mirror of
https://github.com/SoftFever/OrcaSlicer.git
synced 2025-07-13 01:37:53 -06:00
1) Implemented anchoring of infill lines to perimeters with length
limited anchors, while before a full perimeter segment was always taken if possible. 2) Adapted the line infills (grid, stars, triangles, cubic) to 1). This also solves a long standing issue of these infills producing anchors for each sweep direction independently, thus possibly overlapping and overextruding, which was quite detrimental in narrow areas. 3) Refactored cubic adaptive infill anchroing algorithm for performance and clarity.
This commit is contained in:
parent
414fdaefc5
commit
239d588c5d
12 changed files with 1200 additions and 626 deletions
|
@ -201,6 +201,58 @@ inline double ray_point_distance(const Line &iline, const Point &ipt)
|
|||
}
|
||||
|
||||
// Based on Liang-Barsky function by Daniel White @ http://www.skytopia.com/project/articles/compsci/clipping.html
|
||||
template<typename T>
|
||||
inline bool liang_barsky_line_clipping_interval(
|
||||
// Start and end points of the source line, result will be stored there as well.
|
||||
const Eigen::Matrix<T, 2, 1, Eigen::DontAlign> &x0,
|
||||
const Eigen::Matrix<T, 2, 1, Eigen::DontAlign> &v,
|
||||
// Bounding box to clip with.
|
||||
const BoundingBoxBase<Eigen::Matrix<T, 2, 1, Eigen::DontAlign>> &bbox,
|
||||
std::pair<double, double> &out_interval)
|
||||
{
|
||||
double t0 = 0.0;
|
||||
double t1 = 1.0;
|
||||
// Traverse through left, right, bottom, top edges.
|
||||
for (int edge = 0; edge < 4; ++ edge)
|
||||
{
|
||||
double p, q;
|
||||
switch (edge) {
|
||||
case 0: p = - v.x(); q = - bbox.min.x() + x0.x(); break;
|
||||
case 1: p = v.x(); q = bbox.max.x() - x0.x(); break;
|
||||
case 2: p = - v.y(); q = - bbox.min.y() + x0.y(); break;
|
||||
default: p = v.y(); q = bbox.max.y() - x0.y(); break;
|
||||
}
|
||||
|
||||
if (p == 0) {
|
||||
if (q < 0)
|
||||
// Line parallel to the bounding box edge is fully outside of the bounding box.
|
||||
return false;
|
||||
// else don't clip
|
||||
} else {
|
||||
double r = q / p;
|
||||
if (p < 0) {
|
||||
if (r > t1)
|
||||
// Fully clipped.
|
||||
return false;
|
||||
if (r > t0)
|
||||
// Partially clipped.
|
||||
t0 = r;
|
||||
} else {
|
||||
assert(p > 0);
|
||||
if (r < t0)
|
||||
// Fully clipped.
|
||||
return false;
|
||||
if (r < t1)
|
||||
// Partially clipped.
|
||||
t1 = r;
|
||||
}
|
||||
}
|
||||
}
|
||||
out_interval.first = t0;
|
||||
out_interval.second = t1;
|
||||
return true;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
inline bool liang_barsky_line_clipping(
|
||||
// Start and end points of the source line, result will be stored there as well.
|
||||
|
@ -210,49 +262,12 @@ inline bool liang_barsky_line_clipping(
|
|||
const BoundingBoxBase<Eigen::Matrix<T, 2, 1, Eigen::DontAlign>> &bbox)
|
||||
{
|
||||
Eigen::Matrix<T, 2, 1, Eigen::DontAlign> v = x1 - x0;
|
||||
double t0 = 0.0;
|
||||
double t1 = 1.0;
|
||||
|
||||
// Traverse through left, right, bottom, top edges.
|
||||
for (int edge = 0; edge < 4; ++ edge)
|
||||
{
|
||||
double p, q;
|
||||
switch (edge) {
|
||||
case 0: p = - v.x(); q = - bbox.min.x() + x0.x(); break;
|
||||
case 1: p = v.x(); q = bbox.max.x() - x0.x(); break;
|
||||
case 2: p = - v.y(); q = - bbox.min.y() + x0.y(); break;
|
||||
default: p = v.y(); q = bbox.max.y() - x0.y(); break;
|
||||
}
|
||||
|
||||
if (p == 0) {
|
||||
if (q < 0)
|
||||
// Line parallel to the bounding box edge is fully outside of the bounding box.
|
||||
return false;
|
||||
// else don't clip
|
||||
} else {
|
||||
double r = q / p;
|
||||
if (p < 0) {
|
||||
if (r > t1)
|
||||
// Fully clipped.
|
||||
return false;
|
||||
if (r > t0)
|
||||
// Partially clipped.
