Building igl statically and moving to the dep scripts

Fixing dep build script on Windows and removing some warnings.

Use bundled igl by default.

Not building with the dependency scripts if not explicitly stated. This way, it will stay in
Fix the libigl patch to include C source files in header only mode.
This commit is contained in:
tamasmeszaros 2019-06-19 14:52:55 +02:00
parent 89e39e3895
commit 2ae2672ee9
1095 changed files with 181 additions and 5 deletions

370
src/libigl/igl/active_set.cpp Executable file
View file

@ -0,0 +1,370 @@
// This file is part of libigl, a simple c++ geometry processing library.
//
// Copyright (C) 2013 Alec Jacobson <alecjacobson@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla Public License
// v. 2.0. If a copy of the MPL was not distributed with this file, You can
// obtain one at http://mozilla.org/MPL/2.0/.
#include "active_set.h"
#include "min_quad_with_fixed.h"
#include "slice.h"
#include "slice_into.h"
#include "cat.h"
//#include "matlab_format.h"
#include <iostream>
#include <limits>
#include <algorithm>
template <
typename AT,
typename DerivedB,
typename Derivedknown,
typename DerivedY,
typename AeqT,
typename DerivedBeq,
typename AieqT,
typename DerivedBieq,
typename Derivedlx,
typename Derivedux,
typename DerivedZ
>
IGL_INLINE igl::SolverStatus igl::active_set(
const Eigen::SparseMatrix<AT>& A,
const Eigen::PlainObjectBase<DerivedB> & B,
const Eigen::PlainObjectBase<Derivedknown> & known,
const Eigen::PlainObjectBase<DerivedY> & Y,
const Eigen::SparseMatrix<AeqT>& Aeq,
const Eigen::PlainObjectBase<DerivedBeq> & Beq,
const Eigen::SparseMatrix<AieqT>& Aieq,
const Eigen::PlainObjectBase<DerivedBieq> & Bieq,
const Eigen::PlainObjectBase<Derivedlx> & p_lx,
const Eigen::PlainObjectBase<Derivedux> & p_ux,
const igl::active_set_params & params,
Eigen::PlainObjectBase<DerivedZ> & Z
)
{
//#define ACTIVE_SET_CPP_DEBUG
#if defined(ACTIVE_SET_CPP_DEBUG) && !defined(_MSC_VER)
# warning "ACTIVE_SET_CPP_DEBUG"
#endif
using namespace Eigen;
using namespace std;
SolverStatus ret = SOLVER_STATUS_ERROR;
const int n = A.rows();
assert(n == A.cols() && "A must be square");
// Discard const qualifiers
//if(B.size() == 0)
//{
// B = DerivedB::Zero(n,1);
//}
assert(n == B.rows() && "B.rows() must match A.rows()");
assert(B.cols() == 1 && "B must be a column vector");
assert(Y.cols() == 1 && "Y must be a column vector");
assert((Aeq.size() == 0 && Beq.size() == 0) || Aeq.cols() == n);
assert((Aeq.size() == 0 && Beq.size() == 0) || Aeq.rows() == Beq.rows());
assert((Aeq.size() == 0 && Beq.size() == 0) || Beq.cols() == 1);
assert((Aieq.size() == 0 && Bieq.size() == 0) || Aieq.cols() == n);
assert((Aieq.size() == 0 && Bieq.size() == 0) || Aieq.rows() == Bieq.rows());
assert((Aieq.size() == 0 && Bieq.size() == 0) || Bieq.cols() == 1);
Eigen::Matrix<typename Derivedlx::Scalar,Eigen::Dynamic,1> lx;
Eigen::Matrix<typename Derivedux::Scalar,Eigen::Dynamic,1> ux;
if(p_lx.size() == 0)
{
lx = Derivedlx::Constant(
n,1,-numeric_limits<typename Derivedlx::Scalar>::max());
}else
{
lx = p_lx;
}
if(p_ux.size() == 0)
{
ux = Derivedux::Constant(
n,1,numeric_limits<typename Derivedux::Scalar>::max());
}else
{
ux = p_ux;
}
assert(lx.rows() == n && "lx must have n rows");
assert(ux.rows() == n && "ux must have n rows");
assert(ux.cols() == 1 && "lx must be a column vector");
assert(lx.cols() == 1 && "ux must be a column vector");
assert((ux.array()-lx.array()).minCoeff() > 0 && "ux(i) must be > lx(i)");
if(Z.size() != 0)
{
// Initial guess should have correct size
assert(Z.rows() == n && "Z must have n rows");
assert(Z.cols() == 1 && "Z must be a column vector");
}
assert(known.cols() == 1 && "known must be a column vector");
// Number of knowns
const int nk = known.size();
// Initialize active sets
typedef int BOOL;
#define TRUE 1
#define FALSE 0
Matrix<BOOL,Dynamic,1> as_lx = Matrix<BOOL,Dynamic,1>::Constant(n,1,FALSE);
Matrix<BOOL,Dynamic,1> as_ux = Matrix<BOOL,Dynamic,1>::Constant(n,1,FALSE);
Matrix<BOOL,Dynamic,1> as_ieq = Matrix<BOOL,Dynamic,1>::Constant(Aieq.rows(),1,FALSE);
// Keep track of previous Z for comparison
DerivedZ old_Z;
old_Z = DerivedZ::Constant(
n,1,numeric_limits<typename DerivedZ::Scalar>::max());
int iter = 0;
while(true)
{
#ifdef ACTIVE_SET_CPP_DEBUG
cout<<"Iteration: "<<iter<<":"<<endl;
cout<<" pre"<<endl;
#endif
// FIND BREACHES OF CONSTRAINTS
int new_as_lx = 0;
int new_as_ux = 0;
int new_as_ieq = 0;
if(Z.size() > 0)
{
for(int z = 0;z < n;z++)
{
if(Z(z) < lx(z))
{
new_as_lx += (as_lx(z)?0:1);
//new_as_lx++;
as_lx(z) = TRUE;
}
if(Z(z) > ux(z))
{
new_as_ux += (as_ux(z)?0:1);
//new_as_ux++;
as_ux(z) = TRUE;
}
}
if(Aieq.rows() > 0)
{
DerivedZ AieqZ;
AieqZ = Aieq*Z;
for(int a = 0;a<Aieq.rows();a++)
{
if(AieqZ(a) > Bieq(a))
{
new_as_ieq += (as_ieq(a)?0:1);
as_ieq(a) = TRUE;
}
}
}
#ifdef ACTIVE_SET_CPP_DEBUG
cout<<" new_as_lx: "<<new_as_lx<<endl;
cout<<" new_as_ux: "<<new_as_ux<<endl;
#endif
const double diff = (Z-old_Z).squaredNorm();
#ifdef ACTIVE_SET_CPP_DEBUG
cout<<"diff: "<<diff<<endl;
#endif
if(diff < params.solution_diff_threshold)
{
ret = SOLVER_STATUS_CONVERGED;
break;
}
old_Z = Z;
}
const int as_lx_count = std::count(as_lx.data(),as_lx.data()+n,TRUE);
const int as_ux_count = std::count(as_ux.data(),as_ux.data()+n,TRUE);
const int as_ieq_count =
std::count(as_ieq.data(),as_ieq.data()+as_ieq.size(),TRUE);
#ifndef NDEBUG
{
int count = 0;
for(int a = 0;a<as_ieq.size();a++)
{
if(as_ieq(a))
{
assert(as_ieq(a) == TRUE);
count++;
}
}
assert(as_ieq_count == count);
}
#endif
// PREPARE FIXED VALUES
Derivedknown known_i;
known_i.resize(nk + as_lx_count + as_ux_count,1);
DerivedY Y_i;
Y_i.resize(nk + as_lx_count + as_ux_count,1);
{
known_i.block(0,0,known.rows(),known.cols()) = known;
Y_i.block(0,0,Y.rows(),Y.cols()) = Y;
int k = nk;
// Then all lx
for(int z = 0;z < n;z++)
{
if(as_lx(z))
{
known_i(k) = z;
Y_i(k) = lx(z);
k++;
}
}
// Finally all ux
for(int z = 0;z < n;z++)
{
if(as_ux(z))
{
known_i(k) = z;
Y_i(k) = ux(z);
k++;
}
}
assert(k==Y_i.size());
assert(k==known_i.size());
}
//cout<<matlab_format((known_i.array()+1).eval(),"known_i")<<endl;
// PREPARE EQUALITY CONSTRAINTS
VectorXi as_ieq_list(as_ieq_count,1);
// Gather active constraints and resp. rhss
DerivedBeq Beq_i;
Beq_i.resize(Beq.rows()+as_ieq_count,1);
Beq_i.head(Beq.rows()) = Beq;
{
int k =0;
for(int a=0;a<as_ieq.size();a++)
{
if(as_ieq(a))
{
assert(k<as_ieq_list.size());
as_ieq_list(k)=a;
Beq_i(Beq.rows()+k,0) = Bieq(k,0);
k++;
}
}
assert(k == as_ieq_count);
}
// extract active constraint rows
SparseMatrix<AeqT> Aeq_i,Aieq_i;
slice(Aieq,as_ieq_list,1,Aieq_i);
// Append to equality constraints
cat(1,Aeq,Aieq_i,Aeq_i);
min_quad_with_fixed_data<AT> data;
#ifndef NDEBUG
{
// NO DUPES!
Matrix<BOOL,Dynamic,1> fixed = Matrix<BOOL,Dynamic,1>::Constant(n,1,FALSE);
for(int k = 0;k<known_i.size();k++)
{
assert(!fixed[known_i(k)]);
fixed[known_i(k)] = TRUE;
}
}
#endif
DerivedZ sol;
if(known_i.size() == A.rows())
{
// Everything's fixed?
#ifdef ACTIVE_SET_CPP_DEBUG
cout<<" everything's fixed."<<endl;
#endif
Z.resize(A.rows(),Y_i.cols());
slice_into(Y_i,known_i,1,Z);
sol.resize(0,Y_i.cols());
assert(Aeq_i.rows() == 0 && "All fixed but linearly constrained");
}else
{
#ifdef ACTIVE_SET_CPP_DEBUG
cout<<" min_quad_with_fixed_precompute"<<endl;
#endif
if(!min_quad_with_fixed_precompute(A,known_i,Aeq_i,params.Auu_pd,data))
{
cerr<<"Error: min_quad_with_fixed precomputation failed."<<endl;
if(iter > 0 && Aeq_i.rows() > Aeq.rows())
{
cerr<<" *Are you sure rows of [Aeq;Aieq] are linearly independent?*"<<
endl;
}
ret = SOLVER_STATUS_ERROR;
break;
}
#ifdef ACTIVE_SET_CPP_DEBUG
cout<<" min_quad_with_fixed_solve"<<endl;
#endif
if(!min_quad_with_fixed_solve(data,B,Y_i,Beq_i,Z,sol))
{
cerr<<"Error: min_quad_with_fixed solve failed."<<endl;
ret = SOLVER_STATUS_ERROR;
break;
}
//cout<<matlab_format((Aeq*Z-Beq).eval(),"cr")<<endl;
//cout<<matlab_format(Z,"Z")<<endl;
#ifdef ACTIVE_SET_CPP_DEBUG
cout<<" post"<<endl;
#endif
// Computing Lagrange multipliers needs to be adjusted slightly if A is not symmetric
assert(data.Auu_sym);
}
// Compute Lagrange multiplier values for known_i
SparseMatrix<AT> Ak;
// Slow
slice(A,known_i,1,Ak);
DerivedB Bk;
slice(B,known_i,Bk);
MatrixXd Lambda_known_i = -(0.5*Ak*Z + 0.5*Bk);
// reverse the lambda values for lx
Lambda_known_i.block(nk,0,as_lx_count,1) =
(-1*Lambda_known_i.block(nk,0,as_lx_count,1)).eval();
// Extract Lagrange multipliers for Aieq_i (always at back of sol)
VectorXd Lambda_Aieq_i(Aieq_i.rows(),1);
for(int l = 0;l<Aieq_i.rows();l++)
{
Lambda_Aieq_i(Aieq_i.rows()-1-l) = sol(sol.rows()-1-l);
}
// Remove from active set
for(int l = 0;l<as_lx_count;l++)
{
if(Lambda_known_i(nk + l) < params.inactive_threshold)
{
as_lx(known_i(nk + l)) = FALSE;
}
}
for(int u = 0;u<as_ux_count;u++)
{
if(Lambda_known_i(nk + as_lx_count + u) <
params.inactive_threshold)
{
as_ux(known_i(nk + as_lx_count + u)) = FALSE;
}
}
for(int a = 0;a<as_ieq_count;a++)
{
if(Lambda_Aieq_i(a) < params.inactive_threshold)
{
as_ieq(as_ieq_list(a)) = FALSE;
}
}
iter++;
//cout<<iter<<endl;
if(params.max_iter>0 && iter>=params.max_iter)
{
ret = SOLVER_STATUS_MAX_ITER;
break;
}
}
return ret;
}
#ifdef IGL_STATIC_LIBRARY
// Explicit template instantiation
template igl::SolverStatus igl::active_set<double, Eigen::Matrix<double, -1, 1, 0, -1, 1>, Eigen::Matrix<int, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, 1, 0, -1, 1>, double, Eigen::Matrix<double, -1, 1, 0, -1, 1>, double, Eigen::Matrix<double, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, 1, 0, -1, 1> >(Eigen::SparseMatrix<double, 0, int> const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, 1, 0, -1, 1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> > const&, Eigen::SparseMatrix<double, 0, int> const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> > const&, Eigen::SparseMatrix<double, 0, int> const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> > const&, igl::active_set_params const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> >&);
template igl::SolverStatus igl::active_set<double, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, double, Eigen::Matrix<double, -1, 1, 0, -1, 1>, double, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1> >(Eigen::SparseMatrix<double, 0, int> const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::SparseMatrix<double, 0, int> const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> > const&, Eigen::SparseMatrix<double, 0, int> const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, igl::active_set_params const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&);
#endif