mirror of
https://github.com/SoftFever/OrcaSlicer.git
synced 2025-10-26 10:11:10 -06:00
Building igl statically and moving to the dep scripts
Fixing dep build script on Windows and removing some warnings. Use bundled igl by default. Not building with the dependency scripts if not explicitly stated. This way, it will stay in Fix the libigl patch to include C source files in header only mode.
This commit is contained in:
parent
89e39e3895
commit
2ae2672ee9
1095 changed files with 181 additions and 5 deletions
123
src/libigl/igl/extract_non_manifold_edge_curves.cpp
Normal file
123
src/libigl/igl/extract_non_manifold_edge_curves.cpp
Normal file
|
|
@ -0,0 +1,123 @@
|
|||
// This file is part of libigl, a simple c++ geometry processing library.
|
||||
//
|
||||
// Copyright (C) 2016 Alec Jacobson <alecjacobson@gmail.com>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla Public License
|
||||
// v. 2.0. If a copy of the MPL was not distributed with this file, You can
|
||||
// obtain one at http://mozilla.org/MPL/2.0/.
|
||||
#include "extract_non_manifold_edge_curves.h"
|
||||
#include <algorithm>
|
||||
#include <cassert>
|
||||
#include <list>
|
||||
#include <vector>
|
||||
#include <unordered_map>
|
||||
|
||||
template<
|
||||
typename DerivedF,
|
||||
typename DerivedEMAP,
|
||||
typename uE2EType >
|
||||
IGL_INLINE void igl::extract_non_manifold_edge_curves(
|
||||
const Eigen::PlainObjectBase<DerivedF>& F,
|
||||
const Eigen::PlainObjectBase<DerivedEMAP>& /*EMAP*/,
|
||||
const std::vector<std::vector<uE2EType> >& uE2E,
|
||||
std::vector<std::vector<size_t> >& curves) {
|
||||
const size_t num_faces = F.rows();
|
||||
assert(F.cols() == 3);
|
||||
//typedef std::pair<size_t, size_t> Edge;
|
||||
auto edge_index_to_face_index = [&](size_t ei) { return ei % num_faces; };
|
||||
auto edge_index_to_corner_index = [&](size_t ei) { return ei / num_faces; };
|
||||
auto get_edge_end_points = [&](size_t ei, size_t& s, size_t& d) {
|
||||
const size_t fi = edge_index_to_face_index(ei);
|
||||
const size_t ci = edge_index_to_corner_index(ei);
|
||||
s = F(fi, (ci+1)%3);
|
||||
d = F(fi, (ci+2)%3);
|
||||
};
|
||||
|
||||
curves.clear();
|
||||
const size_t num_unique_edges = uE2E.size();
|
||||
std::unordered_multimap<size_t, size_t> vertex_edge_adjacency;
|
||||
std::vector<size_t> non_manifold_edges;
|
||||
for (size_t i=0; i<num_unique_edges; i++) {
|
||||
const auto& adj_edges = uE2E[i];
|
||||
if (adj_edges.size() == 2) continue;
|
||||
|
||||
const size_t ei = adj_edges[0];
|
||||
size_t s,d;
|
||||
get_edge_end_points(ei, s, d);
|
||||
vertex_edge_adjacency.insert({{s, i}, {d, i}});
|
||||
non_manifold_edges.push_back(i);
|
||||
assert(vertex_edge_adjacency.count(s) > 0);
|
||||
assert(vertex_edge_adjacency.count(d) > 0);
|
||||
}
|
||||
|
||||
auto expand_forward = [&](std::list<size_t>& edge_curve,
|
||||
size_t& front_vertex, size_t& end_vertex) {
|
||||
while(vertex_edge_adjacency.count(front_vertex) == 2 &&
|
||||
front_vertex != end_vertex) {
|
||||
auto adj_edges = vertex_edge_adjacency.equal_range(front_vertex);
|
||||
for (auto itr = adj_edges.first; itr!=adj_edges.second; itr++) {
|
||||
const size_t uei = itr->second;
|
||||
assert(uE2E.at(uei).size() != 2);
|
||||
const size_t ei = uE2E[uei][0];
|
||||
if (uei == edge_curve.back()) continue;
|
||||
size_t s,d;
|
||||
get_edge_end_points(ei, s, d);
|
||||
edge_curve.push_back(uei);
|
||||
if (s == front_vertex) {
|
||||
front_vertex = d;
|
||||
} else if (d == front_vertex) {
|
||||
front_vertex = s;
|
||||
} else {
|
||||
throw "Invalid vertex/edge adjacency!";
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
auto expand_backward = [&](std::list<size_t>& edge_curve,
|
||||
size_t& front_vertex, size_t& end_vertex) {
|
||||
while(vertex_edge_adjacency.count(front_vertex) == 2 &&
|
||||
front_vertex != end_vertex) {
|
||||
auto adj_edges = vertex_edge_adjacency.equal_range(front_vertex);
|
||||
for (auto itr = adj_edges.first; itr!=adj_edges.second; itr++) {
|
||||
const size_t uei = itr->second;
|
||||
assert(uE2E.at(uei).size() != 2);
|
||||
const size_t ei = uE2E[uei][0];
|
||||
if (uei == edge_curve.front()) continue;
|
||||
size_t s,d;
|
||||
get_edge_end_points(ei, s, d);
|
||||
edge_curve.push_front(uei);
|
||||
if (s == front_vertex) {
|
||||
front_vertex = d;
|
||||
} else if (d == front_vertex) {
|
||||
front_vertex = s;
|
||||
} else {
|
||||
throw "Invalid vertex/edge adjcency!";
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
std::vector<bool> visited(num_unique_edges, false);
|
||||
for (const size_t i : non_manifold_edges) {
|
||||
if (visited[i]) continue;
|
||||
std::list<size_t> edge_curve;
|
||||
edge_curve.push_back(i);
|
||||
|
||||
const auto& adj_edges = uE2E[i];
|
||||
assert(adj_edges.size() != 2);
|
||||
const size_t ei = adj_edges[0];
|
||||
size_t s,d;
|
||||
get_edge_end_points(ei, s, d);
|
||||
|
||||
expand_forward(edge_curve, d, s);
|
||||
expand_backward(edge_curve, s, d);
|
||||
curves.emplace_back(edge_curve.begin(), edge_curve.end());
|
||||
for (auto itr = edge_curve.begin(); itr!=edge_curve.end(); itr++) {
|
||||
visited[*itr] = true;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
Loading…
Add table
Add a link
Reference in a new issue