Removed Point::scale(),translate(),coincides_with(),distance_to(),

distance_to_squared(),perp_distance_to(),negative(),vector_to(),
translate(), distance_to() etc,
replaced with the Eigen equivalents.
This commit is contained in:
bubnikv 2018-08-17 14:14:24 +02:00
parent 3b89717149
commit 1ba64da3fe
45 changed files with 526 additions and 792 deletions

View file

@ -7,8 +7,7 @@
namespace Slic3r {
std::string
Line::wkt() const
std::string Line::wkt() const
{
std::ostringstream ss;
ss << "LINESTRING(" << this->a.x() << " " << this->a.y() << ","
@ -16,124 +15,58 @@ Line::wkt() const
return ss.str();
}
Line::operator Lines() const
bool Line::intersection_infinite(const Line &other, Point* point) const
{
Lines lines;
lines.push_back(*this);
return lines;
}
Line::operator Polyline() const
{
Polyline pl;
pl.points.push_back(this->a);
pl.points.push_back(this->b);
return pl;
}
void
Line::scale(double factor)
{
this->a.scale(factor);
this->b.scale(factor);
}
void
Line::translate(double x, double y)
{
this->a.translate(x, y);
this->b.translate(x, y);
}
void
Line::rotate(double angle, const Point &center)
{
this->a.rotate(angle, center);
this->b.rotate(angle, center);
}
void
Line::reverse()
{
std::swap(this->a, this->b);
}
double
Line::length() const
{
return this->a.distance_to(this->b);
}
Point
Line::midpoint() const
{
return Point((this->a.x() + this->b.x()) / 2.0, (this->a.y() + this->b.y()) / 2.0);
}
void
Line::point_at(double distance, Point* point) const
{
double len = this->length();
*point = this->a;
if (this->a.x() != this->b.x())
point->x() = this->a.x() + (this->b.x() - this->a.x()) * distance / len;
if (this->a.y() != this->b.y())
point->y() = this->a.y() + (this->b.y() - this->a.y()) * distance / len;
}
Point
Line::point_at(double distance) const
{
Point p;
this->point_at(distance, &p);
return p;
}
bool
Line::intersection_infinite(const Line &other, Point* point) const
{
Vector x = this->a.vector_to(other.a);
Vector d1 = this->vector();
Vector d2 = other.vector();
double cross = d1.x() * d2.y() - d1.y() * d2.x();
if (std::fabs(cross) < EPSILON)
Vec2d a1 = this->a.cast<double>();
Vec2d a2 = other.a.cast<double>();
Vec2d v12 = (other.a - this->a).cast<double>();
Vec2d v1 = (this->b - this->a).cast<double>();
Vec2d v2 = (other.b - other.a).cast<double>();
double denom = cross2(v1, v2);
if (std::fabs(denom) < EPSILON)
return false;
double t1 = (x.x() * d2.y() - x.y() * d2.x())/cross;
point->x() = this->a.x() + d1.x() * t1;
point->y() = this->a.y() + d1.y() * t1;
double t1 = cross2(v12, v2) / denom;
*point = (a1 + t1 * v1).cast<coord_t>();
return true;
}
bool
Line::coincides_with(const Line &line) const
/* distance to the closest point of line */
double Line::distance_to(const Point &point) const
{
return this->a == line.a && this->b == line.b;
const Line &line = *this;
const Vec2d v = (line.b - line.a).cast<double>();
const Vec2d va = (point - line.a).cast<double>();
const double l2 = v.squaredNorm(); // avoid a sqrt
if (l2 == 0.0)
// line.a == line.b case
return va.norm();
// Consider the line extending the segment, parameterized as line.a + t (line.b - line.a).
// We find projection of this point onto the line.
// It falls where t = [(this-line.a) . (line.b-line.a)] / |line.b-line.a|^2
const double t = va.dot(v) / l2;
if (t < 0.0) return va.norm(); // beyond the 'a' end of the segment
else if (t > 1.0) return (point - line.b).cast<double>().norm(); // beyond the 'b' end of the segment
return (t * v - va).norm();
}
double
Line::distance_to(const Point &point) const
double Line::perp_distance_to(const Point &point) const
{
return point.distance_to(*this);
const Line &line = *this;
const Vec2d v = (line.b - line.a).cast<double>();
const Vec2d va = (point - line.a).cast<double>();
if (line.a == line.b)
return va.norm();
return std::abs(cross2(v, va)) / v.norm();
}
double
Line::atan2_() const
{
return atan2(this->b.y() - this->a.y(), this->b.x() - this->a.x());
}
double
Line::orientation() const
double Line::orientation() const
{
double angle = this->atan2_();
if (angle < 0) angle = 2*PI + angle;
return angle;
}
double
Line::direction() const
double Line::direction() const
{
double atan2 = this->atan2_();
return (fabs(atan2 - PI) < EPSILON) ? 0
@ -141,105 +74,42 @@ Line::direction() const
: atan2;
}
bool
Line::parallel_to(double angle) const {
bool Line::parallel_to(double angle) const
{
return Slic3r::Geometry::directions_parallel(this->direction(), angle);
}
bool
Line::parallel_to(const Line &line) const {
return this->parallel_to(line.direction());
}
Vector
Line::vector() const
bool Line::intersection(const Line &l2, Point *intersection) const
{
return Vector(this->b.x() - this->a.x(), this->b.y() - this->a.y());
}
Vector
Line::normal() const
{
return Vector((this->b.y() - this->a.y()), -(this->b.x() - this->a.x()));
}
void
Line::extend_end(double distance)
{
// relocate last point by extending the segment by the specified length
Line line = *this;
line.reverse();
this->b = line.point_at(-distance);
}
void
Line::extend_start(double distance)
{
// relocate first point by extending the first segment by the specified length
this->a = this->point_at(-distance);
}
bool
Line::intersection(const Line& line, Point* intersection) const
{
double denom = ((double)(line.b.y() - line.a.y())*(this->b.x() - this->a.x())) -
((double)(line.b.x() - line.a.x())*(this->b.y() - this->a.y()));
double nume_a = ((double)(line.b.x() - line.a.x())*(this->a.y() - line.a.y())) -
((double)(line.b.y() - line.a.y())*(this->a.x() - line.a.x()));
double nume_b = ((double)(this->b.x() - this->a.x())*(this->a.y() - line.a.y())) -
((double)(this->b.y() - this->a.y())*(this->a.x() - line.a.x()));
if (fabs(denom) < EPSILON) {
if (fabs(nume_a) < EPSILON && fabs(nume_b) < EPSILON) {
return false; // coincident
}
return false; // parallel
}
double ua = nume_a / denom;
double ub = nume_b / denom;
if (ua >= 0 && ua <= 1.0f && ub >= 0 && ub <= 1.0f)
{
const Line &l1 = *this;
const Vec2d v1 = (l1.b - l1.a).cast<double>();
const Vec2d v2 = (l2.b - l2.a).cast<double>();
const Vec2d v12 = (l1.a - l2.a).cast<double>();
double denom = cross2(v1, v2);
double nume_a = cross2(v2, v12);
double nume_b = cross2(v1, v12);
if (fabs(denom) < EPSILON)
#if 0
// Lines are collinear. Return true if they are coincident (overlappign).
return ! (fabs(nume_a) < EPSILON && fabs(nume_b) < EPSILON);
#else
return false;
#endif
double t1 = nume_a / denom;
double t2 = nume_b / denom;
if (t1 >= 0 && t1 <= 1.0f && t2 >= 0 && t2 <= 1.0f) {
// Get the intersection point.
intersection->x() = this->a.x() + ua*(this->b.x() - this->a.x());
intersection->y() = this->a.y() + ua*(this->b.y() - this->a.y());
(*intersection) = (l1.a.cast<double>() + t1 * v1).cast<coord_t>();
return true;
}
return false; // not intersecting
}
double
Line::ccw(const Point& point) const
{
return point.ccw(*this);
}
double Line3::length() const
{
return (b - a).norm();
}
Vector3 Line3::vector() const
{
return Vector3(b - a);
}
Pointf3 Linef3::intersect_plane(double z) const
{
Vec3d v = this->b - this->a;
auto v = (this->b - this->a).cast<double>();
double t = (z - this->a.z()) / v.z();
return Pointf3(this->a.x() + v.x() * t, this->a.y() + v.y() * t, z);
}
void
Linef3::scale(double factor)
{
this->a.scale(factor);
this->b.scale(factor);
}
}