d closest_vec3d(closest);
double dist = AABBTreeIndirect::squared_distance_to_indexed_triangle_set(
tm.its.vertices,
tm.its.indices,
m_tree, point, idx_unsigned, closest_vec3d);
i = int(idx_unsigned);
closest = closest_vec3d;
return dist;
}
};
static const constexpr double MESH_EPS = 1e-6;
void to_eigen_mesh(const TriangleMesh &tmesh, Eigen::MatrixXd &V, Eigen::MatrixXi &F)
EigenMesh3D::EigenMesh3D(const TriangleMesh& tmesh)
: m_aabb(new AABBImpl()), m_tm(&tmesh)
{
const stl_file& stl = tmesh.stl;
V.resize(3*stl.stats.number_of_facets, 3);
F.resize(stl.stats.number_of_facets, 3);
for (unsigned int i = 0; i < stl.stats.number_of_facets; ++i) {
const stl_facet &facet = stl.facet_start[i];
V.block<1, 3>(3 * i + 0, 0) = facet.vertex[0].cast<double>();
V.block<1, 3>(3 * i + 1, 0) = facet.vertex[1].cast<double>();
V.block<1, 3>(3 * i + 2, 0) = facet.vertex[2].cast<double>();
F(i, 0) = int(3*i+0);
F(i, 1) = int(3*i+1);
F(i, 2) = int(3*i+2);
}
if (!tmesh.has_shared_vertices())
{
Eigen::MatrixXd rV;
Eigen::MatrixXi rF;
// We will convert this to a proper 3d mesh with no duplicate points.
Eigen::VectorXi SVI, SVJ;
igl::remove_duplicate_vertices(V, F, MESH_EPS, rV, SVI, SVJ, rF);
V = std::move(rV);
F = std::move(rF);
}
}
void to_triangle_mesh(const Eigen::MatrixXd &V, const Eigen::MatrixXi &F, TriangleMesh &out)
{
Pointf3s points(size_t(V.rows()));
std::vector<Vec3i> facets(size_t(F.rows()));
for (Eigen::Index i = 0; i < V.rows(); ++i)
points[size_t(i)] = V.row(i);
for (Eigen::Index i = 0; i < F.rows(); ++i)
facets[size_t(i)] = F.row(i);
out = {points, facets};
}
EigenMesh3D::EigenMesh3D(const TriangleMesh& tmesh): m_aabb(new AABBImpl()) {
auto&& bb = tmesh.bounding_box();
m_ground_level += bb.min(Z);
to_eigen_mesh(tmesh, m_V, m_F);
// Build the AABB accelaration tree
m_aabb->init(m_V, m_F);
#ifdef SLIC3R_SLA_NEEDS_WINDTREE
m_aabb->windtree.set_mesh(m_V, m_F);
#endif /* SLIC3R_SLA_NEEDS_WINDTREE */
m_aabb->init(tmesh);
}
EigenMesh3D::~EigenMesh3D() {}
EigenMesh3D::EigenMesh3D(const EigenMesh3D &other):
m_V(other.m_V), m_F(other.m_F), m_ground_level(other.m_ground_level),
m_tm(other.m_tm), m_ground_level(other.m_ground_level),
m_aabb( new AABBImpl(*other.m_aabb) ) {}
EigenMesh3D::EigenMesh3D(const Contour3D &other)
{
m_V.resize(Eigen::Index(other.points.size()), 3);
m_F.resize(Eigen::Index(other.faces3.size() + 2 * other.faces4.size()), 3);
for (Eigen::Index i = 0; i < Eigen::Index(other.points.size()); ++i)
m_V.row(i) = other.points[size_t(i)];
for (Eigen::Index i = 0; i < Eigen::Index(other.faces3.size()); ++i)
m_F.row(i) = other.faces3[size_t(i)];
size_t N = other.faces3.size() + 2 * other.faces4.size();
for (size_t i = other.faces3.size(); i < N; i += 2) {
size_t quad_idx = (i - other.faces3.size()) / 2;
auto & quad = other.faces4[quad_idx];
m_F.row(Eigen::Index(i)) = Vec3i{quad(0), quad(1), quad(2)};
m_F.row(Eigen::Index(i + 1)) = Vec3i{quad(2), quad(3), quad(0)};
}
}
EigenMesh3D &EigenMesh3D::operator=(const EigenMesh3D &other)
{
m_V = other.m_V;
m_F = other.m_F;
m_tm = other.m_tm;
m_ground_level = other.m_ground_level;
m_aabb.reset(new AABBImpl(*other.m_aabb)); return *this;
}
@ -290,6 +254,42 @@ EigenMesh3D &EigenMesh3D::operator=(EigenMesh3D &&other) = default;
EigenMesh3D::EigenMesh3D(EigenMesh3D &&other) = default;
const std::vector<Vec3f>& EigenMesh3D::vertices() const
{
return m_tm->its.vertices;
}
const std::vector<Vec3i>& EigenMesh3D::indices() const
{
return m_tm->its.indices;
}
const Vec3f& EigenMesh3D::vertices(size_t idx) const
{
return m_tm->its.vertices[idx];
}
const Vec3i& EigenMesh3D::indices(size_t idx) const
{
return m_tm->its.indices[idx];
}
Vec3d EigenMesh3D::normal_by_face_id(int face_id) const {
return m_tm->stl.facet_start[face_id].normal.cast<double>();
}
EigenMesh3D::hit_result
EigenMesh3D::query_ray_hit(const Vec3d &s, const Vec3d &dir) const
{
@ -297,24 +297,26 @@ EigenMesh3D::query_ray_hit(const Vec3d &s, const Vec3d &dir) const
igl::Hit hit;
hit.t = std::numeric_limits<float>::infinity();
if (m_holes.empty()) {
m_aabb->intersect_ray(m_V, m_F, s, dir, hit);
hit_result ret(*this);
ret.m_t = double(hit.t);
ret.m_dir = dir;
ret.m_source = s;
if(!std::isinf(hit.t) && !std::isnan(hit.t)) {
ret.m_normal = this->normal_by_face_id(hit.id);
ret.m_face_id = hit.id;
}
#ifdef SLIC3R_HOLE_RAYCASTER
if (! m_holes.empty()) {
return ret;
}
else {
// If there are holes, the hit_results will be made by
// query_ray_hits (object) and filter_hits (holes):
return filter_hits(query_ray_hits(s, dir));
}
#endif
m_aabb->intersect_ray(*m_tm, s, dir, hit);
hit_result ret(*this);
ret.m_t = double(hit.t);
ret.m_dir = dir;
ret.m_source = s;
if(!std::isinf(hit.t) && !std::isnan(hit.t)) {
ret.m_normal = this->normal_by_face_id(hit.id);
ret.m_face_id = hit.id;
}
return ret;
}
std::vector<EigenMesh3D::hit_result>
@ -322,7 +324,7 @@ EigenMesh3D::query_ray_hits(const Vec3d &s, const Vec3d &dir) const
{
std::vector<EigenMesh3D::hit_result> outs;
std::vector<igl::Hit> hits;
m_aabb->intersect_ray(m_V, m_F, s, dir, hits);
m_aabb->intersect_ray(*m_tm, s, dir, hits);
// The sort is necessary, the hits are not always sorted.
std::sort(hits.begin(), hits.end(),
@ -351,6 +353,8 @@ EigenMesh3D::query_ray_hits(const Vec3d &s, const Vec3d &dir) const
return outs;
}
#ifdef SLIC3R_HOLE_RAYCASTER
EigenMesh3D::hit_result EigenMesh3D::filter_hits(
const std::vector<EigenMesh3D::hit_result>& object_hits) const
{
@ -445,26 +449,14 @@ EigenMesh3D::hit_result EigenMesh3D::filter_hits(
// if we got here, the ray ended up in infinity
return out;
}
#endif
#ifdef SLIC3R_SLA_NEEDS_WINDTREE
EigenMesh3D::si_result EigenMesh3D::signed_distance(const Vec3d &p) const {
double sign = 0; double sqdst = 0; int i = 0; Vec3d c;
igl::signed_distance_winding_number(*m_aabb, m_V, m_F, m_aabb->windtree,
p, sign, sqdst, i, c);
return si_result(sign * std::sqrt(sqdst), i, c);
}
bool EigenMesh3D::inside(const Vec3d &p) const {
return m_aabb->windtree.inside(p);
}
#endif /* SLIC3R_SLA_NEEDS_WINDTREE */
double EigenMesh3D::squared_distance(const Vec3d &p, int& i, Vec3d& c) const {
double sqdst = 0;
Eigen::Matrix<double, 1, 3> pp = p;
Eigen::Matrix<double, 1, 3> cc;
sqdst = m_aabb->squared_distance(m_V, m_F, pp, i, cc);
sqdst = m_aabb->squared_distance(*m_tm, pp, i, cc);
c = cc;
return sqdst;
}
@ -498,7 +490,7 @@ PointSet normals(const PointSet& points,
std::function<void()> thr, // throw on cancel
const std::vector<unsigned>& pt_indices)
{
if (points.rows() == 0 || mesh.V().rows() == 0 || mesh.F().rows() == 0)
if (points.rows() == 0 || mesh.vertices().empty() || mesh.indices().empty())
return {};
std::vector<unsigned> range = pt_indices;
@ -520,11 +512,11 @@ PointSet normals(const PointSet& points,
mesh.squared_distance(points.row(eidx), faceid, p);
auto trindex = mesh.F().row(faceid);
auto trindex = mesh.indices(faceid);
const Vec3d &p1 = mesh.V().row(trindex(0));
const Vec3d &p2 = mesh.V().row(trindex(1));
const Vec3d &p3 = mesh.V().row(trindex(2));
const Vec3d &p1 = mesh.vertices(trindex(0)).cast<double>();
const Vec3d &p2 = mesh.vertices(trindex(1)).cast<double>();
const Vec3d &p3 = mesh.vertices(trindex(2)).cast<double>();
// We should check if the point lies on an edge of the hosting
// triangle. If it does then all the other triangles using the
@ -557,36 +549,30 @@ PointSet normals(const PointSet& points,
}
// vector for the neigboring triangles including the detected one.
std::vector<Vec3i> neigh;
std::vector<size_t> neigh;
if (ic >= 0) { // The point is right on a vertex of the triangle
for (int n = 0; n < mesh.F().rows(); ++n) {
for (size_t n = 0; n < mesh.indices().size(); ++n) {
thr();
Vec3i ni = mesh.F().row(n);
Vec3i ni = mesh.indices(n);
if ((ni(X) == ic || ni(Y) == ic || ni(Z) == ic))
neigh.emplace_back(ni);
neigh.emplace_back(n);
}
} else if (ia >= 0 && ib >= 0) { // the point is on and edge
// now get all the neigboring triangles
for (int n = 0; n < mesh.F().rows(); ++n) {
for (size_t n = 0; n < mesh.indices().size(); ++n) {
thr();
Vec3i ni = mesh.F().row(n);
Vec3i ni = mesh.indices(n);
if ((ni(X) == ia || ni(Y) == ia || ni(Z) == ia) &&
(ni(X) == ib || ni(Y) == ib || ni(Z) == ib))
neigh.emplace_back(ni);
neigh.emplace_back(n);
}
}
// Calculate the normals for the neighboring triangles
std::vector<Vec3d> neighnorms;
neighnorms.reserve(neigh.size());
for (const Vec3i &tri : neigh) {
const Vec3d & pt1 = mesh.V().row(tri(0));
const Vec3d & pt2 = mesh.V().row(tri(1));
const Vec3d & pt3 = mesh.V().row(tri(2));
Eigen::Vector3d U = pt2 - pt1;
Eigen::Vector3d V = pt3 - pt1;
neighnorms.emplace_back(U.cross(V).normalized());
}
for (size_t &tri_id : neigh)
neighnorms.emplace_back(mesh.normal_by_face_id(tri_id));
// Throw out duplicates. They would cause trouble with summing. We
// will use std::unique which works on sorted ranges. We will sort

View file

@ -7,18 +7,13 @@
#include <functional>
#include <Eigen/Geometry>
//#include "SLASpatIndex.hpp"
//#include <libslic3r/ExPolygon.hpp>
//#include <libslic3r/TriangleMesh.hpp>
// #define SLIC3R_SLA_NEEDS_WINDTREE
namespace Slic3r {
// Typedefs from Point.hpp
typedef Eigen::Matrix<float, 3, 1, Eigen::DontAlign> Vec3f;
typedef Eigen::Matrix<double, 3, 1, Eigen::DontAlign> Vec3d;
typedef Eigen::Matrix<int, 3, 1, Eigen::DontAlign> Vec3i;
typedef Eigen::Matrix<int, 4, 1, Eigen::DontAlign> Vec4i;
namespace sla {

View file

@ -28,14 +28,14 @@ Contour3D::Contour3D(TriangleMesh &&trmesh)
}
Contour3D::Contour3D(const EigenMesh3D &emesh) {
points.reserve(size_t(emesh.V().rows()));
faces3.reserve(size_t(emesh.F().rows()));
points.reserve(emesh.vertices().size());
faces3.reserve(emesh.indices().size());
for (int r = 0; r < emesh.V().rows(); r++)
points.emplace_back(emesh.V().row(r).cast<double>());
for (const Vec3f& vert : emesh.vertices())
points.emplace_back(vert.cast<double>());
for (int i = 0; i < emesh.F().rows(); i++)
faces3.emplace_back(emesh.F().row(i));
for (const auto& ind : emesh.indices())
faces3.emplace_back(ind);
}
Contour3D &Contour3D::merge(const Contour3D &ctr)

View file

@ -2,7 +2,16 @@
#define SLA_EIGENMESH3D_H
#include <libslic3r/SLA/Common.hpp>
#include "libslic3r/SLA/Hollowing.hpp"
// There is an implementation of a hole-aware raycaster that was eventually
// not used in production version. It is now hidden under following define
// for possible future use.
//#define SLIC3R_HOLE_RAYCASTER
#ifdef SLIC3R_HOLE_RAYCASTER
#include "libslic3r/SLA/Hollowing.hpp"
#endif
namespace Slic3r {
@ -10,31 +19,26 @@ class TriangleMesh;
namespace sla {
struct Contour3D;
void to_eigen_mesh(const TriangleMesh &mesh, Eigen::MatrixXd &V, Eigen::MatrixXi &F);
void to_triangle_mesh(const Eigen::MatrixXd &V, const Eigen::MatrixXi &F, TriangleMesh &);
/// An index-triangle structure for libIGL functions. Also serves as an
/// alternative (raw) input format for the SLASupportTree.
// Implemented in libslic3r/SLA/Common.cpp
class EigenMesh3D {
class AABBImpl;
Eigen::MatrixXd m_V;
Eigen::MatrixXi m_F;
const TriangleMesh* m_tm;
double m_ground_level = 0, m_gnd_offset = 0;
std::unique_ptr<AABBImpl> m_aabb;
#ifdef SLIC3R_HOLE_RAYCASTER
// This holds a copy of holes in the mesh. Initialized externally
// by load_mesh setter.
std::vector<DrainHole> m_holes;
#endif
public:
explicit EigenMesh3D(const TriangleMesh&);
explicit EigenMesh3D(const Contour3D &other);
EigenMesh3D(const EigenMesh3D& other);
EigenMesh3D& operator=(const EigenMesh3D&);
@ -48,8 +52,10 @@ public:
inline void ground_level_offset(double o) { m_gnd_offset = o; }
inline double ground_level_offset() const { return m_gnd_offset; }
inline const Eigen::MatrixXd& V() const { return m_V; }
inline const Eigen::MatrixXi& F() const { return m_F; }
const std::vector<Vec3f>& vertices() const;
const std::vector<Vec3i>& indices() const;
const Vec3f& vertices(size_t idx) const;
const Vec3i& indices(size_t idx) const;
// Result of a raycast
class hit_result {
@ -88,51 +94,28 @@ public:
return is_hit() && normal().dot(m_dir) > 0;
}
};
#ifdef SLIC3R_HOLE_RAYCASTER
// Inform the object about location of holes
// creates internal copy of the vector
void load_holes(const std::vector<DrainHole>& holes) {
m_holes = holes;
}
// Casting a ray on the mesh, returns the distance where the hit occures.
hit_result query_ray_hit(const Vec3d &s, const Vec3d &dir) const;
// Casts a ray on the mesh and returns all hits
std::vector<hit_result> query_ray_hits(const Vec3d &s, const Vec3d &dir) const;
// Iterates over hits and holes and returns the true hit, possibly
// on the inside of a hole.
// This function is currently not used anywhere, it was written when the
// holes were subtracted on slices, that is, before we started using CGAL
// to actually cut the holes into the mesh.
hit_result filter_hits(const std::vector<EigenMesh3D::hit_result>& obj_hits) const;
#endif
class si_result {
double m_value;
int m_fidx;
Vec3d m_p;
si_result(double val, int i, const Vec3d& c):
m_value(val), m_fidx(i), m_p(c) {}
friend class EigenMesh3D;
public:
si_result() = delete;
double value() const { return m_value; }
operator double() const { return m_value; }
const Vec3d& point_on_mesh() const { return m_p; }
int F_idx() const { return m_fidx; }
};
// Casting a ray on the mesh, returns the distance where the hit occures.
hit_result query_ray_hit(const Vec3d &s, const Vec3d &dir) const;
// Casts a ray on the mesh and returns all hits
std::vector<hit_result> query_ray_hits(const Vec3d &s, const Vec3d &dir) const;
#ifdef SLIC3R_SLA_NEEDS_WINDTREE
// The signed distance from a point to the mesh. Outputs the distance,
// the index of the triangle and the closest point in mesh coordinate space.
si_result signed_distance(const Vec3d& p) const;
bool inside(const Vec3d& p) const;
#endif /* SLIC3R_SLA_NEEDS_WINDTREE */
double squared_distance(const Vec3d& p, int& i, Vec3d& c) const;
inline double squared_distance(const Vec3d &p) const
{
@ -141,15 +124,7 @@ public:
return squared_distance(p, i, c);
}
Vec3d normal_by_face_id(int face_id) const {
auto trindex = F().row(face_id);
const Vec3d& p1 = V().row(trindex(0));
const Vec3d& p2 = V().row(trindex(1));
const Vec3d& p3 = V().row(trindex(2));
Eigen::Vector3d U = p2 - p1;
Eigen::Vector3d V = p3 - p1;
return U.cross(V).normalized();
}
Vec3d normal_by_face_id(int face_id) const;
};
// Calculate the normals for the selected points (from 'points' set) on the

View file

@ -28,7 +28,7 @@ std::array<double, 3> find_best_rotation(const ModelObject& modelobj,
// We will use only one instance of this converted mesh to examine different
// rotations
EigenMesh3D emesh(modelobj.raw_mesh());
const TriangleMesh& mesh = modelobj.raw_mesh();
// For current iteration number
unsigned status = 0;
@ -44,10 +44,10 @@ std::array<double, 3> find_best_rotation(const ModelObject& modelobj,
// call the status callback in each iteration but the actual value may be
// the same for subsequent iterations (status goes from 0 to 100 but
// iterations can be many more)
auto objfunc = [&emesh, &status, &statuscb, &stopcond, max_tries]
auto objfunc = [&mesh, &status, &statuscb, &stopcond, max_tries]
(double rx, double ry, double rz)
{
EigenMesh3D& m = emesh;
const TriangleMesh& m = mesh;
// prepare the rotation transformation
Transform3d rt = Transform3d::Identity();
@ -68,18 +68,8 @@ std::array<double, 3> find_best_rotation(const ModelObject& modelobj,
// area. The current function is only an example of how to optimize.
// Later we can add more criteria like the number of overhangs, etc...
for(int i = 0; i < m.F().rows(); i++) {
auto idx = m.F().row(i);
Vec3d p1 = m.V().row(idx(0));
Vec3d p2 = m.V().row(idx(1));
Vec3d p3 = m.V().row(idx(2));
Eigen::Vector3d U = p2 - p1;
Eigen::Vector3d V = p3 - p1;
// So this is the normal
auto n = U.cross(V).normalized();
for(size_t i = 0; i < m.stl.facet_start.size(); i++) {
Vec3d n = m.stl.facet_start[i].normal.cast<double>();
// rotate the normal with the current rotation given by the solver
n = rt * n;

View file

@ -7,9 +7,9 @@
#include <libslic3r/SLA/SupportPoint.hpp>
#include <libslic3r/SLA/EigenMesh3D.hpp>
#include <libslic3r/BoundingBox.hpp>
#include <libslic3r/ClipperUtils.hpp>
#include <libslic3r/Point.hpp>
#include <libslic3r/TriangleMesh.hpp>
#include <boost/container/small_vector.hpp>

View file

@ -1,621 +0,0 @@
#include <cmath>
#include "SLA/SLASupportTree.hpp"
#include "SLA/SLACommon.hpp"
#include "SLA/SLASpatIndex.hpp"
// Workaround: IGL signed_distance.h will define PI in the igl namespace.
#undef PI
// HEAVY headers... takes eternity to compile
// for concave hull merging decisions
#include "SLABoostAdapter.hpp"
#include "boost/geometry/index/rtree.hpp"
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable: 4244)
#pragma warning(disable: 4267)
#endif
#include <igl/ray_mesh_intersect.h>
#include <igl/point_mesh_squared_distance.h>
#include <igl/remove_duplicate_vertices.h>
#include <igl/signed_distance.h>
#ifdef _MSC_VER
#pragma warning(pop)
#endif
#include <tbb/parallel_for.h>
#include "SLASpatIndex.hpp"
#include "ClipperUtils.hpp"
namespace Slic3r {
namespace sla {
// Bring back PI from the igl namespace
using igl::PI;
/* **************************************************************************
* PointIndex implementation
* ************************************************************************** */
class PointIndex::Impl {
public:
using BoostIndex = boost::geometry::index::rtree< PointIndexEl,
boost::geometry::index::rstar<16, 4> /* ? */ >;
BoostIndex m_store;
};
PointIndex::PointIndex(): m_impl(new Impl()) {}
PointIndex::~PointIndex() {}
PointIndex::PointIndex(const PointIndex &cpy): m_impl(new Impl(*cpy.m_impl)) {}
PointIndex::PointIndex(PointIndex&& cpy): m_impl(std::move(cpy.m_impl)) {}
PointIndex& PointIndex::operator=(const PointIndex &cpy)
{
m_impl.reset(new Impl(*cpy.m_impl));
return *this;
}
PointIndex& PointIndex::operator=(PointIndex &&cpy)
{
m_impl.swap(cpy.m_impl);
return *this;
}
void PointIndex::insert(const PointIndexEl &el)
{
m_impl->m_store.insert(el);
}
bool PointIndex::remove(const PointIndexEl& el)
{
return m_impl->m_store.remove(el) == 1;
}
std::vector<PointIndexEl>
PointIndex::query(std::function<bool(const PointIndexEl &)> fn) const
{
namespace bgi = boost::geometry::index;
std::vector<PointIndexEl> ret;
m_impl->m_store.query(bgi::satisfies(fn), std::back_inserter(ret));
return ret;
}
std::vector<PointIndexEl> PointIndex::nearest(const Vec3d &el, unsigned k = 1) const
{
namespace bgi = boost::geometry::index;
std::vector<PointIndexEl> ret; ret.reserve(k);
m_impl->m_store.query(bgi::nearest(el, k), std::back_inserter(ret));
return ret;
}
size_t PointIndex::size() const
{
return m_impl->m_store.size();
}
void PointIndex::foreach(std::function<void (const PointIndexEl &)> fn)
{
for(auto& el : m_impl->m_store) fn(el);
}
void PointIndex::foreach(std::function<void (const PointIndexEl &)> fn) const
{
for(const auto &el : m_impl->m_store) fn(el);
}
/* **************************************************************************
* BoxIndex implementation
* ************************************************************************** */
class BoxIndex::Impl {
public:
using BoostIndex = boost::geometry::index::
rtree<BoxIndexEl, boost::geometry::index::rstar<16, 4> /* ? */>;
BoostIndex m_store;
};
BoxIndex::BoxIndex(): m_impl(new Impl()) {}
BoxIndex::~BoxIndex() {}
BoxIndex::BoxIndex(const BoxIndex &cpy): m_impl(new Impl(*cpy.m_impl)) {}
BoxIndex::BoxIndex(BoxIndex&& cpy): m_impl(std::move(cpy.m_impl)) {}
BoxIndex& BoxIndex::operator=(const BoxIndex &cpy)
{
m_impl.reset(new Impl(*cpy.m_impl));
return *this;
}
BoxIndex& BoxIndex::operator=(BoxIndex &&cpy)
{
m_impl.swap(cpy.m_impl);
return *this;
}
void BoxIndex::insert(const BoxIndexEl &el)
{
m_impl->m_store.insert(el);
}
bool BoxIndex::remove(const BoxIndexEl& el)
{
return m_impl->m_store.remove(el) == 1;
}
std::vector<BoxIndexEl> BoxIndex::query(const BoundingBox &qrbb,
BoxIndex::QueryType qt)
{
namespace bgi = boost::geometry::index;
std::vector<BoxIndexEl> ret; ret.reserve(m_impl->m_store.size());
switch (qt) {
case qtIntersects:
m_impl->m_store.query(bgi::intersects(qrbb), std::back_inserter(ret));
break;
case qtWithin:
m_impl->m_store.query(bgi::within(qrbb), std::back_inserter(ret));
}
return ret;
}
size_t BoxIndex::size() const
{
return m_impl->m_store.size();
}
void BoxIndex::foreach(std::function<void (const BoxIndexEl &)> fn)
{
for(auto& el : m_impl->m_store) fn(el);
}
/* ****************************************************************************
* EigenMesh3D implementation
* ****************************************************************************/
class EigenMesh3D::AABBImpl: public igl::AABB<Eigen::MatrixXd, 3> {
public:
#ifdef SLIC3R_SLA_NEEDS_WINDTREE
igl::WindingNumberAABB<Vec3d, Eigen::MatrixXd, Eigen::MatrixXi> windtree;
#endif /* SLIC3R_SLA_NEEDS_WINDTREE */
};
EigenMesh3D::EigenMesh3D(const TriangleMesh& tmesh): m_aabb(new AABBImpl()) {
static const double dEPS = 1e-6;
const stl_file& stl = tmesh.stl;
auto&& bb = tmesh.bounding_box();
m_ground_level += bb.min(Z);
Eigen::MatrixXd V;
Eigen::MatrixXi F;
V.resize(3*stl.stats.number_of_facets, 3);
F.resize(stl.stats.number_of_facets, 3);
for (unsigned int i = 0; i < stl.stats.number_of_facets; ++i) {
const stl_facet &facet = stl.facet_start[i];
V.block<1, 3>(3 * i + 0, 0) = facet.vertex[0].cast<double>();
V.block<1, 3>(3 * i + 1, 0) = facet.vertex[1].cast<double>();
V.block<1, 3>(3 * i + 2, 0) = facet.vertex[2].cast<double>();
F(i, 0) = int(3*i+0);
F(i, 1) = int(3*i+1);
F(i, 2) = int(3*i+2);
}
// We will convert this to a proper 3d mesh with no duplicate points.
Eigen::VectorXi SVI, SVJ;
igl::remove_duplicate_vertices(V, F, dEPS, m_V, SVI, SVJ, m_F);
// Build the AABB accelaration tree
m_aabb->init(m_V, m_F);
#ifdef SLIC3R_SLA_NEEDS_WINDTREE
m_aabb->windtree.set_mesh(m_V, m_F);
#endif /* SLIC3R_SLA_NEEDS_WINDTREE */
}
EigenMesh3D::~EigenMesh3D() {}
EigenMesh3D::EigenMesh3D(const EigenMesh3D &other):
m_V(other.m_V), m_F(other.m_F), m_ground_level(other.m_ground_level),
m_aabb( new AABBImpl(*other.m_aabb) ) {}
EigenMesh3D::EigenMesh3D(const Contour3D &other)
{
m_V.resize(Eigen::Index(other.points.size()), 3);
m_F.resize(Eigen::Index(other.faces3.size() + 2 * other.faces4.size()), 3);
for (Eigen::Index i = 0; i < Eigen::Index(other.points.size()); ++i)
m_V.row(i) = other.points[size_t(i)];
for (Eigen::Index i = 0; i < Eigen::Index(other.faces3.size()); ++i)
m_F.row(i) = other.faces3[size_t(i)];
size_t N = other.faces3.size() + 2 * other.faces4.size();
for (size_t i = other.faces3.size(); i < N; i += 2) {
size_t quad_idx = (i - other.faces3.size()) / 2;
auto & quad = other.faces4[quad_idx];
m_F.row(Eigen::Index(i)) = Vec3i{quad(0), quad(1), quad(2)};
m_F.row(Eigen::Index(i + 1)) = Vec3i{quad(2), quad(3), quad(0)};
}
}
EigenMesh3D &EigenMesh3D::operator=(const EigenMesh3D &other)
{
m_V = other.m_V;
m_F = other.m_F;
m_ground_level = other.m_ground_level;
m_aabb.reset(new AABBImpl(*other.m_aabb)); return *this;
}
EigenMesh3D::hit_result
EigenMesh3D::query_ray_hit(const Vec3d &s, const Vec3d &dir) const
{
igl::Hit hit;
hit.t = std::numeric_limits<float>::infinity();
m_aabb->intersect_ray(m_V, m_F, s, dir, hit);
hit_result ret(*this);
ret.m_t = double(hit.t);
ret.m_dir = dir;
ret.m_source = s;
if(!std::isinf(hit.t) && !std::isnan(hit.t)) ret.m_face_id = hit.id;
return ret;
}
std::vector<EigenMesh3D::hit_result>
EigenMesh3D::query_ray_hits(const Vec3d &s, const Vec3d &dir) const
{
std::vector<EigenMesh3D::hit_result> outs;
std::vector<igl::Hit> hits;
m_aabb->intersect_ray(m_V, m_F, s, dir, hits);
// The sort is necessary, the hits are not always sorted.
std::sort(hits.begin(), hits.end(),
[](const igl::Hit& a, const igl::Hit& b) { return a.t < b.t; });
// Convert the igl::Hit into hit_result
outs.reserve(hits.size());
for (const igl::Hit& hit : hits) {
outs.emplace_back(EigenMesh3D::hit_result(*this));
outs.back().m_t = double(hit.t);
outs.back().m_dir = dir;
outs.back().m_source = s;
if(!std::isinf(hit.t) && !std::isnan(hit.t))
outs.back().m_face_id = hit.id;
}
return outs;
}
#ifdef SLIC3R_SLA_NEEDS_WINDTREE
EigenMesh3D::si_result EigenMesh3D::signed_distance(const Vec3d &p) const {
double sign = 0; double sqdst = 0; int i = 0; Vec3d c;
igl::signed_distance_winding_number(*m_aabb, m_V, m_F, m_aabb->windtree,
p, sign, sqdst, i, c);
return si_result(sign * std::sqrt(sqdst), i, c);
}
bool EigenMesh3D::inside(const Vec3d &p) const {
return m_aabb->windtree.inside(p);
}
#endif /* SLIC3R_SLA_NEEDS_WINDTREE */
double EigenMesh3D::squared_distance(const Vec3d &p, int& i, Vec3d& c) const {
double sqdst = 0;
Eigen::Matrix<double, 1, 3> pp = p;
Eigen::Matrix<double, 1, 3> cc;
sqdst = m_aabb->squared_distance(m_V, m_F, pp, i, cc);
c = cc;
return sqdst;
}
/* ****************************************************************************
* Misc functions
* ****************************************************************************/
namespace {
bool point_on_edge(const Vec3d& p, const Vec3d& e1, const Vec3d& e2,
double eps = 0.05)
{
using Line3D = Eigen::ParametrizedLine<double, 3>;
auto line = Line3D::Through(e1, e2);
double d = line.distance(p);
return std::abs(d) < eps;
}
template<class Vec> double distance(const Vec& pp1, const Vec& pp2) {
auto p = pp2 - pp1;
return std::sqrt(p.transpose() * p);
}
}
PointSet normals(const PointSet& points,
const EigenMesh3D& mesh,
double eps,
std::function<void()> thr, // throw on cancel
const std::vector<unsigned>& pt_indices)
{
if(points.rows() == 0 || mesh.V().rows() == 0 || mesh.F().rows() == 0)
return {};
std::vector<unsigned> range = pt_indices;
if(range.empty()) {
range.resize(size_t(points.rows()), 0);
std::iota(range.begin(), range.end(), 0);
}
PointSet ret(range.size(), 3);
// for (size_t ridx = 0; ridx < range.size(); ++ridx)
tbb::parallel_for(size_t(0), range.size(),
[&ret, &range, &mesh, &points, thr, eps](size_t ridx)
{
thr();
auto eidx = Eigen::Index(range[ridx]);
int faceid = 0;
Vec3d p;
mesh.squared_distance(points.row(eidx), faceid, p);
auto trindex = mesh.F().row(faceid);
const Vec3d& p1 = mesh.V().row(trindex(0));
const Vec3d& p2 = mesh.V().row(trindex(1));
const Vec3d& p3 = mesh.V().row(trindex(2));
// We should check if the point lies on an edge of the hosting triangle.
// If it does then all the other triangles using the same two points
// have to be searched and the final normal should be some kind of
// aggregation of the participating triangle normals. We should also
// consider the cases where the support point lies right on a vertex
// of its triangle. The procedure is the same, get the neighbor
// triangles and calculate an average normal.
// mark the vertex indices of the edge. ia and ib marks and edge ic
// will mark a single vertex.
int ia = -1, ib = -1, ic = -1;
if(std::abs(distance(p, p1)) < eps) {
ic = trindex(0);
}
else if(std::abs(distance(p, p2)) < eps) {
ic = trindex(1);
}
else if(std::abs(distance(p, p3)) < eps) {
ic = trindex(2);
}
else if(point_on_edge(p, p1, p2, eps)) {
ia = trindex(0); ib = trindex(1);
}
else if(point_on_edge(p, p2, p3, eps)) {
ia = trindex(1); ib = trindex(2);
}
else if(point_on_edge(p, p1, p3, eps)) {
ia = trindex(0); ib = trindex(2);
}
// vector for the neigboring triangles including the detected one.
std::vector<Vec3i> neigh;
if(ic >= 0) { // The point is right on a vertex of the triangle
for(int n = 0; n < mesh.F().rows(); ++n) {
thr();
Vec3i ni = mesh.F().row(n);
if((ni(X) == ic || ni(Y) == ic || ni(Z) == ic))
neigh.emplace_back(ni);
}
}
else if(ia >= 0 && ib >= 0) { // the point is on and edge
// now get all the neigboring triangles
for(int n = 0; n < mesh.F().rows(); ++n) {
thr();
Vec3i ni = mesh.F().row(n);
if((ni(X) == ia || ni(Y) == ia || ni(Z) == ia) &&
(ni(X) == ib || ni(Y) == ib || ni(Z) == ib))
neigh.emplace_back(ni);
}
}
// Calculate the normals for the neighboring triangles
std::vector<Vec3d> neighnorms; neighnorms.reserve(neigh.size());
for(const Vec3i& tri : neigh) {
const Vec3d& pt1 = mesh.V().row(tri(0));
const Vec3d& pt2 = mesh.V().row(tri(1));
const Vec3d& pt3 = mesh.V().row(tri(2));
Eigen::Vector3d U = pt2 - pt1;
Eigen::Vector3d V = pt3 - pt1;
neighnorms.emplace_back(U.cross(V).normalized());
}
// Throw out duplicates. They would cause trouble with summing. We will
// use std::unique which works on sorted ranges. We will sort by the
// coefficient-wise sum of the normals. It should force the same
// elements to be consecutive.
std::sort(neighnorms.begin(), neighnorms.end(),
[](const Vec3d& v1, const Vec3d& v2){
return v1.sum() < v2.sum();
});
auto lend = std::unique(neighnorms.begin(), neighnorms.end(),
[](const Vec3d& n1, const Vec3d& n2) {
// Compare normals for equivalence. This is controvers stuff.
auto deq = [](double a, double b) { return std::abs(a-b) < 1e-3; };
return deq(n1(X), n2(X)) && deq(n1(Y), n2(Y)) && deq(n1(Z), n2(Z));
});
if(!neighnorms.empty()) { // there were neighbors to count with
// sum up the normals and then normalize the result again.
// This unification seems to be enough.
Vec3d sumnorm(0, 0, 0);
sumnorm = std::accumulate(neighnorms.begin(), lend, sumnorm);
sumnorm.normalize();
ret.row(long(ridx)) = sumnorm;
}
else { // point lies safely within its triangle
Eigen::Vector3d U = p2 - p1;
Eigen::Vector3d V = p3 - p1;
ret.row(long(ridx)) = U.cross(V).normalized();
}
});
return ret;
}
namespace bgi = boost::geometry::index;
using Index3D = bgi::rtree< PointIndexEl, bgi::rstar<16, 4> /* ? */ >;
namespace {
bool cmp_ptidx_elements(const PointIndexEl& e1, const PointIndexEl& e2)
{
return e1.second < e2.second;
};
ClusteredPoints cluster(Index3D &sindex,
unsigned max_points,
std::function<std::vector<PointIndexEl>(
const Index3D &, const PointIndexEl &)> qfn)
{
using Elems = std::vector<PointIndexEl>;
// Recursive function for visiting all the points in a given distance to
// each other
std::function<void(Elems&, Elems&)> group =
[&sindex, &group, max_points, qfn](Elems& pts, Elems& cluster)
{
for(auto& p : pts) {
std::vector<PointIndexEl> tmp = qfn(sindex, p);
std::sort(tmp.begin(), tmp.end(), cmp_ptidx_elements);
Elems newpts;
std::set_difference(tmp.begin(), tmp.end(),
cluster.begin(), cluster.end(),
std::back_inserter(newpts), cmp_ptidx_elements);
int c = max_points && newpts.size() + cluster.size() > max_points?
int(max_points - cluster.size()) : int(newpts.size());
cluster.insert(cluster.end(), newpts.begin(), newpts.begin() + c);
std::sort(cluster.begin(), cluster.end(), cmp_ptidx_elements);
if(!newpts.empty() && (!max_points || cluster.size() < max_points))
group(newpts, cluster);
}
};
std::vector<Elems> clusters;
for(auto it = sindex.begin(); it != sindex.end();) {
Elems cluster = {};
Elems pts = {*it};
group(pts, cluster);
for(auto& c : cluster) sindex.remove(c);
it = sindex.begin();
clusters.emplace_back(cluster);
}
ClusteredPoints result;
for(auto& cluster : clusters) {
result.emplace_back();
for(auto c : cluster) result.back().emplace_back(c.second);
}
return result;
}
std::vector<PointIndexEl> distance_queryfn(const Index3D& sindex,
const PointIndexEl& p,
double dist,
unsigned max_points)
{
std::vector<PointIndexEl> tmp; tmp.reserve(max_points);
sindex.query(
bgi::nearest(p.first, max_points),
std::back_inserter(tmp)
);
for(auto it = tmp.begin(); it < tmp.end(); ++it)
if(distance(p.first, it->first) > dist) it = tmp.erase(it);
return tmp;
}
} // namespace
// Clustering a set of points by the given criteria
ClusteredPoints cluster(
const std::vector<unsigned>& indices,
std::function<Vec3d(unsigned)> pointfn,
double dist,
unsigned max_points)
{
// A spatial index for querying the nearest points
Index3D sindex;
// Build the index
for(auto idx : indices) sindex.insert( std::make_pair(pointfn(idx), idx));
return cluster(sindex, max_points,
[dist, max_points](const Index3D& sidx, const PointIndexEl& p)
{
return distance_queryfn(sidx, p, dist, max_points);
});
}
// Clustering a set of points by the given criteria
ClusteredPoints cluster(
const std::vector<unsigned>& indices,
std::function<Vec3d(unsigned)> pointfn,
std::function<bool(const PointIndexEl&, const PointIndexEl&)> predicate,
unsigned max_points)
{
// A spatial index for querying the nearest points
Index3D sindex;
// Build the index
for(auto idx : indices) sindex.insert( std::make_pair(pointfn(idx), idx));
return cluster(sindex, max_points,
[max_points, predicate](const Index3D& sidx, const PointIndexEl& p)
{
std::vector<PointIndexEl> tmp; tmp.reserve(max_points);
sidx.query(bgi::satisfies([p, predicate](const PointIndexEl& e){
return predicate(p, e);
}), std::back_inserter(tmp));
return tmp;
});
}
ClusteredPoints cluster(const PointSet& pts, double dist, unsigned max_points)
{
// A spatial index for querying the nearest points
Index3D sindex;
// Build the index
for(Eigen::Index i = 0; i < pts.rows(); i++)
sindex.insert(std::make_pair(Vec3d(pts.row(i)), unsigned(i)));
return cluster(sindex, max_points,
[dist, max_points](const Index3D& sidx, const PointIndexEl& p)
{
return distance_queryfn(sidx, p, dist, max_points);
});
}
} // namespace sla
} // namespace Slic3r