|
||||
t0 = r;
|
||||
} else {
|
||||
assert(p > 0);
|
||||
if (r < t0)
|
||||
// Fully clipped.
|
||||
return false;
|
||||
if (r < t1)
|
||||
// Partially clipped.
|
||||
t1 = r;
|
||||
}
|
||||
}
|
||||
std::pair<double, double> interval;
|
||||
if (liang_barsky_line_clipping_interval(x0, v, bbox, interval)) {
|
||||
// Clipped successfully.
|
||||
x1 = x0 + interval.second * v;
|
||||
x0 += interval.first * v;
|
||||
}
|
||||
|
||||
// Clipped successfully.
|
||||
x1 = x0 + t1 * v;
|
||||
x0 += t0 * v;
|
||||
return true;
|
||||
}
|
||||
|
||||
|
@ -273,6 +288,35 @@ bool liang_barsky_line_clipping(
|
|||
return liang_barsky_line_clipping(x0clip, x1clip, bbox);
|
||||
}
|
||||
|
||||
// Ugly named variant, that accepts the squared line
|
||||
// Don't call me with a nearly zero length vector!
|
||||
template<typename T>
|
||||
int ray_circle_intersections_r2_lv2_c(T r2, T a, T b, T lv2, T c, std::pair<Eigen::Matrix<T, 2, 1, Eigen::DontAlign>, Eigen::Matrix<T, 2, 1, Eigen::DontAlign>> &out)
|
||||
{
|
||||
T x0 = - a * c / lv2;
|
||||
T y0 = - b * c / lv2;
|
||||
T d = r2 - c * c / lv2;
|
||||
if (d < T(0))
|
||||
return 0;
|
||||
T mult = sqrt(d / lv2);
|
||||
out.first.x() = x0 + b * mult;
|
||||
out.first.y() = y0 - a * mult;
|
||||
out.second.x() = x0 - b * mult;
|
||||
out.second.y() = y0 + a * mult;
|
||||
return mult == T(0) ? 1 : 2;
|
||||
}
|
||||
template<typename T>
|
||||
int ray_circle_intersections(T r, T a, T b, T c, std::pair<Eigen::Matrix<T, 2, 1, Eigen::DontAlign>, Eigen::Matrix<T, 2, 1, Eigen::DontAlign>> &out)
|
||||
{
|
||||
T lv2 = a * a + b * b;
|
||||
if (lv2 < T(SCALED_EPSILON * SCALED_EPSILON)) {
|
||||
//FIXME what is the correct epsilon?
|
||||
// What if the line touches the circle?
|
||||
return false;
|
||||
}
|
||||
return ray_circle_intersections_r2_lv2_c2(r * r, a, b, a * a + b * b, c, out);
|
||||
}
|
||||
|
||||
Pointf3s convex_hull(Pointf3s points);
|
||||
Polygon convex_hull(Points points);
|
||||
Polygon convex_hull(const Polygons &polygons);
|
||||
|
@ -298,12 +342,12 @@ template<typename T> T angle_to_0_2PI(T angle)
|
|||
}
|
||||
|
||||
/// Find the center of the circle corresponding to the vector of Points as an arc.
|
||||
Point circle_taubin_newton(const Points::const_iterator& input_start, const Points::const_iterator& input_end, size_t cycles = 20);
|
||||
inline Point circle_taubin_newton(const Points& input, size_t cycles = 20) { return circle_taubin_newton(input.cbegin(), input.cend(), cycles); }
|
||||
Point circle_center_taubin_newton(const Points::const_iterator& input_start, const Points::const_iterator& input_end, size_t cycles = 20);
|
||||
inline Point circle_center_taubin_newton(const Points& input, size_t cycles = 20) { return circle_center_taubin_newton(input.cbegin(), input.cend(), cycles); }
|
||||
|
||||
/// Find the center of the circle corresponding to the vector of Pointfs as an arc.
|
||||
Vec2d circle_taubin_newton(const Vec2ds::const_iterator& input_start, const Vec2ds::const_iterator& input_end, size_t cycles = 20);
|
||||
inline Vec2d circle_taubin_newton(const Vec2ds& input, size_t cycles = 20) { return circle_taubin_newton(input.cbegin(), input.cend(), cycles); }
|
||||
Vec2d circle_center_taubin_newton(const Vec2ds::const_iterator& input_start, const Vec2ds::const_iterator& input_end, size_t cycles = 20);
|
||||
inline Vec2d circle_center_taubin_newton(const Vec2ds& input, size_t cycles = 20) { return circle_center_taubin_newton(input.cbegin(), input.cend(), cycles); }
|
||||
|
||||
void simplify_polygons(const Polygons &polygons, double tolerance, Polygons* retval);
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue