mirror of
https://github.com/SoftFever/OrcaSlicer.git
synced 2025-07-23 14:44:19 -06:00
Fixed conflicts after merge with master and ported changes into gouraud shaders to gouraud_mod shaders
This commit is contained in:
commit
2c0815f537
72 changed files with 1750 additions and 1043 deletions
|
@ -32,6 +32,8 @@ struct SlopeDetection
|
|||
uniform vec4 uniform_color;
|
||||
uniform SlopeDetection slope;
|
||||
|
||||
uniform bool offset_depth_buffer;
|
||||
|
||||
#ifdef ENABLE_ENVIRONMENT_MAP
|
||||
uniform sampler2D environment_tex;
|
||||
uniform bool use_environment_tex;
|
||||
|
@ -50,8 +52,6 @@ varying float world_pos_z;
|
|||
varying float world_normal_z;
|
||||
varying vec3 eye_normal;
|
||||
|
||||
uniform bool compute_triangle_normals_in_fs;
|
||||
|
||||
void main()
|
||||
{
|
||||
if (any(lessThan(clipping_planes_dots, ZERO)))
|
||||
|
@ -59,36 +59,7 @@ void main()
|
|||
vec3 color = uniform_color.rgb;
|
||||
float alpha = uniform_color.a;
|
||||
|
||||
vec2 intensity_fs = intensity;
|
||||
vec3 eye_normal_fs = eye_normal;
|
||||
float world_normal_z_fs = world_normal_z;
|
||||
if (compute_triangle_normals_in_fs) {
|
||||
vec3 triangle_normal = normalize(cross(dFdx(model_pos.xyz), dFdy(model_pos.xyz)));
|
||||
#ifdef FLIP_TRIANGLE_NORMALS
|
||||
triangle_normal = -triangle_normal;
|
||||
#endif
|
||||
|
||||
// First transform the normal into camera space and normalize the result.
|
||||
eye_normal_fs = normalize(gl_NormalMatrix * triangle_normal);
|
||||
|
||||
// Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
|
||||
// Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
|
||||
float NdotL = max(dot(eye_normal_fs, LIGHT_TOP_DIR), 0.0);
|
||||
|
||||
intensity_fs = vec2(0.0, 0.0);
|
||||
intensity_fs.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
|
||||
vec3 position = (gl_ModelViewMatrix * model_pos).xyz;
|
||||
intensity_fs.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(position), reflect(-LIGHT_TOP_DIR, eye_normal_fs)), 0.0), LIGHT_TOP_SHININESS);
|
||||
|
||||
// Perform the same lighting calculation for the 2nd light source (no specular applied).
|
||||
NdotL = max(dot(eye_normal_fs, LIGHT_FRONT_DIR), 0.0);
|
||||
intensity_fs.x += NdotL * LIGHT_FRONT_DIFFUSE;
|
||||
|
||||
// z component of normal vector in world coordinate used for slope shading
|
||||
world_normal_z_fs = slope.actived ? (normalize(slope.volume_world_normal_matrix * triangle_normal)).z : 0.0;
|
||||
}
|
||||
|
||||
if (slope.actived && world_normal_z_fs < slope.normal_z - EPSILON) {
|
||||
if (slope.actived && world_normal_z < slope.normal_z - EPSILON) {
|
||||
color = vec3(0.7, 0.7, 1.0);
|
||||
alpha = 1.0;
|
||||
}
|
||||
|
@ -96,8 +67,13 @@ void main()
|
|||
color = (any(lessThan(delta_box_min, ZERO)) || any(greaterThan(delta_box_max, ZERO))) ? mix(color, ZERO, 0.3333) : color;
|
||||
#ifdef ENABLE_ENVIRONMENT_MAP
|
||||
if (use_environment_tex)
|
||||
gl_FragColor = vec4(0.45 * texture2D(environment_tex, normalize(eye_normal_fs).xy * 0.5 + 0.5).xyz + 0.8 * color * intensity_fs.x, alpha);
|
||||
gl_FragColor = vec4(0.45 * texture2D(environment_tex, normalize(eye_normal).xy * 0.5 + 0.5).xyz + 0.8 * color * intensity.x, alpha);
|
||||
else
|
||||
#endif
|
||||
gl_FragColor = vec4(vec3(intensity_fs.y) + color * intensity_fs.x, alpha);
|
||||
gl_FragColor = vec4(vec3(intensity.y) + color * intensity.x, alpha);
|
||||
|
||||
// In the support painting gizmo and the seam painting gizmo are painted triangles rendered over the already
|
||||
// rendered object. To resolved z-fighting between previously rendered object and painted triangles, values
|
||||
// inside the depth buffer are offset by small epsilon for painted triangles inside those gizmos.
|
||||
gl_FragDepth = gl_FragCoord.z - (offset_depth_buffer ? EPSILON : 0.0);
|
||||
}
|
||||
|
|
|
@ -54,26 +54,22 @@ varying float world_pos_z;
|
|||
varying float world_normal_z;
|
||||
varying vec3 eye_normal;
|
||||
|
||||
uniform bool compute_triangle_normals_in_fs;
|
||||
|
||||
void main()
|
||||
{
|
||||
if (!compute_triangle_normals_in_fs) {
|
||||
// First transform the normal into camera space and normalize the result.
|
||||
eye_normal = normalize(gl_NormalMatrix * gl_Normal);
|
||||
// First transform the normal into camera space and normalize the result.
|
||||
eye_normal = normalize(gl_NormalMatrix * gl_Normal);
|
||||
|
||||
// Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
|
||||
// Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
|
||||
float NdotL = max(dot(eye_normal, LIGHT_TOP_DIR), 0.0);
|
||||
// Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
|
||||
// Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
|
||||
float NdotL = max(dot(eye_normal, LIGHT_TOP_DIR), 0.0);
|
||||
|
||||
intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
|
||||
vec3 position = (gl_ModelViewMatrix * gl_Vertex).xyz;
|
||||
intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(position), reflect(-LIGHT_TOP_DIR, eye_normal)), 0.0), LIGHT_TOP_SHININESS);
|
||||
intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
|
||||
vec3 position = (gl_ModelViewMatrix * gl_Vertex).xyz;
|
||||
intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(position), reflect(-LIGHT_TOP_DIR, eye_normal)), 0.0), LIGHT_TOP_SHININESS);
|
||||
|
||||
// Perform the same lighting calculation for the 2nd light source (no specular applied).
|
||||
NdotL = max(dot(eye_normal, LIGHT_FRONT_DIR), 0.0);
|
||||
intensity.x += NdotL * LIGHT_FRONT_DIFFUSE;
|
||||
}
|
||||
// Perform the same lighting calculation for the 2nd light source (no specular applied).
|
||||
NdotL = max(dot(eye_normal, LIGHT_FRONT_DIR), 0.0);
|
||||
intensity.x += NdotL * LIGHT_FRONT_DIFFUSE;
|
||||
|
||||
model_pos = gl_Vertex;
|
||||
// Point in homogenous coordinates.
|
||||
|
@ -90,8 +86,7 @@ void main()
|
|||
}
|
||||
|
||||
// z component of normal vector in world coordinate used for slope shading
|
||||
if (!compute_triangle_normals_in_fs)
|
||||
world_normal_z = slope.actived ? (normalize(slope.volume_world_normal_matrix * gl_Normal)).z : 0.0;
|
||||
world_normal_z = slope.actived ? (normalize(slope.volume_world_normal_matrix * gl_Normal)).z : 0.0;
|
||||
|
||||
gl_Position = ftransform();
|
||||
// Fill in the scalars for fragment shader clipping. Fragments with any of these components lower than zero are discarded.
|
||||
|
|
|
@ -45,6 +45,8 @@ struct SlopeDetection
|
|||
uniform vec4 uniform_color;
|
||||
uniform SlopeDetection slope;
|
||||
|
||||
uniform bool offset_depth_buffer;
|
||||
|
||||
#ifdef ENABLE_ENVIRONMENT_MAP
|
||||
uniform sampler2D environment_tex;
|
||||
uniform bool use_environment_tex;
|
||||
|
@ -62,8 +64,6 @@ varying vec4 world_pos;
|
|||
varying float world_normal_z;
|
||||
varying vec3 eye_normal;
|
||||
|
||||
uniform bool compute_triangle_normals_in_fs;
|
||||
|
||||
void main()
|
||||
{
|
||||
if (any(lessThan(clipping_planes_dots, ZERO)))
|
||||
|
@ -71,36 +71,7 @@ void main()
|
|||
vec3 color = uniform_color.rgb;
|
||||
float alpha = uniform_color.a;
|
||||
|
||||
vec2 intensity_fs = intensity;
|
||||
vec3 eye_normal_fs = eye_normal;
|
||||
float world_normal_z_fs = world_normal_z;
|
||||
if (compute_triangle_normals_in_fs) {
|
||||
vec3 triangle_normal = normalize(cross(dFdx(model_pos.xyz), dFdy(model_pos.xyz)));
|
||||
#ifdef FLIP_TRIANGLE_NORMALS
|
||||
triangle_normal = -triangle_normal;
|
||||
#endif
|
||||
|
||||
// First transform the normal into camera space and normalize the result.
|
||||
eye_normal_fs = normalize(gl_NormalMatrix * triangle_normal);
|
||||
|
||||
// Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
|
||||
// Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
|
||||
float NdotL = max(dot(eye_normal_fs, LIGHT_TOP_DIR), 0.0);
|
||||
|
||||
intensity_fs = vec2(0.0, 0.0);
|
||||
intensity_fs.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
|
||||
vec3 position = (gl_ModelViewMatrix * model_pos).xyz;
|
||||
intensity_fs.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(position), reflect(-LIGHT_TOP_DIR, eye_normal_fs)), 0.0), LIGHT_TOP_SHININESS);
|
||||
|
||||
// Perform the same lighting calculation for the 2nd light source (no specular applied).
|
||||
NdotL = max(dot(eye_normal_fs, LIGHT_FRONT_DIR), 0.0);
|
||||
intensity_fs.x += NdotL * LIGHT_FRONT_DIFFUSE;
|
||||
|
||||
// z component of normal vector in world coordinate used for slope shading
|
||||
world_normal_z_fs = slope.actived ? (normalize(slope.volume_world_normal_matrix * triangle_normal)).z : 0.0;
|
||||
}
|
||||
|
||||
if (slope.actived && world_normal_z_fs < slope.normal_z - EPSILON) {
|
||||
if (slope.actived && world_normal_z < slope.normal_z - EPSILON) {
|
||||
color = vec3(0.7, 0.7, 1.0);
|
||||
alpha = 1.0;
|
||||
}
|
||||
|
@ -123,8 +94,13 @@ void main()
|
|||
|
||||
#ifdef ENABLE_ENVIRONMENT_MAP
|
||||
if (use_environment_tex)
|
||||
gl_FragColor = vec4(0.45 * texture2D(environment_tex, normalize(eye_normal_fs).xy * 0.5 + 0.5).xyz + 0.8 * color * intensity_fs.x, alpha);
|
||||
gl_FragColor = vec4(0.45 * texture2D(environment_tex, normalize(eye_normal).xy * 0.5 + 0.5).xyz + 0.8 * color * intensity.x, alpha);
|
||||
else
|
||||
#endif
|
||||
gl_FragColor = vec4(vec3(intensity_fs.y) + color * intensity_fs.x, alpha);
|
||||
gl_FragColor = vec4(vec3(intensity.y) + color * intensity.x, alpha);
|
||||
|
||||
// In the support painting gizmo and the seam painting gizmo are painted triangles rendered over the already
|
||||
// rendered object. To resolved z-fighting between previously rendered object and painted triangles, values
|
||||
// inside the depth buffer are offset by small epsilon for painted triangles inside those gizmos.
|
||||
gl_FragDepth = gl_FragCoord.z - (offset_depth_buffer ? EPSILON : 0.0);
|
||||
}
|
||||
|
|
|
@ -43,34 +43,29 @@ varying vec4 world_pos;
|
|||
varying float world_normal_z;
|
||||
varying vec3 eye_normal;
|
||||
|
||||
uniform bool compute_triangle_normals_in_fs;
|
||||
|
||||
void main()
|
||||
{
|
||||
if (!compute_triangle_normals_in_fs) {
|
||||
// First transform the normal into camera space and normalize the result.
|
||||
eye_normal = normalize(gl_NormalMatrix * gl_Normal);
|
||||
// First transform the normal into camera space and normalize the result.
|
||||
eye_normal = normalize(gl_NormalMatrix * gl_Normal);
|
||||
|
||||
// Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
|
||||
// Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
|
||||
float NdotL = max(dot(eye_normal, LIGHT_TOP_DIR), 0.0);
|
||||
// Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
|
||||
// Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
|
||||
float NdotL = max(dot(eye_normal, LIGHT_TOP_DIR), 0.0);
|
||||
|
||||
intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
|
||||
vec3 position = (gl_ModelViewMatrix * gl_Vertex).xyz;
|
||||
intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(position), reflect(-LIGHT_TOP_DIR, eye_normal)), 0.0), LIGHT_TOP_SHININESS);
|
||||
intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
|
||||
vec3 position = (gl_ModelViewMatrix * gl_Vertex).xyz;
|
||||
intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(position), reflect(-LIGHT_TOP_DIR, eye_normal)), 0.0), LIGHT_TOP_SHININESS);
|
||||
|
||||
// Perform the same lighting calculation for the 2nd light source (no specular applied).
|
||||
NdotL = max(dot(eye_normal, LIGHT_FRONT_DIR), 0.0);
|
||||
intensity.x += NdotL * LIGHT_FRONT_DIFFUSE;
|
||||
}
|
||||
// Perform the same lighting calculation for the 2nd light source (no specular applied).
|
||||
NdotL = max(dot(eye_normal, LIGHT_FRONT_DIR), 0.0);
|
||||
intensity.x += NdotL * LIGHT_FRONT_DIFFUSE;
|
||||
|
||||
model_pos = gl_Vertex;
|
||||
// Point in homogenous coordinates.
|
||||
world_pos = volume_world_matrix * gl_Vertex;
|
||||
|
||||
// z component of normal vector in world coordinate used for slope shading
|
||||
if (!compute_triangle_normals_in_fs)
|
||||
world_normal_z = slope.actived ? (normalize(slope.volume_world_normal_matrix * gl_Normal)).z : 0.0;
|
||||
world_normal_z = slope.actived ? (normalize(slope.volume_world_normal_matrix * gl_Normal)).z : 0.0;
|
||||
|
||||
gl_Position = ftransform();
|
||||
// Fill in the scalars for fragment shader clipping. Fragments with any of these components lower than zero are discarded.
|
||||
|
|
55
resources/shaders/mm_gouraud.fs
Normal file
55
resources/shaders/mm_gouraud.fs
Normal file
|
@ -0,0 +1,55 @@
|
|||
#version 110
|
||||
|
||||
#define INTENSITY_CORRECTION 0.6
|
||||
|
||||
// normalized values for (-0.6/1.31, 0.6/1.31, 1./1.31)
|
||||
const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929);
|
||||
#define LIGHT_TOP_DIFFUSE (0.8 * INTENSITY_CORRECTION)
|
||||
#define LIGHT_TOP_SPECULAR (0.125 * INTENSITY_CORRECTION)
|
||||
#define LIGHT_TOP_SHININESS 20.0
|
||||
|
||||
// normalized values for (1./1.43, 0.2/1.43, 1./1.43)
|
||||
const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074);
|
||||
#define LIGHT_FRONT_DIFFUSE (0.3 * INTENSITY_CORRECTION)
|
||||
|
||||
#define INTENSITY_AMBIENT 0.3
|
||||
|
||||
const vec3 ZERO = vec3(0.0, 0.0, 0.0);
|
||||
const float EPSILON = 0.0001;
|
||||
|
||||
uniform vec4 uniform_color;
|
||||
|
||||
varying vec3 clipping_planes_dots;
|
||||
varying vec4 model_pos;
|
||||
|
||||
void main()
|
||||
{
|
||||
if (any(lessThan(clipping_planes_dots, ZERO)))
|
||||
discard;
|
||||
vec3 color = uniform_color.rgb;
|
||||
float alpha = uniform_color.a;
|
||||
|
||||
vec3 triangle_normal = normalize(cross(dFdx(model_pos.xyz), dFdy(model_pos.xyz)));
|
||||
#ifdef FLIP_TRIANGLE_NORMALS
|
||||
triangle_normal = -triangle_normal;
|
||||
#endif
|
||||
|
||||
// First transform the normal into camera space and normalize the result.
|
||||
vec3 eye_normal = normalize(gl_NormalMatrix * triangle_normal);
|
||||
|
||||
// Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
|
||||
// Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
|
||||
float NdotL = max(dot(eye_normal, LIGHT_TOP_DIR), 0.0);
|
||||
|
||||
// x = diffuse, y = specular;
|
||||
vec2 intensity = vec2(0.0, 0.0);
|
||||
intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
|
||||
vec3 position = (gl_ModelViewMatrix * model_pos).xyz;
|
||||
intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(position), reflect(-LIGHT_TOP_DIR, eye_normal)), 0.0), LIGHT_TOP_SHININESS);
|
||||
|
||||
// Perform the same lighting calculation for the 2nd light source (no specular applied).
|
||||
NdotL = max(dot(eye_normal, LIGHT_FRONT_DIR), 0.0);
|
||||
intensity.x += NdotL * LIGHT_FRONT_DIFFUSE;
|
||||
|
||||
gl_FragColor = vec4(vec3(intensity.y) + color * intensity.x, alpha);
|
||||
}
|
23
resources/shaders/mm_gouraud.vs
Normal file
23
resources/shaders/mm_gouraud.vs
Normal file
|
@ -0,0 +1,23 @@
|
|||
#version 110
|
||||
|
||||
const vec3 ZERO = vec3(0.0, 0.0, 0.0);
|
||||
|
||||
uniform mat4 volume_world_matrix;
|
||||
// Clipping plane, x = min z, y = max z. Used by the FFF and SLA previews to clip with a top / bottom plane.
|
||||
uniform vec2 z_range;
|
||||
// Clipping plane - general orientation. Used by the SLA gizmo.
|
||||
uniform vec4 clipping_plane;
|
||||
|
||||
varying vec3 clipping_planes_dots;
|
||||
varying vec4 model_pos;
|
||||
|
||||
void main()
|
||||
{
|
||||
model_pos = gl_Vertex;
|
||||
// Point in homogenous coordinates.
|
||||
vec4 world_pos = volume_world_matrix * gl_Vertex;
|
||||
|
||||
gl_Position = ftransform();
|
||||
// Fill in the scalars for fragment shader clipping. Fragments with any of these components lower than zero are discarded.
|
||||
clipping_planes_dots = vec3(dot(world_pos, clipping_plane), world_pos.z - z_range.x, z_range.y - world_pos.z);
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue