mirror of
https://github.com/SoftFever/OrcaSlicer.git
synced 2025-07-19 20:57:53 -06:00
Removed Point::scale(),translate(),coincides_with(),distance_to(),
distance_to_squared(),perp_distance_to(),negative(),vector_to(), translate(), distance_to() etc, replaced with the Eigen equivalents.
This commit is contained in:
parent
3b89717149
commit
1ba64da3fe
45 changed files with 526 additions and 792 deletions
|
@ -7,8 +7,7 @@
|
|||
|
||||
namespace Slic3r {
|
||||
|
||||
std::string
|
||||
Line::wkt() const
|
||||
std::string Line::wkt() const
|
||||
{
|
||||
std::ostringstream ss;
|
||||
ss << "LINESTRING(" << this->a.x() << " " << this->a.y() << ","
|
||||
|
@ -16,124 +15,58 @@ Line::wkt() const
|
|||
return ss.str();
|
||||
}
|
||||
|
||||
Line::operator Lines() const
|
||||
bool Line::intersection_infinite(const Line &other, Point* point) const
|
||||
{
|
||||
Lines lines;
|
||||
lines.push_back(*this);
|
||||
return lines;
|
||||
}
|
||||
|
||||
Line::operator Polyline() const
|
||||
{
|
||||
Polyline pl;
|
||||
pl.points.push_back(this->a);
|
||||
pl.points.push_back(this->b);
|
||||
return pl;
|
||||
}
|
||||
|
||||
void
|
||||
Line::scale(double factor)
|
||||
{
|
||||
this->a.scale(factor);
|
||||
this->b.scale(factor);
|
||||
}
|
||||
|
||||
void
|
||||
Line::translate(double x, double y)
|
||||
{
|
||||
this->a.translate(x, y);
|
||||
this->b.translate(x, y);
|
||||
}
|
||||
|
||||
void
|
||||
Line::rotate(double angle, const Point ¢er)
|
||||
{
|
||||
this->a.rotate(angle, center);
|
||||
this->b.rotate(angle, center);
|
||||
}
|
||||
|
||||
void
|
||||
Line::reverse()
|
||||
{
|
||||
std::swap(this->a, this->b);
|
||||
}
|
||||
|
||||
double
|
||||
Line::length() const
|
||||
{
|
||||
return this->a.distance_to(this->b);
|
||||
}
|
||||
|
||||
Point
|
||||
Line::midpoint() const
|
||||
{
|
||||
return Point((this->a.x() + this->b.x()) / 2.0, (this->a.y() + this->b.y()) / 2.0);
|
||||
}
|
||||
|
||||
void
|
||||
Line::point_at(double distance, Point* point) const
|
||||
{
|
||||
double len = this->length();
|
||||
*point = this->a;
|
||||
if (this->a.x() != this->b.x())
|
||||
point->x() = this->a.x() + (this->b.x() - this->a.x()) * distance / len;
|
||||
if (this->a.y() != this->b.y())
|
||||
point->y() = this->a.y() + (this->b.y() - this->a.y()) * distance / len;
|
||||
}
|
||||
|
||||
Point
|
||||
Line::point_at(double distance) const
|
||||
{
|
||||
Point p;
|
||||
this->point_at(distance, &p);
|
||||
return p;
|
||||
}
|
||||
|
||||
bool
|
||||
Line::intersection_infinite(const Line &other, Point* point) const
|
||||
{
|
||||
Vector x = this->a.vector_to(other.a);
|
||||
Vector d1 = this->vector();
|
||||
Vector d2 = other.vector();
|
||||
|
||||
double cross = d1.x() * d2.y() - d1.y() * d2.x();
|
||||
if (std::fabs(cross) < EPSILON)
|
||||
Vec2d a1 = this->a.cast<double>();
|
||||
Vec2d a2 = other.a.cast<double>();
|
||||
Vec2d v12 = (other.a - this->a).cast<double>();
|
||||
Vec2d v1 = (this->b - this->a).cast<double>();
|
||||
Vec2d v2 = (other.b - other.a).cast<double>();
|
||||
double denom = cross2(v1, v2);
|
||||
if (std::fabs(denom) < EPSILON)
|
||||
return false;
|
||||
|
||||
double t1 = (x.x() * d2.y() - x.y() * d2.x())/cross;
|
||||
point->x() = this->a.x() + d1.x() * t1;
|
||||
point->y() = this->a.y() + d1.y() * t1;
|
||||
double t1 = cross2(v12, v2) / denom;
|
||||
*point = (a1 + t1 * v1).cast<coord_t>();
|
||||
return true;
|
||||
}
|
||||
|
||||
bool
|
||||
Line::coincides_with(const Line &line) const
|
||||
/* distance to the closest point of line */
|
||||
double Line::distance_to(const Point &point) const
|
||||
{
|
||||
return this->a == line.a && this->b == line.b;
|
||||
const Line &line = *this;
|
||||
const Vec2d v = (line.b - line.a).cast<double>();
|
||||
const Vec2d va = (point - line.a).cast<double>();
|
||||
const double l2 = v.squaredNorm(); // avoid a sqrt
|
||||
if (l2 == 0.0)
|
||||
// line.a == line.b case
|
||||
return va.norm();
|
||||
// Consider the line extending the segment, parameterized as line.a + t (line.b - line.a).
|
||||
// We find projection of this point onto the line.
|
||||
// It falls where t = [(this-line.a) . (line.b-line.a)] / |line.b-line.a|^2
|
||||
const double t = va.dot(v) / l2;
|
||||
if (t < 0.0) return va.norm(); // beyond the 'a' end of the segment
|
||||
else if (t > 1.0) return (point - line.b).cast<double>().norm(); // beyond the 'b' end of the segment
|
||||
return (t * v - va).norm();
|
||||
}
|
||||
|
||||
double
|
||||
Line::distance_to(const Point &point) const
|
||||
double Line::perp_distance_to(const Point &point) const
|
||||
{
|
||||
return point.distance_to(*this);
|
||||
const Line &line = *this;
|
||||
const Vec2d v = (line.b - line.a).cast<double>();
|
||||
const Vec2d va = (point - line.a).cast<double>();
|
||||
if (line.a == line.b)
|
||||
return va.norm();
|
||||
return std::abs(cross2(v, va)) / v.norm();
|
||||
}
|
||||
|
||||
double
|
||||
Line::atan2_() const
|
||||
{
|
||||
return atan2(this->b.y() - this->a.y(), this->b.x() - this->a.x());
|
||||
}
|
||||
|
||||
double
|
||||
Line::orientation() const
|
||||
double Line::orientation() const
|
||||
{
|
||||
double angle = this->atan2_();
|
||||
if (angle < 0) angle = 2*PI + angle;
|
||||
return angle;
|
||||
}
|
||||
|
||||
double
|
||||
Line::direction() const
|
||||
double Line::direction() const
|
||||
{
|
||||
double atan2 = this->atan2_();
|
||||
return (fabs(atan2 - PI) < EPSILON) ? 0
|
||||
|
@ -141,105 +74,42 @@ Line::direction() const
|
|||
: atan2;
|
||||
}
|
||||
|
||||
bool
|
||||
Line::parallel_to(double angle) const {
|
||||
bool Line::parallel_to(double angle) const
|
||||
{
|
||||
return Slic3r::Geometry::directions_parallel(this->direction(), angle);
|
||||
}
|
||||
|
||||
bool
|
||||
Line::parallel_to(const Line &line) const {
|
||||
return this->parallel_to(line.direction());
|
||||
}
|
||||
|
||||
Vector
|
||||
Line::vector() const
|
||||
bool Line::intersection(const Line &l2, Point *intersection) const
|
||||
{
|
||||
return Vector(this->b.x() - this->a.x(), this->b.y() - this->a.y());
|
||||
}
|
||||
|
||||
Vector
|
||||
Line::normal() const
|
||||
{
|
||||
return Vector((this->b.y() - this->a.y()), -(this->b.x() - this->a.x()));
|
||||
}
|
||||
|
||||
void
|
||||
Line::extend_end(double distance)
|
||||
{
|
||||
// relocate last point by extending the segment by the specified length
|
||||
Line line = *this;
|
||||
line.reverse();
|
||||
this->b = line.point_at(-distance);
|
||||
}
|
||||
|
||||
void
|
||||
Line::extend_start(double distance)
|
||||
{
|
||||
// relocate first point by extending the first segment by the specified length
|
||||
this->a = this->point_at(-distance);
|
||||
}
|
||||
|
||||
bool
|
||||
Line::intersection(const Line& line, Point* intersection) const
|
||||
{
|
||||
double denom = ((double)(line.b.y() - line.a.y())*(this->b.x() - this->a.x())) -
|
||||
((double)(line.b.x() - line.a.x())*(this->b.y() - this->a.y()));
|
||||
|
||||
double nume_a = ((double)(line.b.x() - line.a.x())*(this->a.y() - line.a.y())) -
|
||||
((double)(line.b.y() - line.a.y())*(this->a.x() - line.a.x()));
|
||||
|
||||
double nume_b = ((double)(this->b.x() - this->a.x())*(this->a.y() - line.a.y())) -
|
||||
((double)(this->b.y() - this->a.y())*(this->a.x() - line.a.x()));
|
||||
|
||||
if (fabs(denom) < EPSILON) {
|
||||
if (fabs(nume_a) < EPSILON && fabs(nume_b) < EPSILON) {
|
||||
return false; // coincident
|
||||
}
|
||||
return false; // parallel
|
||||
}
|
||||
|
||||
double ua = nume_a / denom;
|
||||
double ub = nume_b / denom;
|
||||
|
||||
if (ua >= 0 && ua <= 1.0f && ub >= 0 && ub <= 1.0f)
|
||||
{
|
||||
const Line &l1 = *this;
|
||||
const Vec2d v1 = (l1.b - l1.a).cast<double>();
|
||||
const Vec2d v2 = (l2.b - l2.a).cast<double>();
|
||||
const Vec2d v12 = (l1.a - l2.a).cast<double>();
|
||||
double denom = cross2(v1, v2);
|
||||
double nume_a = cross2(v2, v12);
|
||||
double nume_b = cross2(v1, v12);
|
||||
if (fabs(denom) < EPSILON)
|
||||
#if 0
|
||||
// Lines are collinear. Return true if they are coincident (overlappign).
|
||||
return ! (fabs(nume_a) < EPSILON && fabs(nume_b) < EPSILON);
|
||||
#else
|
||||
return false;
|
||||
#endif
|
||||
double t1 = nume_a / denom;
|
||||
double t2 = nume_b / denom;
|
||||
if (t1 >= 0 && t1 <= 1.0f && t2 >= 0 && t2 <= 1.0f) {
|
||||
// Get the intersection point.
|
||||
intersection->x() = this->a.x() + ua*(this->b.x() - this->a.x());
|
||||
intersection->y() = this->a.y() + ua*(this->b.y() - this->a.y());
|
||||
(*intersection) = (l1.a.cast<double>() + t1 * v1).cast<coord_t>();
|
||||
return true;
|
||||
}
|
||||
|
||||
return false; // not intersecting
|
||||
}
|
||||
|
||||
double
|
||||
Line::ccw(const Point& point) const
|
||||
{
|
||||
return point.ccw(*this);
|
||||
}
|
||||
|
||||
double Line3::length() const
|
||||
{
|
||||
return (b - a).norm();
|
||||
}
|
||||
|
||||
Vector3 Line3::vector() const
|
||||
{
|
||||
return Vector3(b - a);
|
||||
}
|
||||
|
||||
Pointf3 Linef3::intersect_plane(double z) const
|
||||
{
|
||||
Vec3d v = this->b - this->a;
|
||||
auto v = (this->b - this->a).cast<double>();
|
||||
double t = (z - this->a.z()) / v.z();
|
||||
return Pointf3(this->a.x() + v.x() * t, this->a.y() + v.y() * t, z);
|
||||
}
|
||||
|
||||
void
|
||||
Linef3::scale(double factor)
|
||||
{
|
||||
this->a.scale(factor);
|
||||
this->b.scale(factor);
|
||||
}
|
||||
|
||||
}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue