mirror of
				https://github.com/SoftFever/OrcaSlicer.git
				synced 2025-10-30 20:21:12 -06:00 
			
		
		
		
	Removed Point::scale(),translate(),coincides_with(),distance_to(),
distance_to_squared(),perp_distance_to(),negative(),vector_to(), translate(), distance_to() etc, replaced with the Eigen equivalents.
This commit is contained in:
		
							parent
							
								
									3b89717149
								
							
						
					
					
						commit
						1ba64da3fe
					
				
					 45 changed files with 526 additions and 792 deletions
				
			
		|  | @ -68,8 +68,8 @@ BoundingBox BoundingBox::rotated(double angle, const Point ¢er) const | |||
| template <class PointClass> void | ||||
| BoundingBoxBase<PointClass>::scale(double factor) | ||||
| { | ||||
|     this->min.scale(factor); | ||||
|     this->max.scale(factor); | ||||
|     this->min *= factor; | ||||
|     this->max *= factor; | ||||
| } | ||||
| template void BoundingBoxBase<Point>::scale(double factor); | ||||
| template void BoundingBoxBase<Pointf>::scale(double factor); | ||||
|  | @ -188,8 +188,9 @@ template double BoundingBox3Base<Pointf3>::radius() const; | |||
| template <class PointClass> void | ||||
| BoundingBoxBase<PointClass>::offset(coordf_t delta) | ||||
| { | ||||
|     this->min.translate(-delta, -delta); | ||||
|     this->max.translate(delta, delta); | ||||
|     PointClass v(delta, delta); | ||||
|     this->min -= v; | ||||
|     this->max += v; | ||||
| } | ||||
| template void BoundingBoxBase<Point>::offset(coordf_t delta); | ||||
| template void BoundingBoxBase<Pointf>::offset(coordf_t delta); | ||||
|  | @ -197,8 +198,9 @@ template void BoundingBoxBase<Pointf>::offset(coordf_t delta); | |||
| template <class PointClass> void | ||||
| BoundingBox3Base<PointClass>::offset(coordf_t delta) | ||||
| { | ||||
|     this->min.translate(-delta, -delta, -delta); | ||||
|     this->max.translate(delta, delta, delta); | ||||
|     PointClass v(delta, delta, delta); | ||||
|     this->min -= v; | ||||
|     this->max += v; | ||||
| } | ||||
| template void BoundingBox3Base<Pointf3>::offset(coordf_t delta); | ||||
| 
 | ||||
|  |  | |||
|  | @ -46,8 +46,8 @@ public: | |||
|     void scale(double factor); | ||||
|     PointClass size() const; | ||||
|     double radius() const; | ||||
|     void translate(coordf_t x, coordf_t y) { assert(this->defined); this->min.translate(x, y); this->max.translate(x, y); } | ||||
|     void translate(const Pointf &pos) { this->translate(pos.x(), pos.y()); } | ||||
|     void translate(coordf_t x, coordf_t y) { assert(this->defined); PointClass v(x, y); this->min += v; this->max += v; } | ||||
|     void translate(const Pointf &v) { this->min += v; this->max += v; } | ||||
|     void offset(coordf_t delta); | ||||
|     PointClass center() const; | ||||
|     bool contains(const PointClass &point) const { | ||||
|  | @ -90,8 +90,8 @@ public: | |||
|     void merge(const BoundingBox3Base<PointClass> &bb); | ||||
|     PointClass size() const; | ||||
|     double radius() const; | ||||
|     void translate(coordf_t x, coordf_t y, coordf_t z) { this->min.translate(x, y, z); this->max.translate(x, y, z); } | ||||
|     void translate(const Pointf3 &pos) { this->translate(pos.x(), pos.y(), pos.z()); } | ||||
|     void translate(coordf_t x, coordf_t y, coordf_t z) { assert(this->defined); PointClass v(x, y, z); this->min += v; this->max += v; } | ||||
|     void translate(const Pointf3 &v) { this->min += v; this->max += v; } | ||||
|     void offset(coordf_t delta); | ||||
|     PointClass center() const; | ||||
|     coordf_t max_size() const; | ||||
|  |  | |||
|  | @ -282,10 +282,12 @@ BridgeDetector::unsupported_edges(double angle, Polylines* unsupported) const | |||
|             extrusions would be anchored within such length (i.e. a slightly non-parallel bridging | ||||
|             direction might still benefit from anchors if long enough) | ||||
|             double angle_tolerance = PI / 180.0 * 5.0; */ | ||||
|         for (Lines::const_iterator line = unsupported_lines.begin(); line != unsupported_lines.end(); ++line) { | ||||
|             if (!Slic3r::Geometry::directions_parallel(line->direction(), angle)) | ||||
|                 unsupported->push_back(*line); | ||||
|         } | ||||
|         for (const Line &line : unsupported_lines) | ||||
|             if (! Slic3r::Geometry::directions_parallel(line.direction(), angle)) { | ||||
|                 unsupported->emplace_back(Polyline()); | ||||
|                 unsupported->back().points.emplace_back(line.a); | ||||
|                 unsupported->back().points.emplace_back(line.b); | ||||
|             } | ||||
|     } | ||||
|      | ||||
|     /*
 | ||||
|  |  | |||
|  | @ -634,8 +634,8 @@ _clipper_ln(ClipperLib::ClipType clipType, const Lines &subject, const Polygons | |||
|     // convert Lines to Polylines
 | ||||
|     Polylines polylines; | ||||
|     polylines.reserve(subject.size()); | ||||
|     for (Lines::const_iterator line = subject.begin(); line != subject.end(); ++line) | ||||
|         polylines.push_back(*line); | ||||
|     for (const Line &line : subject) | ||||
|         polylines.emplace_back(Polyline(line.a, line.b)); | ||||
|      | ||||
|     // perform operation
 | ||||
|     polylines = _clipper_pl(clipType, polylines, clip, safety_offset_); | ||||
|  |  | |||
|  | @ -767,7 +767,7 @@ void EdgeGrid::Grid::calculate_sdf() | |||
| 				const Slic3r::Point &p1 = pts[ipt]; | ||||
| 				const Slic3r::Point &p2 = pts[(ipt + 1 == pts.size()) ? 0 : ipt + 1]; | ||||
| 				// Segment vector
 | ||||
| 				const Slic3r::Point v_seg = p1.vector_to(p2); | ||||
| 				const Slic3r::Point v_seg = p2 - p1; | ||||
| 				// l2 of v_seg
 | ||||
| 				const int64_t l2_seg = int64_t(v_seg.x()) * int64_t(v_seg.x()) + int64_t(v_seg.y()) * int64_t(v_seg.y()); | ||||
| 				// For each corner of this cell and its 1 ring neighbours:
 | ||||
|  | @ -781,7 +781,7 @@ void EdgeGrid::Grid::calculate_sdf() | |||
| 							continue; | ||||
| 						float  &d_min = m_signed_distance_field[corner_r * ncols + corner_c]; | ||||
| 						Slic3r::Point pt(m_bbox.min.x() + corner_c * m_resolution, m_bbox.min.y() + corner_r * m_resolution); | ||||
| 						Slic3r::Point v_pt = p1.vector_to(pt); | ||||
| 						Slic3r::Point v_pt = pt - p1; | ||||
| 						// dot(p2-p1, pt-p1)
 | ||||
| 						int64_t t_pt = int64_t(v_seg.x()) * int64_t(v_pt.x()) + int64_t(v_seg.y()) * int64_t(v_pt.y()); | ||||
| 						if (t_pt < 0) { | ||||
|  | @ -790,7 +790,7 @@ void EdgeGrid::Grid::calculate_sdf() | |||
| 							if (dabs < d_min) { | ||||
| 								// Previous point.
 | ||||
| 								const Slic3r::Point &p0 = pts[(ipt == 0) ? (pts.size() - 1) : ipt - 1]; | ||||
| 								Slic3r::Point v_seg_prev = p0.vector_to(p1); | ||||
| 								Slic3r::Point v_seg_prev = p1 - p0; | ||||
| 								int64_t t2_pt = int64_t(v_seg_prev.x()) * int64_t(v_pt.x()) + int64_t(v_seg_prev.y()) * int64_t(v_pt.y()); | ||||
| 								if (t2_pt > 0) { | ||||
| 									// Inside the wedge between the previous and the next segment.
 | ||||
|  | @ -1164,8 +1164,8 @@ bool EdgeGrid::Grid::signed_distance_edges(const Point &pt, coord_t search_radiu | |||
| 				// End points of the line segment.
 | ||||
| 				const Slic3r::Point &p1 = pts[ipt]; | ||||
| 				const Slic3r::Point &p2 = pts[(ipt + 1 == pts.size()) ? 0 : ipt + 1]; | ||||
| 				Slic3r::Point v_seg = p1.vector_to(p2); | ||||
| 				Slic3r::Point v_pt = p1.vector_to(pt); | ||||
| 				Slic3r::Point v_seg = p2 - p1; | ||||
| 				Slic3r::Point v_pt  = pt - p1; | ||||
| 				// dot(p2-p1, pt-p1)
 | ||||
| 				int64_t t_pt = int64_t(v_seg.x()) * int64_t(v_pt.x()) + int64_t(v_seg.y()) * int64_t(v_pt.y()); | ||||
| 				// l2 of seg
 | ||||
|  | @ -1176,7 +1176,7 @@ bool EdgeGrid::Grid::signed_distance_edges(const Point &pt, coord_t search_radiu | |||
| 					if (dabs < d_min) { | ||||
| 						// Previous point.
 | ||||
| 						const Slic3r::Point &p0 = pts[(ipt == 0) ? (pts.size() - 1) : ipt - 1]; | ||||
| 						Slic3r::Point v_seg_prev = p0.vector_to(p1); | ||||
| 						Slic3r::Point v_seg_prev = p1 - p0; | ||||
| 						int64_t t2_pt = int64_t(v_seg_prev.x()) * int64_t(v_pt.x()) + int64_t(v_seg_prev.y()) * int64_t(v_pt.y()); | ||||
| 						if (t2_pt > 0) { | ||||
| 							// Inside the wedge between the previous and the next segment.
 | ||||
|  |  | |||
|  | @ -34,54 +34,43 @@ ExPolygon::operator Polylines() const | |||
|     return to_polylines(*this); | ||||
| } | ||||
| 
 | ||||
| void | ||||
| ExPolygon::scale(double factor) | ||||
| void ExPolygon::scale(double factor) | ||||
| { | ||||
|     contour.scale(factor); | ||||
|     for (Polygons::iterator it = holes.begin(); it != holes.end(); ++it) { | ||||
|         (*it).scale(factor); | ||||
|     } | ||||
|     for (Polygon &hole : holes) | ||||
|         hole.scale(factor); | ||||
| } | ||||
| 
 | ||||
| void | ||||
| ExPolygon::translate(double x, double y) | ||||
| void ExPolygon::translate(double x, double y) | ||||
| { | ||||
|     contour.translate(x, y); | ||||
|     for (Polygons::iterator it = holes.begin(); it != holes.end(); ++it) { | ||||
|         (*it).translate(x, y); | ||||
|     } | ||||
|     for (Polygon &hole : holes) | ||||
|         hole.translate(x, y); | ||||
| } | ||||
| 
 | ||||
| void | ||||
| ExPolygon::rotate(double angle) | ||||
| void ExPolygon::rotate(double angle) | ||||
| { | ||||
|     contour.rotate(angle); | ||||
|     for (Polygons::iterator it = holes.begin(); it != holes.end(); ++it) { | ||||
|         (*it).rotate(angle); | ||||
|     } | ||||
|     for (Polygon &hole : holes) | ||||
|         hole.rotate(angle); | ||||
| } | ||||
| 
 | ||||
| void | ||||
| ExPolygon::rotate(double angle, const Point ¢er) | ||||
| void ExPolygon::rotate(double angle, const Point ¢er) | ||||
| { | ||||
|     contour.rotate(angle, center); | ||||
|     for (Polygons::iterator it = holes.begin(); it != holes.end(); ++it) { | ||||
|         (*it).rotate(angle, center); | ||||
|     } | ||||
|     for (Polygon &hole : holes) | ||||
|         hole.rotate(angle, center); | ||||
| } | ||||
| 
 | ||||
| double | ||||
| ExPolygon::area() const | ||||
| double ExPolygon::area() const | ||||
| { | ||||
|     double a = this->contour.area(); | ||||
|     for (Polygons::const_iterator it = this->holes.begin(); it != this->holes.end(); ++it) { | ||||
|         a -= -(*it).area();  // holes have negative area
 | ||||
|     } | ||||
|     for (const Polygon &hole : holes) | ||||
|         a -= - hole.area();  // holes have negative area
 | ||||
|     return a; | ||||
| } | ||||
| 
 | ||||
| bool | ||||
| ExPolygon::is_valid() const | ||||
| bool ExPolygon::is_valid() const | ||||
| { | ||||
|     if (!this->contour.is_valid() || !this->contour.is_counter_clockwise()) return false; | ||||
|     for (Polygons::const_iterator it = this->holes.begin(); it != this->holes.end(); ++it) { | ||||
|  | @ -90,20 +79,17 @@ ExPolygon::is_valid() const | |||
|     return true; | ||||
| } | ||||
| 
 | ||||
| bool | ||||
| ExPolygon::contains(const Line &line) const | ||||
| bool ExPolygon::contains(const Line &line) const | ||||
| { | ||||
|     return this->contains((Polyline)line); | ||||
|     return this->contains(Polyline(line.a, line.b)); | ||||
| } | ||||
| 
 | ||||
| bool | ||||
| ExPolygon::contains(const Polyline &polyline) const | ||||
| bool ExPolygon::contains(const Polyline &polyline) const | ||||
| { | ||||
|     return diff_pl((Polylines)polyline, *this).empty(); | ||||
| } | ||||
| 
 | ||||
| bool | ||||
| ExPolygon::contains(const Polylines &polylines) const | ||||
| bool ExPolygon::contains(const Polylines &polylines) const | ||||
| { | ||||
|     #if 0 | ||||
|     BoundingBox bbox = get_extents(polylines); | ||||
|  | @ -120,8 +106,7 @@ ExPolygon::contains(const Polylines &polylines) const | |||
|     return pl_out.empty(); | ||||
| } | ||||
| 
 | ||||
| bool | ||||
| ExPolygon::contains(const Point &point) const | ||||
| bool ExPolygon::contains(const Point &point) const | ||||
| { | ||||
|     if (!this->contour.contains(point)) return false; | ||||
|     for (Polygons::const_iterator it = this->holes.begin(); it != this->holes.end(); ++it) { | ||||
|  | @ -131,8 +116,7 @@ ExPolygon::contains(const Point &point) const | |||
| } | ||||
| 
 | ||||
| // inclusive version of contains() that also checks whether point is on boundaries
 | ||||
| bool | ||||
| ExPolygon::contains_b(const Point &point) const | ||||
| bool ExPolygon::contains_b(const Point &point) const | ||||
| { | ||||
|     return this->contains(point) || this->has_boundary_point(point); | ||||
| } | ||||
|  | @ -243,25 +227,24 @@ ExPolygon::medial_axis(double max_width, double min_width, ThickPolylines* polyl | |||
|         Point new_front = polyline.points.front(); | ||||
|         Point new_back  = polyline.points.back(); | ||||
|         if (polyline.endpoints.first && !this->has_boundary_point(new_front)) { | ||||
|             Line line(polyline.points.front(), polyline.points[1]); | ||||
|              | ||||
|             Vec2d p1 = polyline.points.front().cast<double>(); | ||||
|             Vec2d p2 = polyline.points[1].cast<double>(); | ||||
|             // prevent the line from touching on the other side, otherwise intersection() might return that solution
 | ||||
|             if (polyline.points.size() == 2) line.b = line.midpoint(); | ||||
|              | ||||
|             line.extend_start(max_width); | ||||
|             (void)this->contour.intersection(line, &new_front); | ||||
|             if (polyline.points.size() == 2) | ||||
|                 p2 = (p1 + p2) * 0.5; | ||||
|             // Extend the start of the segment.
 | ||||
|             p1 -= (p2 - p1).normalized() * max_width; | ||||
|             this->contour.intersection(Line(p1.cast<coord_t>(), p2.cast<coord_t>()), &new_front); | ||||
|         } | ||||
|         if (polyline.endpoints.second && !this->has_boundary_point(new_back)) { | ||||
|             Line line( | ||||
|                 *(polyline.points.end() - 2), | ||||
|                 polyline.points.back() | ||||
|             ); | ||||
|              | ||||
|             Vec2d p1 = (polyline.points.end() - 2)->cast<double>(); | ||||
|             Vec2d p2 = polyline.points.back().cast<double>(); | ||||
|             // prevent the line from touching on the other side, otherwise intersection() might return that solution
 | ||||
|             if (polyline.points.size() == 2) line.a = line.midpoint(); | ||||
|             line.extend_end(max_width); | ||||
|              | ||||
|             (void)this->contour.intersection(line, &new_back); | ||||
|             if (polyline.points.size() == 2) | ||||
|                 p1 = (p1 + p2) * 0.5; | ||||
|             // Extend the start of the segment.
 | ||||
|             p2 += (p2 - p1).normalized() * max_width; | ||||
|             this->contour.intersection(Line(p1.cast<coord_t>(), p2.cast<coord_t>()), &new_back); | ||||
|         } | ||||
|         polyline.points.front() = new_front; | ||||
|         polyline.points.back()  = new_back; | ||||
|  |  | |||
|  | @ -220,7 +220,7 @@ void ExtrusionLoop::split_at(const Point &point, bool prefer_non_overhang) | |||
|         double min_non_overhang = std::numeric_limits<double>::max(); | ||||
|         for (ExtrusionPaths::const_iterator path = this->paths.begin(); path != this->paths.end(); ++path) { | ||||
|             Point p_tmp = point.projection_onto(path->polyline); | ||||
|             double dist = point.distance_to(p_tmp); | ||||
|             double dist = (p_tmp - point).cast<double>().norm(); | ||||
|             if (dist < min) { | ||||
|                 p = p_tmp; | ||||
|                 min = dist; | ||||
|  |  | |||
|  | @ -50,10 +50,15 @@ public: | |||
|             src.clear(); | ||||
|         } | ||||
|     } | ||||
|     void append(const ExtrusionPaths &paths) {  | ||||
|     void append(const ExtrusionPaths &paths) { | ||||
|         this->entities.reserve(this->entities.size() + paths.size()); | ||||
|         for (ExtrusionPaths::const_iterator path = paths.begin(); path != paths.end(); ++path) | ||||
|             this->entities.push_back(path->clone()); | ||||
|         for (const ExtrusionPath &path : paths) | ||||
|             this->entities.emplace_back(path.clone()); | ||||
|     } | ||||
|     void append(ExtrusionPaths &&paths) { | ||||
|         this->entities.reserve(this->entities.size() + paths.size()); | ||||
|         for (ExtrusionPath &path : paths) | ||||
|             this->entities.emplace_back(new ExtrusionPath(std::move(path))); | ||||
|     } | ||||
|     void replace(size_t i, const ExtrusionEntity &entity); | ||||
|     void remove(size_t i); | ||||
|  |  | |||
|  | @ -187,7 +187,7 @@ void Fill3DHoneycomb::_fill_surface_single( | |||
|                 const Point &last_point = pts_end.back(); | ||||
|                 // TODO: we should also check that both points are on a fill_boundary to avoid 
 | ||||
|                 // connecting paths on the boundaries of internal regions
 | ||||
|                 if (first_point.distance_to(last_point) <= 1.5 * distance &&  | ||||
|                 if ((last_point - first_point).cast<double>().norm() <= 1.5 * distance &&  | ||||
|                     expolygon_off.contains(Line(last_point, first_point))) { | ||||
|                     // Append the polyline.
 | ||||
|                     pts_end.insert(pts_end.end(), it_polyline->points.begin(), it_polyline->points.end()); | ||||
|  |  | |||
|  | @ -49,7 +49,7 @@ static inline Polyline make_wave( | |||
|         point.y() = clamp(0., height, double(point.y())); | ||||
|         if (vertical) | ||||
|             std::swap(point.x(), point.y()); | ||||
|         polyline.points.emplace_back(convert_to<Point>(point * scaleFactor)); | ||||
|         polyline.points.emplace_back((point * scaleFactor).cast<coord_t>()); | ||||
|     } | ||||
| 
 | ||||
|     return polyline; | ||||
|  | @ -177,7 +177,7 @@ void FillGyroid::_fill_surface_single( | |||
|                 // TODO: we should also check that both points are on a fill_boundary to avoid 
 | ||||
|                 // connecting paths on the boundaries of internal regions
 | ||||
|                 // TODO: avoid crossing current infill path
 | ||||
|                 if (first_point.distance_to(last_point) <= 5 * distance &&  | ||||
|                 if ((last_point - first_point).cast<double>().norm() <= 5 * distance &&  | ||||
|                     expolygon_off.contains(Line(last_point, first_point))) { | ||||
|                     // Append the polyline.
 | ||||
|                     pts_end.insert(pts_end.end(), polyline.points.begin(), polyline.points.end()); | ||||
|  |  | |||
|  | @ -101,7 +101,7 @@ void FillHoneycomb::_fill_surface_single( | |||
|             for (Polylines::iterator it_path = chained.begin(); it_path != chained.end(); ++ it_path) { | ||||
|                 if (! paths.empty()) { | ||||
|                     // distance between first point of this path and last point of last path
 | ||||
|                     double distance = paths.back().last_point().distance_to(it_path->first_point()); | ||||
|                     double distance = (it_path->first_point() - paths.back().last_point()).cast<double>().norm(); | ||||
|                     if (distance <= m.hex_width) { | ||||
|                         paths.back().points.insert(paths.back().points.end(), it_path->points.begin(), it_path->points.end()); | ||||
|                         continue; | ||||
|  |  | |||
|  | @ -103,7 +103,7 @@ void FillRectilinear::_fill_surface_single( | |||
|                 const Point &first_point = it_polyline->points.front(); | ||||
|                 const Point &last_point = pts_end.back(); | ||||
|                 // Distance in X, Y.
 | ||||
|                 const Vector distance = first_point.vector_to(last_point); | ||||
|                 const Vector distance = last_point - first_point; | ||||
|                 // TODO: we should also check that both points are on a fill_boundary to avoid 
 | ||||
|                 // connecting paths on the boundaries of internal regions
 | ||||
|                 if (this->_can_connect(std::abs(distance.x()), std::abs(distance.y())) &&  | ||||
|  |  | |||
|  | @ -55,14 +55,14 @@ static inline coordf_t segment_length(const Polygon &poly, size_t seg1, const Po | |||
|     coordf_t len = 0; | ||||
|     if (seg1 <= seg2) { | ||||
|         for (size_t i = seg1; i < seg2; ++ i, pPrev = pThis) | ||||
|            len += pPrev->distance_to(*(pThis = &poly.points[i])); | ||||
|            len += (*pPrev - *(pThis = &poly.points[i])).cast<double>().norm(); | ||||
|     } else { | ||||
|         for (size_t i = seg1; i < poly.points.size(); ++ i, pPrev = pThis) | ||||
|            len += pPrev->distance_to(*(pThis = &poly.points[i])); | ||||
|            len += (*pPrev - *(pThis = &poly.points[i])).cast<double>().norm(); | ||||
|         for (size_t i = 0; i < seg2; ++ i, pPrev = pThis) | ||||
|            len += pPrev->distance_to(*(pThis = &poly.points[i])); | ||||
|            len += (*pPrev - *(pThis = &poly.points[i])).cast<double>().norm(); | ||||
|     } | ||||
|     len += pPrev->distance_to(p2); | ||||
|     len += (*pPrev - p2).cast<double>().norm(); | ||||
|     return len; | ||||
| } | ||||
| 
 | ||||
|  |  | |||
|  | @ -217,11 +217,11 @@ Point SegmentIntersection::pos() const | |||
|     const Point   &seg_start = poly.points[(this->iSegment == 0) ? poly.points.size() - 1 : this->iSegment - 1]; | ||||
|     const Point   &seg_end   = poly.points[this->iSegment]; | ||||
|     // Point, vector of the segment.
 | ||||
|     const Pointf   p1  = convert_to<Pointf>(seg_start); | ||||
|     const Pointf   v1  = convert_to<Pointf>(seg_end - seg_start); | ||||
|     const Pointf   p1(seg_start.cast<coordf_t>()); | ||||
|     const Pointf   v1((seg_end - seg_start).cast<coordf_t>()); | ||||
|     // Point, vector of this hatching line.
 | ||||
|     const Pointf   p2  = convert_to<Pointf>(line->pos); | ||||
|     const Pointf   v2  = convert_to<Pointf>(line->dir); | ||||
|     const Pointf   p2(line->pos.cast<coordf_t>()); | ||||
|     const Pointf   v2(line->dir.cast<coordf_t>()); | ||||
|     // Intersect the two rays.
 | ||||
|     double denom = v1.x() * v2.y() - v2.x() * v1.y(); | ||||
|     Point out; | ||||
|  | @ -276,13 +276,13 @@ int SegmentIntersection::ordering_along_line(const SegmentIntersection &other) c | |||
|             // other.iSegment succeeds this->iSegment
 | ||||
| 			assert(seg_end_a == seg_start_b); | ||||
| 			// Avoid calling the 128bit x 128bit multiplication below if this->line intersects the common point.
 | ||||
| 			if (cross(this->line->dir, seg_end_b - this->line->pos) == 0) | ||||
| 			if (cross2(Vec2i64(this->line->dir.cast<int64_t>()), (seg_end_b - this->line->pos).cast<int64_t>()) == 0) | ||||
| 				return 0; | ||||
|         } else if ((other.iSegment + 1) % poly_a.points.size() == this->iSegment) { | ||||
|             // this->iSegment succeeds other.iSegment
 | ||||
| 			assert(seg_start_a == seg_end_b); | ||||
| 			// Avoid calling the 128bit x 128bit multiplication below if this->line intersects the common point.
 | ||||
| 			if (cross(this->line->dir, seg_start_a - this->line->pos) == 0) | ||||
| 			if (cross2(Vec2i64(this->line->dir.cast<int64_t>()), (seg_start_a - this->line->pos).cast<int64_t>()) == 0) | ||||
| 				return 0; | ||||
|         } else { | ||||
|             // General case.
 | ||||
|  | @ -290,35 +290,35 @@ int SegmentIntersection::ordering_along_line(const SegmentIntersection &other) c | |||
|     } | ||||
| 
 | ||||
|     // First test, whether both points of one segment are completely in one half-plane of the other line.
 | ||||
|     const Point vec_b = seg_end_b - seg_start_b; | ||||
|     int side_start = signum(cross(vec_b, seg_start_a - seg_start_b)); | ||||
|     int side_end   = signum(cross(vec_b, seg_end_a   - seg_start_b)); | ||||
|     const Vec2i64 vec_b = (seg_end_b - seg_start_b).cast<int64_t>(); | ||||
|     int side_start = signum(cross2(vec_b, (seg_start_a - seg_start_b).cast<int64_t>())); | ||||
|     int side_end   = signum(cross2(vec_b, (seg_end_a   - seg_start_b).cast<int64_t>())); | ||||
|     int side       = side_start * side_end; | ||||
|     if (side > 0) | ||||
|         // This segment is completely inside one half-plane of the other line, therefore the ordering is trivial.
 | ||||
|         return signum(cross(vec_b, this->line->dir)) * side_start; | ||||
|         return signum(cross2(vec_b, this->line->dir.cast<int64_t>())) * side_start; | ||||
| 
 | ||||
|     const Point vec_a = seg_end_a - seg_start_a; | ||||
|     int side_start2 = signum(cross(vec_a, seg_start_b - seg_start_a)); | ||||
|     int side_end2   = signum(cross(vec_a, seg_end_b   - seg_start_a)); | ||||
|     const Vec2i64 vec_a = (seg_end_a - seg_start_a).cast<int64_t>(); | ||||
|     int side_start2 = signum(cross2(vec_a, (seg_start_b - seg_start_a).cast<int64_t>())); | ||||
|     int side_end2   = signum(cross2(vec_a, (seg_end_b   - seg_start_a).cast<int64_t>())); | ||||
|     int side2       = side_start2 * side_end2; | ||||
|     //if (side == 0 && side2 == 0)
 | ||||
|         // The segments share one of their end points.
 | ||||
|     if (side2 > 0) | ||||
|         // This segment is completely inside one half-plane of the other line, therefore the ordering is trivial.
 | ||||
|         return signum(cross(this->line->dir, vec_a)) * side_start2; | ||||
|         return signum(cross2(this->line->dir.cast<int64_t>(), vec_a)) * side_start2; | ||||
| 
 | ||||
|     // The two segments intersect and they are not sucessive segments of the same contour.
 | ||||
|     // Ordering of the points depends on the position of the segment intersection (left / right from this->line),
 | ||||
|     // therefore a simple test over the input segment end points is not sufficient.
 | ||||
| 
 | ||||
|     // Find the parameters of intersection of the two segmetns with this->line.
 | ||||
| 	int64_t denom1 = cross(this->line->dir, vec_a); | ||||
| 	int64_t denom2 = cross(this->line->dir, vec_b); | ||||
| 	Point   vx_a   = seg_start_a - this->line->pos; | ||||
| 	Point   vx_b   = seg_start_b - this->line->pos; | ||||
| 	int64_t t1_times_denom1 = int64_t(vx_a.x()) * int64_t(vec_a.y()) - int64_t(vx_a.y()) * int64_t(vec_a.x()); | ||||
| 	int64_t t2_times_denom2 = int64_t(vx_b.x()) * int64_t(vec_b.y()) - int64_t(vx_b.y()) * int64_t(vec_b.x()); | ||||
| 	int64_t denom1 = cross2(this->line->dir.cast<int64_t>(), vec_a); | ||||
| 	int64_t denom2 = cross2(this->line->dir.cast<int64_t>(), vec_b); | ||||
| 	Vec2i64 vx_a   = (seg_start_a - this->line->pos).cast<int64_t>(); | ||||
| 	Vec2i64 vx_b   = (seg_start_b - this->line->pos).cast<int64_t>(); | ||||
| 	int64_t t1_times_denom1 = vx_a.x() * vec_a.y() - vx_a.y() * vec_a.x(); | ||||
| 	int64_t t2_times_denom2 = vx_b.x() * vec_b.y() - vx_b.y() * vec_b.x(); | ||||
| 	assert(denom1 != 0); | ||||
|     assert(denom2 != 0); | ||||
|     return Int128::compare_rationals_filtered(t1_times_denom1, denom1, t2_times_denom2, denom2); | ||||
|  | @ -330,7 +330,7 @@ bool SegmentIntersection::operator<(const SegmentIntersection &other) const | |||
| #ifdef _DEBUG | ||||
|     Point p1 = this->pos(); | ||||
|     Point p2 = other.pos(); | ||||
|     int64_t d = dot(this->line->dir, p2 - p1); | ||||
|     int64_t d = this->line->dir.cast<int64_t>().dot((p2 - p1).cast<int64_t>()); | ||||
| #endif /* _DEBUG */ | ||||
|     int   ordering = this->ordering_along_line(other); | ||||
| #ifdef _DEBUG | ||||
|  | @ -510,7 +510,7 @@ static bool prepare_infill_hatching_segments( | |||
|         for (size_t i = 1; i < sil.intersections.size(); ++ i) { | ||||
|             Point p1 = sil.intersections[i - 1].pos(); | ||||
|             Point p2 = sil.intersections[i].pos(); | ||||
|             int64_t d = dot(sil.dir, p2 - p1); | ||||
|             int64_t d = sil.dir.cast<int64_t>().dot((p2 - p1).cast<int64_t>()); | ||||
|             assert(d >= - int64_t(SCALED_EPSILON)); | ||||
|         } | ||||
| #endif /* _DEBUG */ | ||||
|  | @ -672,14 +672,14 @@ static inline coordf_t segment_length(const Polygon &poly, size_t seg1, const Po | |||
|     coordf_t len = 0; | ||||
|     if (seg1 <= seg2) { | ||||
|         for (size_t i = seg1; i < seg2; ++ i, pPrev = pThis) | ||||
|            len += pPrev->distance_to(*(pThis = &poly.points[i])); | ||||
|            len += (*pPrev - *(pThis = &poly.points[i])).cast<double>().norm(); | ||||
|     } else { | ||||
|         for (size_t i = seg1; i < poly.points.size(); ++ i, pPrev = pThis) | ||||
|            len += pPrev->distance_to(*(pThis = &poly.points[i])); | ||||
|            len += (*pPrev - *(pThis = &poly.points[i])).cast<double>().norm(); | ||||
|         for (size_t i = 0; i < seg2; ++ i, pPrev = pThis) | ||||
|            len += pPrev->distance_to(*(pThis = &poly.points[i])); | ||||
|            len += (*pPrev - *(pThis = &poly.points[i])).cast<double>().norm(); | ||||
|     } | ||||
|     len += pPrev->distance_to(p2); | ||||
|     len += (*pPrev - p2).cast<double>().norm(); | ||||
|     return len; | ||||
| } | ||||
| 
 | ||||
|  | @ -1191,7 +1191,7 @@ static bool fill_hatching_segments_legacy( | |||
|                                 intrsctn.consumed_vertical_up :  | ||||
|                                 seg.intersections[i-1].consumed_vertical_up; | ||||
|                             if (! consumed) { | ||||
|                                 coordf_t dist2 = pointLast.distance_to(intrsctn.pos()); | ||||
|                                 coordf_t dist2 = (intrsctn.pos() - pointLast).cast<double>().norm(); | ||||
|                                 if (dist2 < dist2min) { | ||||
|                                     dist2min = dist2; | ||||
|                                     i_vline = i_vline2; | ||||
|  |  | |||
|  | @ -53,7 +53,7 @@ Polyline AvoidCrossingPerimeters::travel_to(const GCode &gcodegen, const Point & | |||
|     Polyline result = (use_external ? m_external_mp.get() : m_layer_mp.get())-> | ||||
|         shortest_path(gcodegen.last_pos() + scaled_origin, point + scaled_origin); | ||||
|     if (use_external) | ||||
|         result.translate(scaled_origin.negative()); | ||||
|         result.translate(- scaled_origin); | ||||
|     return result; | ||||
| } | ||||
| 
 | ||||
|  | @ -681,7 +681,7 @@ void GCode::_do_export(Print &print, FILE *file, GCodePreviewData *preview_data) | |||
|                 for (const ExPolygon &expoly : layer->slices.expolygons) | ||||
|                     for (const Point © : object->_shifted_copies) { | ||||
|                         islands.emplace_back(expoly.contour); | ||||
|                         islands.back().translate(copy); | ||||
|                         islands.back().translate(- copy); | ||||
|                     } | ||||
|         //FIXME Mege the islands in parallel.
 | ||||
|         m_avoid_crossing_perimeters.init_external_mp(union_ex(islands)); | ||||
|  | @ -699,7 +699,7 @@ void GCode::_do_export(Print &print, FILE *file, GCodePreviewData *preview_data) | |||
|             for (unsigned int extruder_id : print.extruders()) { | ||||
|                 const Pointf &extruder_offset = print.config.extruder_offset.get_at(extruder_id); | ||||
|                 Polygon s(outer_skirt); | ||||
|                 s.translate(-scale_(extruder_offset.x()), -scale_(extruder_offset.y())); | ||||
|                 s.translate(Point::new_scale(- extruder_offset.x(), - extruder_offset.y())); | ||||
|                 skirts.emplace_back(std::move(s)); | ||||
|             } | ||||
|             m_ooze_prevention.enable = true; | ||||
|  | @ -1547,7 +1547,7 @@ void GCode::set_origin(const Pointf &pointf) | |||
|         scale_(m_origin.x() - pointf.x()), | ||||
|         scale_(m_origin.y() - pointf.y()) | ||||
|     ); | ||||
|     m_last_pos.translate(translate); | ||||
|     m_last_pos += translate; | ||||
|     m_wipe.path.translate(translate); | ||||
|     m_origin = pointf; | ||||
| } | ||||
|  | @ -1678,8 +1678,8 @@ static Points::iterator project_point_to_polygon_and_insert(Polygon &polygon, co | |||
|             j = 0; | ||||
|         const Point &p1 = polygon.points[i]; | ||||
|         const Point &p2 = polygon.points[j]; | ||||
|         const Slic3r::Point v_seg = p1.vector_to(p2); | ||||
|         const Slic3r::Point v_pt  = p1.vector_to(pt); | ||||
|         const Slic3r::Point v_seg = p2 - p1; | ||||
|         const Slic3r::Point v_pt  = pt - p1; | ||||
|         const int64_t l2_seg = int64_t(v_seg.x()) * int64_t(v_seg.x()) + int64_t(v_seg.y()) * int64_t(v_seg.y()); | ||||
|         int64_t t_pt = int64_t(v_seg.x()) * int64_t(v_pt.x()) + int64_t(v_seg.y()) * int64_t(v_pt.y()); | ||||
|         if (t_pt < 0) { | ||||
|  | @ -1714,7 +1714,7 @@ static Points::iterator project_point_to_polygon_and_insert(Polygon &polygon, co | |||
|     } | ||||
| 
 | ||||
| 	assert(i_min != size_t(-1)); | ||||
|     if (pt_min.distance_to(polygon.points[i_min]) > eps) { | ||||
|     if ((pt_min - polygon.points[i_min]).cast<double>().norm() > eps) { | ||||
|         // Insert a new point on the segment i_min, i_min+1.
 | ||||
|         return polygon.points.insert(polygon.points.begin() + (i_min + 1), pt_min); | ||||
|     } | ||||
|  | @ -1726,8 +1726,8 @@ std::vector<float> polygon_parameter_by_length(const Polygon &polygon) | |||
|     // Parametrize the polygon by its length.
 | ||||
|     std::vector<float> lengths(polygon.points.size()+1, 0.); | ||||
|     for (size_t i = 1; i < polygon.points.size(); ++ i) | ||||
|         lengths[i] = lengths[i-1] + float(polygon.points[i].distance_to(polygon.points[i-1])); | ||||
|     lengths.back() = lengths[lengths.size()-2] + float(polygon.points.front().distance_to(polygon.points.back())); | ||||
|         lengths[i] = lengths[i-1] + (polygon.points[i] - polygon.points[i-1]).cast<float>().norm(); | ||||
|     lengths.back() = lengths[lengths.size()-2] + (polygon.points.front() - polygon.points.back()).cast<float>().norm(); | ||||
|     return lengths; | ||||
| } | ||||
| 
 | ||||
|  | @ -1775,8 +1775,8 @@ std::vector<float> polygon_angles_at_vertices(const Polygon &polygon, const std: | |||
|         const Point &p0 = polygon.points[idx_prev]; | ||||
|         const Point &p1 = polygon.points[idx_curr]; | ||||
|         const Point &p2 = polygon.points[idx_next]; | ||||
|         const Point  v1 = p0.vector_to(p1); | ||||
|         const Point  v2 = p1.vector_to(p2); | ||||
|         const Point  v1 = p1 - p0; | ||||
|         const Point  v2 = p2 - p1; | ||||
| 		int64_t dot   = int64_t(v1.x())*int64_t(v2.x()) + int64_t(v1.y())*int64_t(v2.y()); | ||||
| 		int64_t cross = int64_t(v1.x())*int64_t(v2.y()) - int64_t(v1.y())*int64_t(v2.x()); | ||||
| 		float angle = float(atan2(double(cross), double(dot))); | ||||
|  | @ -2031,19 +2031,17 @@ std::string GCode::extrude_loop(ExtrusionLoop loop, std::string description, dou | |||
|         // create the destination point along the first segment and rotate it
 | ||||
|         // we make sure we don't exceed the segment length because we don't know
 | ||||
|         // the rotation of the second segment so we might cross the object boundary
 | ||||
|         Line first_segment( | ||||
|             paths.front().polyline.points[0], | ||||
|             paths.front().polyline.points[1] | ||||
|         ); | ||||
|         double distance = std::min<double>( | ||||
|             scale_(EXTRUDER_CONFIG(nozzle_diameter)), | ||||
|             first_segment.length() | ||||
|         ); | ||||
|         Point point = first_segment.point_at(distance); | ||||
|         point.rotate(angle, first_segment.a); | ||||
|          | ||||
|         Vec2d  p1 = paths.front().polyline.points.front().cast<double>(); | ||||
|         Vec2d  p2 = paths.front().polyline.points[1].cast<double>(); | ||||
|         Vec2d  v  = p2 - p1; | ||||
|         double nd = scale_(EXTRUDER_CONFIG(nozzle_diameter)); | ||||
|         double l2 = v.squaredNorm(); | ||||
|         // Shift by no more than a nozzle diameter.
 | ||||
|         //FIXME Hiding the seams will not work nicely for very densely discretized contours!
 | ||||
|         Point  pt = ((nd * nd >= l2) ? p2 : (p1 + v * (nd / sqrt(l2)))).cast<coord_t>(); | ||||
|         pt.rotate(angle, paths.front().polyline.points.front()); | ||||
|         // generate the travel move
 | ||||
|         gcode += m_writer.travel_to_xy(this->point_to_gcode(point), "move inwards before travel"); | ||||
|         gcode += m_writer.travel_to_xy(this->point_to_gcode(pt), "move inwards before travel"); | ||||
|     } | ||||
|      | ||||
|     return gcode; | ||||
|  |  | |||
|  | @ -1042,12 +1042,12 @@ MedialAxis::validate_edge(const VD::edge_type* edge) | |||
|         calculate the distance to that endpoint instead.  */ | ||||
|      | ||||
|     coordf_t w0 = cell_r->contains_segment() | ||||
|         ? line.a.distance_to(segment_r)*2 | ||||
|         : line.a.distance_to(this->retrieve_endpoint(cell_r))*2; | ||||
|         ? segment_r.distance_to(line.a)*2 | ||||
|         : (this->retrieve_endpoint(cell_r) - line.a).cast<double>().norm()*2; | ||||
|      | ||||
|     coordf_t w1 = cell_l->contains_segment() | ||||
|         ? line.b.distance_to(segment_l)*2 | ||||
|         : line.b.distance_to(this->retrieve_endpoint(cell_l))*2; | ||||
|         ? segment_l.distance_to(line.b)*2 | ||||
|         : (this->retrieve_endpoint(cell_l) - line.b).cast<double>().norm()*2; | ||||
|      | ||||
|     if (cell_l->contains_segment() && cell_r->contains_segment()) { | ||||
|         // calculate the relative angle between the two boundary segments
 | ||||
|  |  | |||
|  | @ -7,8 +7,7 @@ | |||
| 
 | ||||
| namespace Slic3r { | ||||
| 
 | ||||
| std::string | ||||
| Line::wkt() const | ||||
| std::string Line::wkt() const | ||||
| { | ||||
|     std::ostringstream ss; | ||||
|     ss << "LINESTRING(" << this->a.x() << " " << this->a.y() << "," | ||||
|  | @ -16,124 +15,58 @@ Line::wkt() const | |||
|     return ss.str(); | ||||
| } | ||||
| 
 | ||||
| Line::operator Lines() const | ||||
| bool Line::intersection_infinite(const Line &other, Point* point) const | ||||
| { | ||||
|     Lines lines; | ||||
|     lines.push_back(*this); | ||||
|     return lines; | ||||
| } | ||||
| 
 | ||||
| Line::operator Polyline() const | ||||
| { | ||||
|     Polyline pl; | ||||
|     pl.points.push_back(this->a); | ||||
|     pl.points.push_back(this->b); | ||||
|     return pl; | ||||
| } | ||||
| 
 | ||||
| void | ||||
| Line::scale(double factor) | ||||
| { | ||||
|     this->a.scale(factor); | ||||
|     this->b.scale(factor); | ||||
| } | ||||
| 
 | ||||
| void | ||||
| Line::translate(double x, double y) | ||||
| { | ||||
|     this->a.translate(x, y); | ||||
|     this->b.translate(x, y); | ||||
| } | ||||
| 
 | ||||
| void | ||||
| Line::rotate(double angle, const Point ¢er) | ||||
| { | ||||
|     this->a.rotate(angle, center); | ||||
|     this->b.rotate(angle, center); | ||||
| } | ||||
| 
 | ||||
| void | ||||
| Line::reverse() | ||||
| { | ||||
|     std::swap(this->a, this->b); | ||||
| } | ||||
| 
 | ||||
| double | ||||
| Line::length() const | ||||
| { | ||||
|     return this->a.distance_to(this->b); | ||||
| } | ||||
| 
 | ||||
| Point | ||||
| Line::midpoint() const | ||||
| { | ||||
|     return Point((this->a.x() + this->b.x()) / 2.0, (this->a.y() + this->b.y()) / 2.0); | ||||
| } | ||||
| 
 | ||||
| void | ||||
| Line::point_at(double distance, Point* point) const | ||||
| { | ||||
|     double len = this->length(); | ||||
|     *point = this->a; | ||||
|     if (this->a.x() != this->b.x()) | ||||
|         point->x() = this->a.x() + (this->b.x() - this->a.x()) * distance / len; | ||||
|     if (this->a.y() != this->b.y()) | ||||
|         point->y() = this->a.y() + (this->b.y() - this->a.y()) * distance / len; | ||||
| } | ||||
| 
 | ||||
| Point | ||||
| Line::point_at(double distance) const | ||||
| { | ||||
|     Point p; | ||||
|     this->point_at(distance, &p); | ||||
|     return p; | ||||
| } | ||||
| 
 | ||||
| bool | ||||
| Line::intersection_infinite(const Line &other, Point* point) const | ||||
| { | ||||
|     Vector x = this->a.vector_to(other.a); | ||||
|     Vector d1 = this->vector(); | ||||
|     Vector d2 = other.vector(); | ||||
| 
 | ||||
|     double cross = d1.x() * d2.y() - d1.y() * d2.x(); | ||||
|     if (std::fabs(cross) < EPSILON) | ||||
|     Vec2d a1 = this->a.cast<double>(); | ||||
|     Vec2d a2 = other.a.cast<double>(); | ||||
|     Vec2d v12 = (other.a - this->a).cast<double>(); | ||||
|     Vec2d v1 = (this->b - this->a).cast<double>(); | ||||
|     Vec2d v2 = (other.b - other.a).cast<double>(); | ||||
|     double denom = cross2(v1, v2); | ||||
|     if (std::fabs(denom) < EPSILON) | ||||
|         return false; | ||||
| 
 | ||||
|     double t1 = (x.x() * d2.y() - x.y() * d2.x())/cross; | ||||
|     point->x() = this->a.x() + d1.x() * t1; | ||||
|     point->y() = this->a.y() + d1.y() * t1; | ||||
|     double t1 = cross2(v12, v2) / denom; | ||||
|     *point = (a1 + t1 * v1).cast<coord_t>(); | ||||
|     return true; | ||||
| } | ||||
| 
 | ||||
| bool | ||||
| Line::coincides_with(const Line &line) const | ||||
| /* distance to the closest point of line */ | ||||
| double Line::distance_to(const Point &point) const | ||||
| { | ||||
|     return this->a == line.a && this->b == line.b; | ||||
|     const Line   &line = *this; | ||||
|     const Vec2d   v  = (line.b - line.a).cast<double>(); | ||||
|     const Vec2d   va = (point  - line.a).cast<double>(); | ||||
|     const double  l2 = v.squaredNorm();  // avoid a sqrt
 | ||||
|     if (l2 == 0.0)  | ||||
|         // line.a == line.b case
 | ||||
|         return va.norm(); | ||||
|     // Consider the line extending the segment, parameterized as line.a + t (line.b - line.a).
 | ||||
|     // We find projection of this point onto the line. 
 | ||||
|     // It falls where t = [(this-line.a) . (line.b-line.a)] / |line.b-line.a|^2
 | ||||
|     const double t = va.dot(v) / l2; | ||||
|     if (t < 0.0)      return va.norm();  // beyond the 'a' end of the segment
 | ||||
|     else if (t > 1.0) return (point - line.b).cast<double>().norm();  // beyond the 'b' end of the segment
 | ||||
|     return (t * v - va).norm(); | ||||
| } | ||||
| 
 | ||||
| double | ||||
| Line::distance_to(const Point &point) const | ||||
| double Line::perp_distance_to(const Point &point) const | ||||
| { | ||||
|     return point.distance_to(*this); | ||||
|     const Line  &line = *this; | ||||
|     const Vec2d  v  = (line.b - line.a).cast<double>(); | ||||
|     const Vec2d  va = (point - line.a).cast<double>(); | ||||
|     if (line.a == line.b) | ||||
|         return va.norm(); | ||||
|     return std::abs(cross2(v, va)) / v.norm(); | ||||
| } | ||||
| 
 | ||||
| double | ||||
| Line::atan2_() const | ||||
| { | ||||
|     return atan2(this->b.y() - this->a.y(), this->b.x() - this->a.x()); | ||||
| } | ||||
| 
 | ||||
| double | ||||
| Line::orientation() const | ||||
| double Line::orientation() const | ||||
| { | ||||
|     double angle = this->atan2_(); | ||||
|     if (angle < 0) angle = 2*PI + angle; | ||||
|     return angle; | ||||
| } | ||||
| 
 | ||||
| double | ||||
| Line::direction() const | ||||
| double Line::direction() const | ||||
| { | ||||
|     double atan2 = this->atan2_(); | ||||
|     return (fabs(atan2 - PI) < EPSILON) ? 0 | ||||
|  | @ -141,105 +74,42 @@ Line::direction() const | |||
|         : atan2; | ||||
| } | ||||
| 
 | ||||
| bool | ||||
| Line::parallel_to(double angle) const { | ||||
| bool Line::parallel_to(double angle) const | ||||
| { | ||||
|     return Slic3r::Geometry::directions_parallel(this->direction(), angle); | ||||
| } | ||||
| 
 | ||||
| bool | ||||
| Line::parallel_to(const Line &line) const { | ||||
|     return this->parallel_to(line.direction()); | ||||
| } | ||||
| 
 | ||||
| Vector | ||||
| Line::vector() const | ||||
| bool Line::intersection(const Line &l2, Point *intersection) const | ||||
| { | ||||
|     return Vector(this->b.x() - this->a.x(), this->b.y() - this->a.y()); | ||||
| } | ||||
| 
 | ||||
| Vector | ||||
| Line::normal() const | ||||
| { | ||||
|     return Vector((this->b.y() - this->a.y()), -(this->b.x() - this->a.x())); | ||||
| } | ||||
| 
 | ||||
| void | ||||
| Line::extend_end(double distance) | ||||
| { | ||||
|     // relocate last point by extending the segment by the specified length
 | ||||
|     Line line = *this; | ||||
|     line.reverse(); | ||||
|     this->b = line.point_at(-distance); | ||||
| } | ||||
| 
 | ||||
| void | ||||
| Line::extend_start(double distance) | ||||
| { | ||||
|     // relocate first point by extending the first segment by the specified length
 | ||||
|     this->a = this->point_at(-distance); | ||||
| } | ||||
| 
 | ||||
| bool | ||||
| Line::intersection(const Line& line, Point* intersection) const | ||||
| { | ||||
|     double denom = ((double)(line.b.y() - line.a.y())*(this->b.x() - this->a.x())) - | ||||
|                    ((double)(line.b.x() - line.a.x())*(this->b.y() - this->a.y())); | ||||
| 
 | ||||
|     double nume_a = ((double)(line.b.x() - line.a.x())*(this->a.y() - line.a.y())) - | ||||
|                     ((double)(line.b.y() - line.a.y())*(this->a.x() - line.a.x())); | ||||
| 
 | ||||
|     double nume_b = ((double)(this->b.x() - this->a.x())*(this->a.y() - line.a.y())) - | ||||
|                     ((double)(this->b.y() - this->a.y())*(this->a.x() - line.a.x())); | ||||
|      | ||||
|     if (fabs(denom) < EPSILON) { | ||||
|         if (fabs(nume_a) < EPSILON && fabs(nume_b) < EPSILON) { | ||||
|             return false; // coincident
 | ||||
|         } | ||||
|         return false; // parallel
 | ||||
|     } | ||||
| 
 | ||||
|     double ua = nume_a / denom; | ||||
|     double ub = nume_b / denom; | ||||
| 
 | ||||
|     if (ua >= 0 && ua <= 1.0f && ub >= 0 && ub <= 1.0f) | ||||
|     { | ||||
|     const Line  &l1  = *this; | ||||
|     const Vec2d  v1  = (l1.b - l1.a).cast<double>(); | ||||
|     const Vec2d  v2  = (l2.b - l2.a).cast<double>(); | ||||
|     const Vec2d  v12 = (l1.a - l2.a).cast<double>(); | ||||
|     double       denom  = cross2(v1, v2); | ||||
|     double       nume_a = cross2(v2, v12); | ||||
|     double       nume_b = cross2(v1, v12); | ||||
|     if (fabs(denom) < EPSILON) | ||||
| #if 0 | ||||
|         // Lines are collinear. Return true if they are coincident (overlappign).
 | ||||
|         return ! (fabs(nume_a) < EPSILON && fabs(nume_b) < EPSILON); | ||||
| #else | ||||
|         return false; | ||||
| #endif | ||||
|     double t1 = nume_a / denom; | ||||
|     double t2 = nume_b / denom; | ||||
|     if (t1 >= 0 && t1 <= 1.0f && t2 >= 0 && t2 <= 1.0f) { | ||||
|         // Get the intersection point.
 | ||||
|         intersection->x() = this->a.x() + ua*(this->b.x() - this->a.x()); | ||||
|         intersection->y() = this->a.y() + ua*(this->b.y() - this->a.y()); | ||||
|         (*intersection) = (l1.a.cast<double>() + t1 * v1).cast<coord_t>(); | ||||
|         return true; | ||||
|     } | ||||
|      | ||||
|     return false;  // not intersecting
 | ||||
| } | ||||
| 
 | ||||
| double | ||||
| Line::ccw(const Point& point) const | ||||
| { | ||||
|     return point.ccw(*this); | ||||
| } | ||||
| 
 | ||||
| double Line3::length() const | ||||
| { | ||||
|     return (b - a).norm(); | ||||
| } | ||||
| 
 | ||||
| Vector3 Line3::vector() const | ||||
| { | ||||
|     return Vector3(b - a); | ||||
| } | ||||
| 
 | ||||
| Pointf3 Linef3::intersect_plane(double z) const | ||||
| { | ||||
|     Vec3d  v = this->b - this->a; | ||||
|     auto   v = (this->b - this->a).cast<double>(); | ||||
|     double t = (z - this->a.z()) / v.z(); | ||||
|     return Pointf3(this->a.x() + v.x() * t, this->a.y() + v.y() * t, z); | ||||
| } | ||||
| 
 | ||||
| void | ||||
| Linef3::scale(double factor) | ||||
| { | ||||
|     this->a.scale(factor); | ||||
|     this->b.scale(factor); | ||||
| } | ||||
| 
 | ||||
| } | ||||
|  |  | |||
|  | @ -18,77 +18,77 @@ typedef std::vector<ThickLine> ThickLines; | |||
| class Line | ||||
| { | ||||
| public: | ||||
|     Point a; | ||||
|     Point b; | ||||
|     Line() {}; | ||||
|     explicit Line(Point _a, Point _b): a(_a), b(_b) {}; | ||||
|     Line() {} | ||||
|     explicit Line(Point _a, Point _b): a(_a), b(_b) {} | ||||
|     std::string wkt() const; | ||||
|     operator Lines() const; | ||||
|     operator Polyline() const; | ||||
|     void scale(double factor); | ||||
|     void translate(double x, double y); | ||||
|     void rotate(double angle, const Point ¢er); | ||||
|     void reverse(); | ||||
|     double length() const; | ||||
|     Point midpoint() const; | ||||
|     void point_at(double distance, Point* point) const; | ||||
|     Point point_at(double distance) const; | ||||
|     bool intersection_infinite(const Line &other, Point* point) const; | ||||
|     bool coincides_with(const Line &line) const; | ||||
|     explicit operator Lines() const { Lines lines; lines.emplace_back(*this); return lines; } | ||||
|     void   scale(double factor) { this->a *= factor; this->b *= factor; } | ||||
|     void   translate(double x, double y) { Vector v(x, y); this->a += v; this->b += v; } | ||||
|     void   rotate(double angle, const Point ¢er) { this->a.rotate(angle, center); this->b.rotate(angle, center); } | ||||
|     void   reverse() { std::swap(this->a, this->b); } | ||||
|     double length() const { return (b - a).cast<double>().norm(); } | ||||
|     Point  midpoint() const { return (this->a + this->b) / 2; } | ||||
|     bool   intersection_infinite(const Line &other, Point* point) const; | ||||
|     bool   coincides_with(const Line &line) const { return this->a == line.a && this->b == line.b; } | ||||
|     double distance_to(const Point &point) const; | ||||
|     bool parallel_to(double angle) const; | ||||
|     bool parallel_to(const Line &line) const; | ||||
|     double atan2_() const; | ||||
|     double perp_distance_to(const Point &point) const; | ||||
|     bool   parallel_to(double angle) const; | ||||
|     bool   parallel_to(const Line &line) const { return this->parallel_to(line.direction()); } | ||||
|     double atan2_() const { return atan2(this->b.y() - this->a.y(), this->b.x() - this->a.x()); } | ||||
|     double orientation() const; | ||||
|     double direction() const; | ||||
|     Vector vector() const; | ||||
|     Vector normal() const; | ||||
|     void extend_end(double distance); | ||||
|     void extend_start(double distance); | ||||
|     bool intersection(const Line& line, Point* intersection) const; | ||||
|     double ccw(const Point& point) const; | ||||
|     Vector vector() const { return this->b - this->a; } | ||||
|     Vector normal() const { return Vector((this->b.y() - this->a.y()), -(this->b.x() - this->a.x())); } | ||||
|     bool   intersection(const Line& line, Point* intersection) const; | ||||
|     double ccw(const Point& point) const { return point.ccw(*this); } | ||||
| 
 | ||||
|     Point a; | ||||
|     Point b; | ||||
| }; | ||||
| 
 | ||||
| class ThickLine : public Line | ||||
| { | ||||
|     public: | ||||
|     coordf_t a_width, b_width; | ||||
|      | ||||
|     ThickLine() : a_width(0), b_width(0) {}; | ||||
|     ThickLine(Point _a, Point _b) : Line(_a, _b), a_width(0), b_width(0) {}; | ||||
| public: | ||||
|     ThickLine() : a_width(0), b_width(0) {} | ||||
|     ThickLine(Point a, Point b) : Line(a, b), a_width(0), b_width(0) {} | ||||
|     ThickLine(Point a, Point b, double wa, double wb) : Line(a, b), a_width(wa), b_width(wb) {} | ||||
| 
 | ||||
|     coordf_t a_width, b_width;     | ||||
| }; | ||||
| 
 | ||||
| class Line3 | ||||
| { | ||||
| public: | ||||
|     Point3 a; | ||||
|     Point3 b; | ||||
| 
 | ||||
|     Line3() {} | ||||
|     Line3(const Point3& _a, const Point3& _b) : a(_a), b(_b) {} | ||||
| 
 | ||||
|     double length() const; | ||||
|     Vector3 vector() const; | ||||
|     double  length() const { return (this->a - this->b).cast<double>().norm(); } | ||||
|     Vector3 vector() const { return this->b - this->a; } | ||||
| 
 | ||||
|     Point3 a; | ||||
|     Point3 b; | ||||
| }; | ||||
| 
 | ||||
| class Linef | ||||
| { | ||||
|     public: | ||||
| public: | ||||
|     Linef() {} | ||||
|     explicit Linef(Pointf _a, Pointf _b): a(_a), b(_b) {} | ||||
| 
 | ||||
|     Pointf a; | ||||
|     Pointf b; | ||||
|     Linef() {}; | ||||
|     explicit Linef(Pointf _a, Pointf _b): a(_a), b(_b) {}; | ||||
| }; | ||||
| 
 | ||||
| class Linef3 | ||||
| { | ||||
|     public: | ||||
| public: | ||||
|     Linef3() {} | ||||
|     explicit Linef3(Pointf3 _a, Pointf3 _b): a(_a), b(_b) {} | ||||
|     Pointf3 intersect_plane(double z) const; | ||||
|     void    scale(double factor) { this->a *= factor; this->b *= factor; } | ||||
| 
 | ||||
|     Pointf3 a; | ||||
|     Pointf3 b; | ||||
|     Linef3() {}; | ||||
|     explicit Linef3(Pointf3 _a, Pointf3 _b): a(_a), b(_b) {}; | ||||
|     Pointf3 intersect_plane(double z) const; | ||||
|     void scale(double factor); | ||||
| }; | ||||
| 
 | ||||
| } // namespace Slic3r
 | ||||
|  |  | |||
|  | @ -256,12 +256,10 @@ void Model::center_instances_around_point(const Pointf &point) | |||
|         for (size_t i = 0; i < o->instances.size(); ++ i) | ||||
|             bb.merge(o->instance_bounding_box(i, false)); | ||||
| 
 | ||||
|     Sizef3 size = bb.size(); | ||||
|     coordf_t shift_x = -bb.min.x() + point.x() - size.x()/2; | ||||
|     coordf_t shift_y = -bb.min.y() + point.y() - size.y()/2; | ||||
|     Pointf shift = point - 0.5 * bb.size().xy() - bb.min.xy(); | ||||
|     for (ModelObject *o : this->objects) { | ||||
|         for (ModelInstance *i : o->instances) | ||||
|             i->offset.translate(shift_x, shift_y); | ||||
|             i->offset += shift; | ||||
|         o->invalidate_bounding_box(); | ||||
|     } | ||||
| } | ||||
|  | @ -685,7 +683,7 @@ void Model::duplicate(size_t copies_num, coordf_t dist, const BoundingBoxf* bb) | |||
|         for (const ModelInstance *i : instances) { | ||||
|             for (const Pointf &pos : positions) { | ||||
|                 ModelInstance *instance = o->add_instance(*i); | ||||
|                 instance->offset.translate(pos); | ||||
|                 instance->offset += pos; | ||||
|             } | ||||
|         } | ||||
|         o->invalidate_bounding_box(); | ||||
|  | @ -1075,16 +1073,15 @@ void ModelObject::center_around_origin() | |||
|     vector.y() -= size.y()/2; | ||||
|      | ||||
|     this->translate(vector); | ||||
|     this->origin_translation.translate(vector); | ||||
|     this->origin_translation += vector; | ||||
|      | ||||
|     if (!this->instances.empty()) { | ||||
|         for (ModelInstance *i : this->instances) { | ||||
|             // apply rotation and scaling to vector as well before translating instance,
 | ||||
|             // in order to leave final position unaltered
 | ||||
|             Vectorf v = vector.negative().xy(); | ||||
|             Vectorf v = - vector.xy(); | ||||
|             v.rotate(i->rotation); | ||||
|             v.scale(i->scaling_factor); | ||||
|             i->offset.translate(v); | ||||
|             i->offset += v * i->scaling_factor; | ||||
|         } | ||||
|         this->invalidate_bounding_box(); | ||||
|     } | ||||
|  |  | |||
|  | @ -58,7 +58,7 @@ Polyline MotionPlanner::shortest_path(const Point &from, const Point &to) | |||
| { | ||||
|     // If we have an empty configuration space, return a straight move.
 | ||||
|     if (m_islands.empty()) | ||||
|         return Line(from, to); | ||||
|         return Polyline(from, to); | ||||
|      | ||||
|     // Are both points in the same island?
 | ||||
|     int island_idx_from = -1; | ||||
|  | @ -74,7 +74,7 @@ Polyline MotionPlanner::shortest_path(const Point &from, const Point &to) | |||
|             // Since both points are in the same island, is a direct move possible?
 | ||||
|             // If so, we avoid generating the visibility environment.
 | ||||
|             if (island.m_island.contains(Line(from, to))) | ||||
|                 return Line(from, to); | ||||
|                 return Polyline(from, to); | ||||
|             // Both points are inside a single island, but the straight line crosses the island boundary.
 | ||||
|             island_idx = idx; | ||||
|             break; | ||||
|  | @ -90,7 +90,7 @@ Polyline MotionPlanner::shortest_path(const Point &from, const Point &to) | |||
|     if (env.m_env.expolygons.empty()) { | ||||
|         // if this environment is empty (probably because it's too small), perform straight move
 | ||||
|         // and avoid running the algorithms on empty dataset
 | ||||
|         return Line(from, to); | ||||
|         return Polyline(from, to); | ||||
|     } | ||||
|      | ||||
|     // Now check whether points are inside the environment.
 | ||||
|  | @ -224,7 +224,7 @@ const MotionPlannerGraph& MotionPlanner::init_graph(int island_idx) | |||
|                 else | ||||
|                     v1_idx = i_v1->second; | ||||
|                 // Euclidean distance is used as weight for the graph edge
 | ||||
|                 graph->add_edge(v0_idx, v1_idx, p0.distance_to(p1)); | ||||
|                 graph->add_edge(v0_idx, v1_idx, (p1 - p0).cast<double>().norm()); | ||||
|             } | ||||
|         } | ||||
|     } | ||||
|  | @ -238,7 +238,7 @@ static inline size_t nearest_waypoint_index(const Point &start_point, const Poin | |||
|     size_t idx = size_t(-1); | ||||
|     double dmin = std::numeric_limits<double>::infinity(); | ||||
|     for (const Point &p : middle_points) { | ||||
|         double d = start_point.distance_to(p) + p.distance_to(end_point); | ||||
|         double d = (p - start_point).cast<double>().norm() + (end_point - p).cast<double>().norm(); | ||||
|         if (d < dmin) { | ||||
|             idx  = &p - middle_points.data(); | ||||
|             dmin = d; | ||||
|  |  | |||
|  | @ -11,18 +11,20 @@ MultiPoint::operator Points() const | |||
| void MultiPoint::scale(double factor) | ||||
| { | ||||
|     for (Point &pt : points) | ||||
|         pt.scale(factor); | ||||
|         pt *= factor; | ||||
| } | ||||
| 
 | ||||
| void MultiPoint::translate(double x, double y) | ||||
| { | ||||
|     Vector v(x, y); | ||||
|     for (Point &pt : points) | ||||
|         pt.translate(x, y); | ||||
|         pt += v; | ||||
| } | ||||
| 
 | ||||
| void MultiPoint::translate(const Point &vector) | ||||
| void MultiPoint::translate(const Point &v) | ||||
| { | ||||
|     this->translate(vector.x(), vector.y()); | ||||
|     for (Point &pt : points) | ||||
|         pt += v; | ||||
| } | ||||
| 
 | ||||
| void MultiPoint::rotate(double cos_angle, double sin_angle) | ||||
|  | @ -79,7 +81,7 @@ MultiPoint::find_point(const Point &point) const | |||
| bool | ||||
| MultiPoint::has_boundary_point(const Point &point) const | ||||
| { | ||||
|     double dist = point.distance_to(point.projection_onto(*this)); | ||||
|     double dist = (point.projection_onto(*this) - point).cast<double>().norm(); | ||||
|     return dist < SCALED_EPSILON; | ||||
| } | ||||
| 
 | ||||
|  | @ -137,10 +139,10 @@ bool MultiPoint::first_intersection(const Line& line, Point* intersection) const | |||
|         if (l.intersection(line, &ip)) { | ||||
|             if (! found) { | ||||
|                 found = true; | ||||
|                 dmin = ip.distance_to(line.a); | ||||
|                 dmin = (line.a - ip).cast<double>().norm(); | ||||
|                 *intersection = ip; | ||||
|             } else { | ||||
|                 double d = ip.distance_to(line.a); | ||||
|                 double d = (line.a - ip).cast<double>().norm(); | ||||
|                 if (d < dmin) { | ||||
|                     dmin = d; | ||||
|                     *intersection = ip; | ||||
|  | @ -176,7 +178,7 @@ MultiPoint::_douglas_peucker(const Points &points, const double tolerance) | |||
|     Line full(points.front(), points.back()); | ||||
|     for (Points::const_iterator it = points.begin() + 1; it != points.end(); ++it) { | ||||
|         // we use shortest distance, not perpendicular distance
 | ||||
|         double d = it->distance_to(full); | ||||
|         double d = full.distance_to(*it); | ||||
|         if (d > dmax) { | ||||
|             index = it - points.begin(); | ||||
|             dmax = d; | ||||
|  | @ -215,7 +217,7 @@ void MultiPoint3::translate(double x, double y) | |||
| 
 | ||||
| void MultiPoint3::translate(const Point& vector) | ||||
| { | ||||
|     translate(vector.x(), vector.y()); | ||||
|     this->translate(vector.x(), vector.y()); | ||||
| } | ||||
| 
 | ||||
| double MultiPoint3::length() const | ||||
|  |  | |||
|  | @ -18,10 +18,11 @@ public: | |||
|     Points points; | ||||
|      | ||||
|     operator Points() const; | ||||
|     MultiPoint() {}; | ||||
|     MultiPoint() {} | ||||
|     MultiPoint(const MultiPoint &other) : points(other.points) {} | ||||
|     MultiPoint(MultiPoint &&other) : points(std::move(other.points)) {} | ||||
|     explicit MultiPoint(const Points &_points): points(_points) {} | ||||
|     MultiPoint(std::initializer_list<Point> list) : points(list) {} | ||||
|     explicit MultiPoint(const Points &_points) : points(_points) {} | ||||
|     MultiPoint& operator=(const MultiPoint &other) { points = other.points; return *this; } | ||||
|     MultiPoint& operator=(MultiPoint &&other) { points = std::move(other.points); return *this; } | ||||
|     void scale(double factor); | ||||
|  | @ -43,9 +44,9 @@ public: | |||
|         int idx = -1; | ||||
|         if (! this->points.empty()) { | ||||
|             idx = 0; | ||||
|             double dist_min = this->points.front().distance_to(point); | ||||
|             double dist_min = (point - this->points.front()).cast<double>().norm(); | ||||
|             for (int i = 1; i < int(this->points.size()); ++ i) { | ||||
|                 double d = this->points[i].distance_to(point); | ||||
|                 double d = (this->points[i] - point).cast<double>().norm(); | ||||
|                 if (d < dist_min) { | ||||
|                     dist_min = d; | ||||
|                     idx = i; | ||||
|  |  | |||
|  | @ -366,99 +366,103 @@ ExtrusionEntityCollection PerimeterGenerator::_traverse_loops( | |||
|     return entities; | ||||
| } | ||||
| 
 | ||||
| ExtrusionEntityCollection PerimeterGenerator::_variable_width(const ThickPolylines &polylines, ExtrusionRole role, Flow flow) const | ||||
| static inline ExtrusionPaths thick_polyline_to_extrusion_paths(const ThickPolyline &thick_polyline, ExtrusionRole role, Flow &flow, const float tolerance) | ||||
| { | ||||
|     // this value determines granularity of adaptive width, as G-code does not allow
 | ||||
|     // variable extrusion within a single move; this value shall only affect the amount
 | ||||
|     // of segments, and any pruning shall be performed before we apply this tolerance
 | ||||
|     const double tolerance = scale_(0.05); | ||||
|     ExtrusionPaths paths; | ||||
|     ExtrusionPath path(role); | ||||
|     ThickLines lines = thick_polyline.thicklines(); | ||||
|      | ||||
|     ExtrusionEntityCollection coll; | ||||
|     for (const ThickPolyline &p : polylines) { | ||||
|         ExtrusionPaths paths; | ||||
|         ExtrusionPath path(role); | ||||
|         ThickLines lines = p.thicklines(); | ||||
|     for (int i = 0; i < (int)lines.size(); ++i) { | ||||
|         const ThickLine& line = lines[i]; | ||||
|          | ||||
|         for (int i = 0; i < (int)lines.size(); ++i) { | ||||
|             const ThickLine& line = lines[i]; | ||||
|              | ||||
|             const coordf_t line_len = line.length(); | ||||
|             if (line_len < SCALED_EPSILON) continue; | ||||
|              | ||||
|             double thickness_delta = fabs(line.a_width - line.b_width); | ||||
|             if (thickness_delta > tolerance) { | ||||
|                 const unsigned short segments = ceil(thickness_delta / tolerance); | ||||
|                 const coordf_t seg_len = line_len / segments; | ||||
|                 Points pp; | ||||
|                 std::vector<coordf_t> width; | ||||
|                 { | ||||
|                     pp.push_back(line.a); | ||||
|                     width.push_back(line.a_width); | ||||
|                     for (size_t j = 1; j < segments; ++j) { | ||||
|                         pp.push_back(line.point_at(j*seg_len)); | ||||
|                          | ||||
|                         coordf_t w = line.a_width + (j*seg_len) * (line.b_width-line.a_width) / line_len; | ||||
|                         width.push_back(w); | ||||
|                         width.push_back(w); | ||||
|                     } | ||||
|                     pp.push_back(line.b); | ||||
|                     width.push_back(line.b_width); | ||||
|         const coordf_t line_len = line.length(); | ||||
|         if (line_len < SCALED_EPSILON) continue; | ||||
|          | ||||
|         double thickness_delta = fabs(line.a_width - line.b_width); | ||||
|         if (thickness_delta > tolerance) { | ||||
|             const unsigned short segments = ceil(thickness_delta / tolerance); | ||||
|             const coordf_t seg_len = line_len / segments; | ||||
|             Points pp; | ||||
|             std::vector<coordf_t> width; | ||||
|             { | ||||
|                 pp.push_back(line.a); | ||||
|                 width.push_back(line.a_width); | ||||
|                 for (size_t j = 1; j < segments; ++j) { | ||||
|                     pp.push_back((line.a.cast<double>() + (line.b - line.a).cast<double>().normalized() * (j * seg_len)).cast<coord_t>()); | ||||
|                      | ||||
|                     assert(pp.size() == segments + 1); | ||||
|                     assert(width.size() == segments*2); | ||||
|                     coordf_t w = line.a_width + (j*seg_len) * (line.b_width-line.a_width) / line_len; | ||||
|                     width.push_back(w); | ||||
|                     width.push_back(w); | ||||
|                 } | ||||
|                 pp.push_back(line.b); | ||||
|                 width.push_back(line.b_width); | ||||
|                  | ||||
|                 // delete this line and insert new ones
 | ||||
|                 lines.erase(lines.begin() + i); | ||||
|                 for (size_t j = 0; j < segments; ++j) { | ||||
|                     ThickLine new_line(pp[j], pp[j+1]); | ||||
|                     new_line.a_width = width[2*j]; | ||||
|                     new_line.b_width = width[2*j+1]; | ||||
|                     lines.insert(lines.begin() + i + j, new_line); | ||||
|                 } | ||||
|                  | ||||
|                 -- i; | ||||
|                 continue; | ||||
|                 assert(pp.size() == segments + 1); | ||||
|                 assert(width.size() == segments*2); | ||||
|             } | ||||
|              | ||||
|             const double w = fmax(line.a_width, line.b_width); | ||||
|             if (path.polyline.points.empty()) { | ||||
|                 path.polyline.append(line.a); | ||||
|             // delete this line and insert new ones
 | ||||
|             lines.erase(lines.begin() + i); | ||||
|             for (size_t j = 0; j < segments; ++j) { | ||||
|                 ThickLine new_line(pp[j], pp[j+1]); | ||||
|                 new_line.a_width = width[2*j]; | ||||
|                 new_line.b_width = width[2*j+1]; | ||||
|                 lines.insert(lines.begin() + i + j, new_line); | ||||
|             } | ||||
|              | ||||
|             -- i; | ||||
|             continue; | ||||
|         } | ||||
|          | ||||
|         const double w = fmax(line.a_width, line.b_width); | ||||
|         if (path.polyline.points.empty()) { | ||||
|             path.polyline.append(line.a); | ||||
|             path.polyline.append(line.b); | ||||
|             // Convert from spacing to extrusion width based on the extrusion model
 | ||||
|             // of a square extrusion ended with semi circles.
 | ||||
|             flow.width = unscale(w) + flow.height * (1. - 0.25 * PI); | ||||
|             #ifdef SLIC3R_DEBUG | ||||
|             printf("  filling %f gap\n", flow.width); | ||||
|             #endif | ||||
|             path.mm3_per_mm  = flow.mm3_per_mm(); | ||||
|             path.width       = flow.width; | ||||
|             path.height      = flow.height; | ||||
|         } else { | ||||
|             thickness_delta = fabs(scale_(flow.width) - w); | ||||
|             if (thickness_delta <= tolerance) { | ||||
|                 // the width difference between this line and the current flow width is 
 | ||||
|                 // within the accepted tolerance
 | ||||
|                 path.polyline.append(line.b); | ||||
|                 // Convert from spacing to extrusion width based on the extrusion model
 | ||||
|                 // of a square extrusion ended with semi circles.
 | ||||
|                 flow.width = unscale(w) + flow.height * (1. - 0.25 * PI); | ||||
|                 #ifdef SLIC3R_DEBUG | ||||
|                 printf("  filling %f gap\n", flow.width); | ||||
|                 #endif | ||||
|                 path.mm3_per_mm  = flow.mm3_per_mm(); | ||||
|                 path.width       = flow.width; | ||||
|                 path.height      = flow.height; | ||||
|             } else { | ||||
|                 thickness_delta = fabs(scale_(flow.width) - w); | ||||
|                 if (thickness_delta <= tolerance) { | ||||
|                     // the width difference between this line and the current flow width is 
 | ||||
|                     // within the accepted tolerance
 | ||||
|                     path.polyline.append(line.b); | ||||
|                 } else { | ||||
|                     // we need to initialize a new line
 | ||||
|                     paths.emplace_back(std::move(path)); | ||||
|                     path = ExtrusionPath(role); | ||||
|                     -- i; | ||||
|                 } | ||||
|                 // we need to initialize a new line
 | ||||
|                 paths.emplace_back(std::move(path)); | ||||
|                 path = ExtrusionPath(role); | ||||
|                 -- i; | ||||
|             } | ||||
|         } | ||||
|         if (path.polyline.is_valid()) | ||||
|             paths.emplace_back(std::move(path));         | ||||
|     } | ||||
|     if (path.polyline.is_valid()) | ||||
|         paths.emplace_back(std::move(path)); | ||||
|     return paths; | ||||
| } | ||||
| 
 | ||||
| ExtrusionEntityCollection PerimeterGenerator::_variable_width(const ThickPolylines &polylines, ExtrusionRole role, Flow flow) const | ||||
| { | ||||
|     // This value determines granularity of adaptive width, as G-code does not allow
 | ||||
|     // variable extrusion within a single move; this value shall only affect the amount
 | ||||
|     // of segments, and any pruning shall be performed before we apply this tolerance.
 | ||||
|     ExtrusionEntityCollection coll; | ||||
|     const double tolerance = scale_(0.05); | ||||
|     for (const ThickPolyline &p : polylines) { | ||||
|         ExtrusionPaths paths = thick_polyline_to_extrusion_paths(p, role, flow, tolerance); | ||||
|         // Append paths to collection.
 | ||||
|         if (! paths.empty()) { | ||||
|             if (paths.front().first_point() == paths.back().last_point()) | ||||
|                 coll.append(ExtrusionLoop(paths)); | ||||
|                 coll.append(ExtrusionLoop(std::move(paths))); | ||||
|             else | ||||
|                 coll.append(paths); | ||||
|                 coll.append(std::move(paths)); | ||||
|         } | ||||
|     } | ||||
|      | ||||
|     return coll; | ||||
| } | ||||
| 
 | ||||
|  |  | |||
|  | @ -98,38 +98,6 @@ bool Point::nearest_point(const Points &points, Point* point) const | |||
|     return true; | ||||
| } | ||||
| 
 | ||||
| /* distance to the closest point of line */ | ||||
| double Point::distance_to(const Line &line) const | ||||
| { | ||||
|     const double dx = line.b.x() - line.a.x(); | ||||
|     const double dy = line.b.y() - line.a.y(); | ||||
|      | ||||
|     const double l2 = dx*dx + dy*dy;  // avoid a sqrt
 | ||||
|     if (l2 == 0.0) return this->distance_to(line.a);   // line.a == line.b case
 | ||||
|      | ||||
|     // Consider the line extending the segment, parameterized as line.a + t (line.b - line.a).
 | ||||
|     // We find projection of this point onto the line. 
 | ||||
|     // It falls where t = [(this-line.a) . (line.b-line.a)] / |line.b-line.a|^2
 | ||||
|     const double t = ((this->x() - line.a.x()) * dx + (this->y() - line.a.y()) * dy) / l2; | ||||
|     if (t < 0.0)      return this->distance_to(line.a);  // beyond the 'a' end of the segment
 | ||||
|     else if (t > 1.0) return this->distance_to(line.b);  // beyond the 'b' end of the segment
 | ||||
|     Point projection( | ||||
|         line.a.x() + t * dx, | ||||
|         line.a.y() + t * dy | ||||
|     ); | ||||
|     return this->distance_to(projection); | ||||
| } | ||||
| 
 | ||||
| double Point::perp_distance_to(const Line &line) const | ||||
| { | ||||
|     if (line.a == line.b) return this->distance_to(line.a); | ||||
|      | ||||
|     double n = (double)(line.b.x() - line.a.x()) * (double)(line.a.y() - this->y()) | ||||
|         - (double)(line.a.x() - this->x()) * (double)(line.b.y() - line.a.y()); | ||||
|      | ||||
|     return std::abs(n) / line.length(); | ||||
| } | ||||
| 
 | ||||
| /* Three points are a counter-clockwise turn if ccw > 0, clockwise if
 | ||||
|  * ccw < 0, and collinear if ccw = 0 because ccw is a determinant that | ||||
|  * gives the signed area of the triangle formed by p1, p2 and this point. | ||||
|  | @ -161,14 +129,14 @@ double Point::ccw_angle(const Point &p1, const Point &p2) const | |||
| Point Point::projection_onto(const MultiPoint &poly) const | ||||
| { | ||||
|     Point running_projection = poly.first_point(); | ||||
|     double running_min = this->distance_to(running_projection); | ||||
|     double running_min = (running_projection - *this).cast<double>().norm(); | ||||
|      | ||||
|     Lines lines = poly.lines(); | ||||
|     for (Lines::const_iterator line = lines.begin(); line != lines.end(); ++line) { | ||||
|         Point point_temp = this->projection_onto(*line); | ||||
|         if (this->distance_to(point_temp) < running_min) { | ||||
|         if ((point_temp - *this).cast<double>().norm() < running_min) { | ||||
| 	        running_projection = point_temp; | ||||
| 	        running_min = this->distance_to(running_projection); | ||||
| 	        running_min = (running_projection - *this).cast<double>().norm(); | ||||
|         } | ||||
|     } | ||||
|     return running_projection; | ||||
|  | @ -193,14 +161,10 @@ Point Point::projection_onto(const Line &line) const | |||
|           / ( sqr<double>(lx) + sqr<double>(ly) ); | ||||
|      | ||||
|     if (0.0 <= theta && theta <= 1.0) | ||||
|         return theta * line.a + (1.0-theta) * line.b; | ||||
|         return (theta * line.a.cast<coordf_t>() + (1.0-theta) * line.b.cast<coordf_t>()).cast<coord_t>(); | ||||
|      | ||||
|     // Else pick closest endpoint.
 | ||||
|     if (this->distance_to(line.a) < this->distance_to(line.b)) { | ||||
|         return line.a; | ||||
|     } else { | ||||
|         return line.b; | ||||
|     } | ||||
|     return ((line.a - *this).cast<double>().squaredNorm() < (line.b - *this).cast<double>().squaredNorm()) ? line.a : line.b; | ||||
| } | ||||
| 
 | ||||
| std::ostream& operator<<(std::ostream &stm, const Pointf &pointf) | ||||
|  |  | |||
|  | @ -35,6 +35,8 @@ typedef std::vector<Pointf3> Pointf3s; | |||
| // Vector types with a fixed point coordinate base type.
 | ||||
| typedef Eigen::Matrix<coord_t,  2, 1, Eigen::DontAlign> Vec2crd; | ||||
| typedef Eigen::Matrix<coord_t,  3, 1, Eigen::DontAlign> Vec3crd; | ||||
| typedef Eigen::Matrix<int64_t,  2, 1, Eigen::DontAlign> Vec2i64; | ||||
| typedef Eigen::Matrix<int64_t,  3, 1, Eigen::DontAlign> Vec3i64; | ||||
| 
 | ||||
| // Vector types with a double coordinate base type.
 | ||||
| typedef Eigen::Matrix<float,    2, 1, Eigen::DontAlign> Vec2f; | ||||
|  | @ -47,6 +49,11 @@ typedef Eigen::Transform<double, 2, Eigen::Affine, Eigen::DontAlign> Transform2d | |||
| typedef Eigen::Transform<float,  3, Eigen::Affine, Eigen::DontAlign> Transform3f; | ||||
| typedef Eigen::Transform<double, 3, Eigen::Affine, Eigen::DontAlign> Transform3d; | ||||
| 
 | ||||
| inline int64_t cross2(const Vec2i64 &v1, const Vec2i64 &v2) { return v1.x() * v2.y() - v1.y() * v2.x(); } | ||||
| inline coord_t cross2(const Vec2crd &v1, const Vec2crd &v2) { return v1.x() * v2.y() - v1.y() * v2.x(); } | ||||
| inline float   cross2(const Vec2f   &v1, const Vec2f   &v2) { return v1.x() * v2.y() - v1.y() * v2.x(); } | ||||
| inline double  cross2(const Vec2d   &v1, const Vec2d   &v2) { return v1.x() * v2.y() - v1.y() * v2.x(); } | ||||
| 
 | ||||
| class Point : public Vec2crd | ||||
| { | ||||
| public: | ||||
|  | @ -66,7 +73,7 @@ public: | |||
|     template<typename OtherDerived> | ||||
|     Point& operator=(const Eigen::MatrixBase<OtherDerived> &other) | ||||
|     { | ||||
|         this->Point::operator=(other); | ||||
|         this->Vec2crd::operator=(other); | ||||
|         return *this; | ||||
|     } | ||||
| 
 | ||||
|  | @ -81,51 +88,33 @@ public: | |||
| 
 | ||||
|     Point& operator+=(const Point& rhs) { this->x() += rhs.x(); this->y() += rhs.y(); return *this; } | ||||
|     Point& operator-=(const Point& rhs) { this->x() -= rhs.x(); this->y() -= rhs.y(); return *this; } | ||||
|     Point& operator*=(const coord_t& rhs) { this->x() *= rhs; this->y() *= rhs;   return *this; } | ||||
|     Point& operator*=(const double &rhs) { this->x() *= rhs; this->y() *= rhs;   return *this; } | ||||
| 
 | ||||
|     std::string wkt() const; | ||||
|     std::string dump_perl() const; | ||||
|     void   scale(double factor) { *this *= factor; } | ||||
|     void   translate(double x, double y) { *this += Vector(x, y); } | ||||
|     void   translate(const Vector &vector) { *this += vector; } | ||||
|     void   rotate(double angle); | ||||
|     void   rotate(double angle, const Point ¢er); | ||||
|     Point  rotated(double angle) const { Point res(*this); res.rotate(angle); return res; } | ||||
|     Point  rotated(double angle, const Point ¢er) const { Point res(*this); res.rotate(angle, center); return res; } | ||||
|     bool   coincides_with(const Point &rhs) const { return *this == rhs; } | ||||
|     bool   coincides_with_epsilon(const Point &point) const; | ||||
|     int    nearest_point_index(const Points &points) const; | ||||
|     int    nearest_point_index(const PointConstPtrs &points) const; | ||||
|     int    nearest_point_index(const PointPtrs &points) const; | ||||
|     bool   nearest_point(const Points &points, Point* point) const; | ||||
|     double distance_to(const Point &point) const { return (point - *this).norm(); } | ||||
|     double distance_to_sq(const Point &point) const { return (point - *this).squaredNorm(); } | ||||
|     double distance_to(const Line &line) const; | ||||
|     double perp_distance_to(const Line &line) const; | ||||
|     double ccw(const Point &p1, const Point &p2) const; | ||||
|     double ccw(const Line &line) const; | ||||
|     double ccw_angle(const Point &p1, const Point &p2) const; | ||||
|     Point  projection_onto(const MultiPoint &poly) const; | ||||
|     Point  projection_onto(const Line &line) const; | ||||
|     Point  negative() const { return Point(- *this); } | ||||
|     Vector vector_to(const Point &point) const { return Vector(point - *this); } | ||||
| }; | ||||
| 
 | ||||
| inline Point operator+(const Point& point1, const Point& point2) { return Point(point1.x() + point2.x(), point1.y() + point2.y()); } | ||||
| inline Point operator-(const Point& point1, const Point& point2) { return Point(point1.x() - point2.x(), point1.y() - point2.y()); } | ||||
| inline Point operator*(double scalar, const Point& point2) { return Point(scalar * point2.x(), scalar * point2.y()); } | ||||
| inline int64_t cross(const Point &v1, const Point &v2) { return int64_t(v1.x()) * int64_t(v2.y()) - int64_t(v1.y()) * int64_t(v2.x()); } | ||||
| inline int64_t dot(const Point &v1, const Point &v2) { return int64_t(v1.x()) * int64_t(v2.x()) + int64_t(v1.y()) * int64_t(v2.y()); } | ||||
| 
 | ||||
| namespace int128 { | ||||
| 
 | ||||
| // Exact orientation predicate,
 | ||||
| // returns +1: CCW, 0: collinear, -1: CW.
 | ||||
| int orient(const Point &p1, const Point &p2, const Point &p3); | ||||
| 
 | ||||
| // Exact orientation predicate,
 | ||||
| // returns +1: CCW, 0: collinear, -1: CW.
 | ||||
| int cross(const Point &v1, const Slic3r::Point &v2); | ||||
|     // Exact orientation predicate,
 | ||||
|     // returns +1: CCW, 0: collinear, -1: CW.
 | ||||
|     int orient(const Point &p1, const Point &p2, const Point &p3); | ||||
|     // Exact orientation predicate,
 | ||||
|     // returns +1: CCW, 0: collinear, -1: CW.
 | ||||
|     int cross(const Point &v1, const Slic3r::Point &v2); | ||||
| } | ||||
| 
 | ||||
| // To be used by std::unordered_map, std::unordered_multimap and friends.
 | ||||
|  | @ -204,7 +193,7 @@ public: | |||
|                     const ValueType &value = it->second; | ||||
|                     const Point *pt2 = m_point_accessor(value); | ||||
|                     if (pt2 != nullptr) { | ||||
|                         const double d2 = pt.distance_to_sq(*pt2); | ||||
|                         const double d2 = (pt - *pt2).squaredNorm(); | ||||
|                         if (d2 < dist_min) { | ||||
|                             dist_min = d2; | ||||
|                             value_min = &value; | ||||
|  | @ -243,7 +232,7 @@ public: | |||
|     template<typename OtherDerived> | ||||
|     Point3& operator=(const Eigen::MatrixBase<OtherDerived> &other) | ||||
|     { | ||||
|         this->Point3::operator=(other); | ||||
|         this->Vec3crd::operator=(other); | ||||
|         return *this; | ||||
|     } | ||||
| 
 | ||||
|  | @ -268,7 +257,6 @@ public: | |||
|     typedef coordf_t coord_type; | ||||
| 
 | ||||
|     explicit Pointf() { (*this)(0) = (*this)(1) = 0.; } | ||||
| //    explicit Pointf(double  x, double  y) { (*this)(0) = x; (*this)(1) = y; }
 | ||||
|     explicit Pointf(coordf_t x, coordf_t y) { (*this)(0) = x; (*this)(1) = y; } | ||||
|     // This constructor allows you to construct Pointf from Eigen expressions
 | ||||
|     template<typename OtherDerived> | ||||
|  | @ -280,7 +268,7 @@ public: | |||
|     template<typename OtherDerived> | ||||
|     Pointf& operator=(const Eigen::MatrixBase<OtherDerived> &other) | ||||
|     { | ||||
|         this->Pointf::operator=(other); | ||||
|         this->Vec2d::operator=(other); | ||||
|         return *this; | ||||
|     } | ||||
| 
 | ||||
|  | @ -291,13 +279,8 @@ public: | |||
| 
 | ||||
|     std::string wkt() const; | ||||
|     std::string dump_perl() const; | ||||
|     void    scale(double factor) { *this *= factor; } | ||||
|     void    translate(double x, double y) { *this += Vec2d(x, y); } | ||||
|     void    translate(const Vectorf &vector) { *this += vector; } | ||||
|     void    rotate(double angle); | ||||
|     void    rotate(double angle, const Pointf ¢er); | ||||
|     Pointf  negative() const { return Pointf(- *this); } | ||||
|     Vectorf vector_to(const Pointf &point) const { return point - *this; } | ||||
|     Pointf& operator+=(const Pointf& rhs) { this->x() += rhs.x(); this->y() += rhs.y(); return *this; } | ||||
|     Pointf& operator-=(const Pointf& rhs) { this->x() -= rhs.x(); this->y() -= rhs.y(); return *this; } | ||||
|     Pointf& operator*=(const coordf_t& rhs) { this->x() *= rhs; this->y() *= rhs;   return *this; } | ||||
|  | @ -307,21 +290,6 @@ public: | |||
|     bool operator< (const Pointf& rhs) const { return this->x() < rhs.x() || (this->x() == rhs.x() && this->y() < rhs.y()); } | ||||
| }; | ||||
| 
 | ||||
| inline Pointf operator+(const Pointf& point1, const Pointf& point2) { return Pointf(point1.x() + point2.x(), point1.y() + point2.y()); } | ||||
| inline Pointf operator-(const Pointf& point1, const Pointf& point2) { return Pointf(point1.x() - point2.x(), point1.y() - point2.y()); } | ||||
| inline Pointf operator*(double scalar, const Pointf& point2) { return Pointf(scalar * point2.x(), scalar * point2.y()); } | ||||
| inline Pointf operator*(const Pointf& point2, double scalar) { return Pointf(scalar * point2.x(), scalar * point2.y()); } | ||||
| inline coordf_t cross(const Pointf &v1, const Pointf &v2) { return v1.x() * v2.y() - v1.y() * v2.x(); } | ||||
| inline coordf_t dot(const Pointf &v1, const Pointf &v2) { return v1.x() * v2.x() + v1.y() * v2.y(); } | ||||
| inline coordf_t dot(const Pointf &v) { return v.x() * v.x() + v.y() * v.y(); } | ||||
| inline double length(const Vectorf &v) { return sqrt(dot(v)); } | ||||
| inline double l2(const Vectorf &v) { return dot(v); } | ||||
| inline Vectorf normalize(const Vectorf& v) | ||||
| { | ||||
|     coordf_t len = ::sqrt(sqr(v.x()) + sqr(v.y())); | ||||
|     return (len != 0.0) ? 1.0 / len * v : Vectorf(0.0, 0.0); | ||||
| } | ||||
| 
 | ||||
| class Pointf3 : public Vec3d | ||||
| { | ||||
| public: | ||||
|  | @ -340,7 +308,7 @@ public: | |||
|     template<typename OtherDerived> | ||||
|     Pointf3& operator=(const Eigen::MatrixBase<OtherDerived> &other) | ||||
|     { | ||||
|         this->Pointf3::operator=(other); | ||||
|         this->Vec3d::operator=(other); | ||||
|         return *this; | ||||
|     } | ||||
| 
 | ||||
|  | @ -351,40 +319,12 @@ public: | |||
|     const coordf_t& z() const { return (*this)(2); } | ||||
|     coordf_t&       z()       { return (*this)(2); } | ||||
| 
 | ||||
|     void     scale(double factor) { *this *= factor; } | ||||
|     void     translate(const Vectorf3 &vector) { *this += vector; } | ||||
|     void     translate(double x, double y, double z) { *this += Vec3d(x, y, z); } | ||||
|     double   distance_to(const Pointf3 &point) const { return (point - *this).norm(); } | ||||
|     Pointf3  negative() const { return Pointf3(- *this); } | ||||
|     Vectorf3 vector_to(const Pointf3 &point) const { return point - *this; } | ||||
| 
 | ||||
|     bool operator==(const Pointf3 &rhs) const { return this->x() == rhs.x() && this->y() == rhs.y() && this->z() == rhs.z(); } | ||||
|     bool operator!=(const Pointf3 &rhs) const { return ! (*this == rhs); } | ||||
| 
 | ||||
|     Pointf xy() const { return Pointf(this->x(), this->y()); } | ||||
| }; | ||||
| 
 | ||||
| inline Pointf3 operator+(const Pointf3& p1, const Pointf3& p2) { return Pointf3(p1.x() + p2.x(), p1.y() + p2.y(), p1.z() + p2.z()); } | ||||
| inline Pointf3 operator-(const Pointf3& p1, const Pointf3& p2) { return Pointf3(p1.x() - p2.x(), p1.y() - p2.y(), p1.z() - p2.z()); } | ||||
| inline Pointf3 operator-(const Pointf3& p) { return Pointf3(-p.x(), -p.y(), -p.z()); } | ||||
| inline Pointf3 operator*(double scalar, const Pointf3& p) { return Pointf3(scalar * p.x(), scalar * p.y(), scalar * p.z()); } | ||||
| inline Pointf3 operator*(const Pointf3& p, double scalar) { return Pointf3(scalar * p.x(), scalar * p.y(), scalar * p.z()); } | ||||
| inline Pointf3 cross(const Pointf3& v1, const Pointf3& v2) { return Pointf3(v1.y() * v2.z() - v1.z() * v2.y(), v1.z() * v2.x() - v1.x() * v2.z(), v1.x() * v2.y() - v1.y() * v2.x()); } | ||||
| inline coordf_t dot(const Pointf3& v1, const Pointf3& v2) { return v1.x() * v2.x() + v1.y() * v2.y() + v1.z() * v2.z(); } | ||||
| inline coordf_t dot(const Pointf3& v) { return v.x() * v.x() + v.y() * v.y() + v.z() * v.z(); } | ||||
| inline double length(const Vectorf3 &v) { return sqrt(dot(v)); } | ||||
| inline double l2(const Vectorf3 &v) { return dot(v); } | ||||
| inline Pointf3 normalize(const Pointf3& v) | ||||
| { | ||||
|     coordf_t len = ::sqrt(sqr(v.x()) + sqr(v.y()) + sqr(v.z())); | ||||
|     return (len != 0.0) ? 1.0 / len * v : Pointf3(0.0, 0.0, 0.0); | ||||
| } | ||||
| 
 | ||||
| template<typename TO> inline TO convert_to(const Point &src) { return TO(typename TO::coord_type(src.x()), typename TO::coord_type(src.y())); } | ||||
| template<typename TO> inline TO convert_to(const Pointf &src) { return TO(typename TO::coord_type(src.x()), typename TO::coord_type(src.y())); } | ||||
| template<typename TO> inline TO convert_to(const Point3 &src) { return TO(typename TO::coord_type(src.x()), typename TO::coord_type(src.y()), typename TO::coord_type(src.z())); } | ||||
| template<typename TO> inline TO convert_to(const Pointf3 &src) { return TO(typename TO::coord_type(src.x()), typename TO::coord_type(src.y()), typename TO::coord_type(src.z())); } | ||||
| 
 | ||||
| } // namespace Slic3r
 | ||||
| 
 | ||||
| // start Boost
 | ||||
|  |  | |||
|  | @ -300,24 +300,24 @@ Point Polygon::point_projection(const Point &point) const | |||
|         for (size_t i = 0; i < this->points.size(); ++ i) { | ||||
|             const Point &pt0 = this->points[i]; | ||||
|             const Point &pt1 = this->points[(i + 1 == this->points.size()) ? 0 : i + 1]; | ||||
|             double d = pt0.distance_to(point); | ||||
|             double d = (point - pt0).cast<double>().norm(); | ||||
|             if (d < dmin) { | ||||
|                 dmin = d; | ||||
|                 proj = pt0; | ||||
|             } | ||||
|             d = pt1.distance_to(point); | ||||
|             d = (point - pt1).cast<double>().norm(); | ||||
|             if (d < dmin) { | ||||
|                 dmin = d; | ||||
|                 proj = pt1; | ||||
|             } | ||||
|             Pointf v1(coordf_t(pt1.x() - pt0.x()), coordf_t(pt1.y() - pt0.y())); | ||||
|             coordf_t div = dot(v1); | ||||
|             coordf_t div = v1.squaredNorm(); | ||||
|             if (div > 0.) { | ||||
|                 Pointf v2(coordf_t(point.x() - pt0.x()), coordf_t(point.y() - pt0.y())); | ||||
|                 coordf_t t = dot(v1, v2) / div; | ||||
|                 coordf_t t = v1.dot(v2) / div; | ||||
|                 if (t > 0. && t < 1.) { | ||||
|                     Point foot(coord_t(floor(coordf_t(pt0.x()) + t * v1.x() + 0.5)), coord_t(floor(coordf_t(pt0.y()) + t * v1.y() + 0.5))); | ||||
|                     d = foot.distance_to(point); | ||||
|                     d = (point - foot).cast<double>().norm(); | ||||
|                     if (d < dmin) { | ||||
|                         dmin = d; | ||||
|                         proj = foot; | ||||
|  |  | |||
|  | @ -52,92 +52,82 @@ Polyline::lines() const | |||
| } | ||||
| 
 | ||||
| // removes the given distance from the end of the polyline
 | ||||
| void | ||||
| Polyline::clip_end(double distance) | ||||
| void Polyline::clip_end(double distance) | ||||
| { | ||||
|     while (distance > 0) { | ||||
|         Point last_point = this->last_point(); | ||||
|         Vec2d  last_point = this->last_point().cast<double>(); | ||||
|         this->points.pop_back(); | ||||
|         if (this->points.empty()) break; | ||||
|          | ||||
|         double last_segment_length = last_point.distance_to(this->last_point()); | ||||
|         if (last_segment_length <= distance) { | ||||
|             distance -= last_segment_length; | ||||
|             continue; | ||||
|         if (this->points.empty()) | ||||
|             break; | ||||
|         Vec2d  v    = this->last_point().cast<double>() - last_point; | ||||
|         double lsqr = v.squaredNorm(); | ||||
|         if (lsqr > distance * distance) { | ||||
|             this->points.emplace_back((last_point + v * (distance / sqrt(lsqr))).cast<coord_t>()); | ||||
|             return; | ||||
|         } | ||||
|          | ||||
|         Line segment(last_point, this->last_point()); | ||||
|         this->points.push_back(segment.point_at(distance)); | ||||
|         distance = 0; | ||||
|         distance -= sqrt(lsqr); | ||||
|     } | ||||
| } | ||||
| 
 | ||||
| // removes the given distance from the start of the polyline
 | ||||
| void | ||||
| Polyline::clip_start(double distance) | ||||
| void Polyline::clip_start(double distance) | ||||
| { | ||||
|     this->reverse(); | ||||
|     this->clip_end(distance); | ||||
|     if (this->points.size() >= 2) this->reverse(); | ||||
|     if (this->points.size() >= 2) | ||||
|         this->reverse(); | ||||
| } | ||||
| 
 | ||||
| void | ||||
| Polyline::extend_end(double distance) | ||||
| void Polyline::extend_end(double distance) | ||||
| { | ||||
|     // relocate last point by extending the last segment by the specified length
 | ||||
|     Line line( | ||||
|         this->points.back(), | ||||
|         *(this->points.end() - 2) | ||||
|     ); | ||||
|     this->points.back() = line.point_at(-distance); | ||||
|     Vec2d v = (this->points.back() - *(this->points.end() - 2)).cast<double>().normalized(); | ||||
|     this->points.back() += (v * distance).cast<coord_t>(); | ||||
| } | ||||
| 
 | ||||
| void | ||||
| Polyline::extend_start(double distance) | ||||
| void Polyline::extend_start(double distance) | ||||
| { | ||||
|     // relocate first point by extending the first segment by the specified length
 | ||||
|     this->points.front() = Line(this->points.front(), this->points[1]).point_at(-distance); | ||||
|     Vec2d v = (this->points.front() - this->points[1]).cast<double>().normalized(); | ||||
|     this->points.front() += (v * distance).cast<coord_t>(); | ||||
| } | ||||
| 
 | ||||
| /* this method returns a collection of points picked on the polygon contour
 | ||||
|    so that they are evenly spaced according to the input distance */ | ||||
| Points | ||||
| Polyline::equally_spaced_points(double distance) const | ||||
| Points Polyline::equally_spaced_points(double distance) const | ||||
| { | ||||
|     Points points; | ||||
|     points.push_back(this->first_point()); | ||||
|     points.emplace_back(this->first_point()); | ||||
|     double len = 0; | ||||
|      | ||||
|     for (Points::const_iterator it = this->points.begin() + 1; it != this->points.end(); ++it) { | ||||
|         double segment_length = it->distance_to(*(it-1)); | ||||
|         Vec2d  p1 = (it-1)->cast<double>(); | ||||
|         Vec2d  v  = it->cast<double>() - p1; | ||||
|         double segment_length = v.norm(); | ||||
|         len += segment_length; | ||||
|         if (len < distance) continue; | ||||
|          | ||||
|         if (len < distance) | ||||
|             continue; | ||||
|         if (len == distance) { | ||||
|             points.push_back(*it); | ||||
|             points.emplace_back(*it); | ||||
|             len = 0; | ||||
|             continue; | ||||
|         } | ||||
|          | ||||
|         double take = segment_length - (len - distance);  // how much we take of this segment
 | ||||
|         Line segment(*(it-1), *it); | ||||
|         points.push_back(segment.point_at(take)); | ||||
|         --it; | ||||
|         len = -take; | ||||
|         points.emplace_back((p1 + v * (take / v.norm())).cast<coord_t>()); | ||||
|         -- it; | ||||
|         len = - take; | ||||
|     } | ||||
|     return points; | ||||
| } | ||||
| 
 | ||||
| void | ||||
| Polyline::simplify(double tolerance) | ||||
| void Polyline::simplify(double tolerance) | ||||
| { | ||||
|     this->points = MultiPoint::_douglas_peucker(this->points, tolerance); | ||||
| } | ||||
| 
 | ||||
| /* This method simplifies all *lines* contained in the supplied area */ | ||||
| template <class T> | ||||
| void | ||||
| Polyline::simplify_by_visibility(const T &area) | ||||
| void Polyline::simplify_by_visibility(const T &area) | ||||
| { | ||||
|     Points &pp = this->points; | ||||
|      | ||||
|  | @ -157,21 +147,20 @@ Polyline::simplify_by_visibility(const T &area) | |||
| template void Polyline::simplify_by_visibility<ExPolygon>(const ExPolygon &area); | ||||
| template void Polyline::simplify_by_visibility<ExPolygonCollection>(const ExPolygonCollection &area); | ||||
| 
 | ||||
| void | ||||
| Polyline::split_at(const Point &point, Polyline* p1, Polyline* p2) const | ||||
| void Polyline::split_at(const Point &point, Polyline* p1, Polyline* p2) const | ||||
| { | ||||
|     if (this->points.empty()) return; | ||||
|      | ||||
|     // find the line to split at
 | ||||
|     size_t line_idx = 0; | ||||
|     Point p = this->first_point(); | ||||
|     double min = point.distance_to(p); | ||||
|     double min = (p - point).cast<double>().norm(); | ||||
|     Lines lines = this->lines(); | ||||
|     for (Lines::const_iterator line = lines.begin(); line != lines.end(); ++line) { | ||||
|         Point p_tmp = point.projection_onto(*line); | ||||
|         if (point.distance_to(p_tmp) < min) { | ||||
|         if ((p_tmp - point).cast<double>().norm() < min) { | ||||
| 	        p = p_tmp; | ||||
| 	        min = point.distance_to(p); | ||||
| 	        min = (p - point).cast<double>().norm(); | ||||
| 	        line_idx = line - lines.begin(); | ||||
|         } | ||||
|     } | ||||
|  | @ -193,8 +182,7 @@ Polyline::split_at(const Point &point, Polyline* p1, Polyline* p2) const | |||
|     } | ||||
| } | ||||
| 
 | ||||
| bool | ||||
| Polyline::is_straight() const | ||||
| bool Polyline::is_straight() const | ||||
| { | ||||
|     /*  Check that each segment's direction is equal to the line connecting
 | ||||
|         first point and last point. (Checking each line against the previous | ||||
|  | @ -208,8 +196,7 @@ Polyline::is_straight() const | |||
|     return true; | ||||
| } | ||||
| 
 | ||||
| std::string | ||||
| Polyline::wkt() const | ||||
| std::string Polyline::wkt() const | ||||
| { | ||||
|     std::ostringstream wkt; | ||||
|     wkt << "LINESTRING(("; | ||||
|  | @ -254,30 +241,17 @@ bool remove_degenerate(Polylines &polylines) | |||
|     return modified; | ||||
| } | ||||
| 
 | ||||
| ThickLines | ||||
| ThickPolyline::thicklines() const | ||||
| ThickLines ThickPolyline::thicklines() const | ||||
| { | ||||
|     ThickLines lines; | ||||
|     if (this->points.size() >= 2) { | ||||
|         lines.reserve(this->points.size() - 1); | ||||
|         for (size_t i = 0; i < this->points.size()-1; ++i) { | ||||
|             ThickLine line(this->points[i], this->points[i+1]); | ||||
|             line.a_width = this->width[2*i]; | ||||
|             line.b_width = this->width[2*i+1]; | ||||
|             lines.push_back(line); | ||||
|         } | ||||
|         for (size_t i = 0; i + 1 < this->points.size(); ++ i) | ||||
|             lines.emplace_back(this->points[i], this->points[i + 1], this->width[2 * i], this->width[2 * i + 1]); | ||||
|     } | ||||
|     return lines; | ||||
| } | ||||
| 
 | ||||
| void | ||||
| ThickPolyline::reverse() | ||||
| { | ||||
|     Polyline::reverse(); | ||||
|     std::reverse(this->width.begin(), this->width.end()); | ||||
|     std::swap(this->endpoints.first, this->endpoints.second); | ||||
| } | ||||
| 
 | ||||
| Lines3 Polyline3::lines() const | ||||
| { | ||||
|     Lines3 lines; | ||||
|  |  | |||
|  | @ -19,6 +19,8 @@ public: | |||
|     Polyline() {}; | ||||
|     Polyline(const Polyline &other) : MultiPoint(other.points) {} | ||||
|     Polyline(Polyline &&other) : MultiPoint(std::move(other.points)) {} | ||||
|     Polyline(std::initializer_list<Point> list) : MultiPoint(list) {} | ||||
|     explicit Polyline(const Point &p1, const Point &p2) { points.reserve(2); points.emplace_back(p1); points.emplace_back(p2); } | ||||
|     Polyline& operator=(const Polyline &other) { points = other.points; return *this; } | ||||
|     Polyline& operator=(Polyline &&other) { points = std::move(other.points); return *this; } | ||||
| 	static Polyline new_scale(std::vector<Pointf> points) { | ||||
|  | @ -129,12 +131,17 @@ inline void polylines_append(Polylines &dst, Polylines &&src) | |||
| bool remove_degenerate(Polylines &polylines); | ||||
| 
 | ||||
| class ThickPolyline : public Polyline { | ||||
|     public: | ||||
|     std::vector<coordf_t> width; | ||||
|     std::pair<bool,bool> endpoints; | ||||
|     ThickPolyline() : endpoints(std::make_pair(false, false)) {}; | ||||
| public: | ||||
|     ThickPolyline() : endpoints(std::make_pair(false, false)) {} | ||||
|     ThickLines thicklines() const; | ||||
|     void reverse(); | ||||
|     void reverse() { | ||||
|         Polyline::reverse(); | ||||
|         std::reverse(this->width.begin(), this->width.end()); | ||||
|         std::swap(this->endpoints.first, this->endpoints.second); | ||||
|     } | ||||
| 
 | ||||
|     std::vector<coordf_t> width; | ||||
|     std::pair<bool,bool>  endpoints; | ||||
| }; | ||||
| 
 | ||||
| class Polyline3 : public MultiPoint3 | ||||
|  |  | |||
|  | @ -726,7 +726,7 @@ BoundingBox Print::bounding_box() const | |||
|     for (const PrintObject *object : this->objects) | ||||
|         for (Point copy : object->_shifted_copies) { | ||||
|             bb.merge(copy); | ||||
|             copy.translate(object->size.xy()); | ||||
|             copy += object->size.xy(); | ||||
|             bb.merge(copy); | ||||
|         } | ||||
|     return bb; | ||||
|  | @ -902,7 +902,7 @@ void Print::_make_skirt() | |||
|         for (const Point &shift : object->_shifted_copies) { | ||||
|             Points copy_points = object_points; | ||||
|             for (Point &pt : copy_points) | ||||
|                 pt.translate(shift); | ||||
|                 pt += shift; | ||||
|             append(points, copy_points); | ||||
|         } | ||||
|     } | ||||
|  | @ -1052,10 +1052,7 @@ void Print::_make_wipe_tower() | |||
|         return; | ||||
| 
 | ||||
|     // Get wiping matrix to get number of extruders and convert vector<double> to vector<float>:
 | ||||
| #pragma warning(push) | ||||
| #pragma warning(disable:4244) // disable Visual Studio's warning: conversion from 'double' to 'float', possible loss of data
 | ||||
|     std::vector<float> wiping_matrix((this->config.wiping_volumes_matrix.values).begin(),(this->config.wiping_volumes_matrix.values).end()); | ||||
| #pragma warning(pop) | ||||
|     std::vector<float> wiping_matrix(cast<float>(this->config.wiping_volumes_matrix.values)); | ||||
|     // Extract purging volumes for each extruder pair:
 | ||||
|     std::vector<std::vector<float>> wipe_volumes; | ||||
|     const unsigned int number_of_extruders = (unsigned int)(sqrt(wiping_matrix.size())+EPSILON); | ||||
|  |  | |||
|  | @ -85,11 +85,8 @@ bool PrintObject::set_copies(const Points &points) | |||
|     std::vector<Points::size_type> ordered_copies; | ||||
|     Slic3r::Geometry::chained_path(points, ordered_copies); | ||||
|      | ||||
|     for (size_t point_idx : ordered_copies) { | ||||
|         Point copy = points[point_idx]; | ||||
|         copy.translate(this->_copies_shift); | ||||
|         this->_shifted_copies.push_back(copy); | ||||
|     } | ||||
|     for (size_t point_idx : ordered_copies) | ||||
|         this->_shifted_copies.push_back(points[point_idx] + this->_copies_shift); | ||||
|      | ||||
|     bool invalidated = this->_print->invalidate_step(psSkirt); | ||||
|     invalidated |= this->_print->invalidate_step(psBrim); | ||||
|  |  | |||
|  | @ -506,8 +506,8 @@ public: | |||
| 
 | ||||
|         for (ExPolygon &island : islands) { | ||||
|             BoundingBox bbox = get_extents(island.contour); | ||||
|             auto it_lower = std::lower_bound(m_island_samples.begin(), m_island_samples.end(), bbox.min - Point(1, 1)); | ||||
|             auto it_upper = std::upper_bound(m_island_samples.begin(), m_island_samples.end(), bbox.max + Point(1, 1)); | ||||
|             auto it_lower = std::lower_bound(m_island_samples.begin(), m_island_samples.end(), Point(bbox.min - Point(1, 1))); | ||||
|             auto it_upper = std::upper_bound(m_island_samples.begin(), m_island_samples.end(), Point(bbox.max + Point(1, 1))); | ||||
|             samples_inside.clear(); | ||||
|             for (auto it = it_lower; it != it_upper; ++ it) | ||||
|                 if (bbox.contains(*it)) | ||||
|  | @ -2059,9 +2059,9 @@ void LoopInterfaceProcessor::generate(MyLayerExtruded &top_contact_layer, const | |||
|                         // Intersection of a ray (p1, p2) with a circle placed at center_last, with radius of circle_distance.
 | ||||
|                         const Pointf v_seg(coordf_t(p2.x()) - coordf_t(p1.x()), coordf_t(p2.y()) - coordf_t(p1.y())); | ||||
|                         const Pointf v_cntr(coordf_t(p1.x() - center_last.x()), coordf_t(p1.y() - center_last.y())); | ||||
|                         coordf_t a = dot(v_seg); | ||||
|                         coordf_t b = 2. * dot(v_seg, v_cntr); | ||||
|                         coordf_t c = dot(v_cntr) - circle_distance * circle_distance; | ||||
|                         coordf_t a = v_seg.squaredNorm(); | ||||
|                         coordf_t b = 2. * v_seg.dot(v_cntr); | ||||
|                         coordf_t c = v_cntr.squaredNorm() - circle_distance * circle_distance; | ||||
|                         coordf_t disc = b * b - 4. * a * c; | ||||
|                         if (disc > 0.) { | ||||
|                             // The circle intersects a ray. Avoid the parts of the segment inside the circle.
 | ||||
|  | @ -2100,9 +2100,9 @@ void LoopInterfaceProcessor::generate(MyLayerExtruded &top_contact_layer, const | |||
|                         circle_centers.push_back(center_last); | ||||
|                     } | ||||
|                     external_loops.push_back(std::move(contour)); | ||||
|                     for (Points::const_iterator it_center = circle_centers.begin(); it_center != circle_centers.end(); ++ it_center) { | ||||
|                     for (const Point ¢er : circle_centers) { | ||||
|                         circles.push_back(circle); | ||||
|                         circles.back().translate(*it_center); | ||||
|                         circles.back().translate(center); | ||||
|                     } | ||||
|                 } | ||||
|             } | ||||
|  | @ -2392,7 +2392,7 @@ void modulate_extrusion_by_overlapping_layers( | |||
|             if (end_and_dist2.first == nullptr) { | ||||
|                 // New fragment connecting to pt_current was not found.
 | ||||
|                 // Verify that the last point found is close to the original end point of the unfragmented path.
 | ||||
|                 //const double d2 = pt_end.distance_to_sq(pt_current);
 | ||||
|                 //const double d2 = (pt_end - pt_current).squaredNorm();
 | ||||
|                 //assert(d2 < coordf_t(search_radius * search_radius));
 | ||||
|                 // End of the path.
 | ||||
|                 break; | ||||
|  |  | |||
|  | @ -130,6 +130,17 @@ inline void append(std::vector<T>& dest, std::vector<T>&& src) | |||
|     src.shrink_to_fit(); | ||||
| } | ||||
| 
 | ||||
| // Casting an std::vector<> from one type to another type without warnings about a loss of accuracy.
 | ||||
| template<typename T_TO, typename T_FROM> | ||||
| std::vector<T_TO> cast(const std::vector<T_FROM> &src)  | ||||
| { | ||||
|     std::vector<T_TO> dst; | ||||
|     dst.reserve(src.size()); | ||||
|     for (const T_FROM &a : src) | ||||
|         dst.emplace_back((T_TO)a); | ||||
|     return dst; | ||||
| } | ||||
| 
 | ||||
| template <typename T> | ||||
| inline void remove_nulls(std::vector<T*> &vec) | ||||
| { | ||||
|  |  | |||
|  | @ -34,11 +34,11 @@ void Bed_2D::repaint() | |||
| 
 | ||||
| 	auto cbb = BoundingBoxf(Pointf(0, 0),Pointf(cw, ch)); | ||||
| 	// leave space for origin point
 | ||||
| 	cbb.min.translate(4, 0); | ||||
| 	cbb.max.translate(-4, -4); | ||||
| 	cbb.min.x() += 4; | ||||
| 	cbb.max -= Vec2d(4., 4.); | ||||
| 
 | ||||
| 	// leave space for origin label
 | ||||
| 	cbb.max.translate(0, -13); | ||||
| 	cbb.max.y() -= 13; | ||||
| 
 | ||||
| 	// read new size
 | ||||
| 	cw = cbb.size().x(); | ||||
|  | @ -113,7 +113,7 @@ void Bed_2D::repaint() | |||
| 	dc.DrawLine(wxPoint(origin_px.x(), origin_px.y()), wxPoint(x_end.x(), x_end.y())); | ||||
| 	for (auto angle : { -arrow_angle, arrow_angle }){ | ||||
| 		auto end = x_end; | ||||
| 		end.translate(-arrow_len, 0); | ||||
| 		end.x() -= arrow_len; | ||||
| 		end.rotate(angle, x_end); | ||||
| 		dc.DrawLine(wxPoint(x_end.x(), x_end.y()), wxPoint(end.x(), end.y())); | ||||
| 	} | ||||
|  | @ -123,7 +123,7 @@ void Bed_2D::repaint() | |||
| 	dc.DrawLine(wxPoint(origin_px.x(), origin_px.y()), wxPoint(y_end.x(), y_end.y())); | ||||
| 	for (auto angle : { -arrow_angle, arrow_angle }) { | ||||
| 		auto end = y_end; | ||||
| 		end.translate(0, +arrow_len); | ||||
| 		end.y() += arrow_len; | ||||
| 		end.rotate(angle, y_end); | ||||
| 		dc.DrawLine(wxPoint(y_end.x(), y_end.y()), wxPoint(end.x(), end.y())); | ||||
| 	} | ||||
|  | @ -157,9 +157,7 @@ void Bed_2D::repaint() | |||
| 
 | ||||
| // convert G - code coordinates into pixels
 | ||||
| Point Bed_2D::to_pixels(Pointf point){ | ||||
| 	auto p = Pointf(point); | ||||
| 	p.scale(m_scale_factor); | ||||
| 	p.translate(m_shift); | ||||
| 	auto p = point * m_scale_factor + m_shift; | ||||
| 	return Point(p.x(), GetSize().GetHeight() - p.y());  | ||||
| } | ||||
| 
 | ||||
|  | @ -178,10 +176,7 @@ void Bed_2D::mouse_event(wxMouseEvent event){ | |||
| 
 | ||||
| // convert pixels into G - code coordinates
 | ||||
| Pointf Bed_2D::to_units(Point point){ | ||||
| 	auto p = Pointf(point.x(), GetSize().GetHeight() - point.y()); | ||||
| 	p.translate(m_shift.negative()); | ||||
| 	p.scale(1 / m_scale_factor); | ||||
| 	return p; | ||||
| 	return (Pointf(point.x(), GetSize().GetHeight() - point.y()) - m_shift) * (1. / m_scale_factor); | ||||
| } | ||||
| 
 | ||||
| void Bed_2D::set_pos(Pointf pos){ | ||||
|  |  | |||
|  | @ -929,7 +929,7 @@ static void thick_lines_to_indexed_vertex_array( | |||
|         bool is_closing = closed && is_last; | ||||
| 
 | ||||
|         Vectorf v = Vectorf::new_unscale(line.vector()); | ||||
|         v.scale(inv_len); | ||||
|         v *= inv_len; | ||||
| 
 | ||||
|         Pointf a = Pointf::new_unscale(line.a); | ||||
|         Pointf b = Pointf::new_unscale(line.b); | ||||
|  | @ -941,16 +941,16 @@ static void thick_lines_to_indexed_vertex_array( | |||
|             double dist = 0.5 * width;  // scaled
 | ||||
|             double dx = dist * v.x(); | ||||
|             double dy = dist * v.y(); | ||||
|             a1.translate(+dy, -dx); | ||||
|             a2.translate(-dy, +dx); | ||||
|             b1.translate(+dy, -dx); | ||||
|             b2.translate(-dy, +dx); | ||||
|             a1 += Vectorf(+dy, -dx); | ||||
|             a2 += Vectorf(-dy, +dx); | ||||
|             b1 += Vectorf(+dy, -dx); | ||||
|             b2 += Vectorf(-dy, +dx); | ||||
|         } | ||||
| 
 | ||||
|         // calculate new XY normals
 | ||||
|         Vector n = line.normal(); | ||||
|         Vectorf3 xy_right_normal = Vectorf3::new_unscale(n.x(), n.y(), 0); | ||||
|         xy_right_normal.scale(inv_len); | ||||
|         xy_right_normal *= inv_len; | ||||
| 
 | ||||
|         int idx_a[4]; | ||||
|         int idx_b[4]; | ||||
|  | @ -994,7 +994,7 @@ static void thick_lines_to_indexed_vertex_array( | |||
|         } else { | ||||
|             // Continuing a previous segment.
 | ||||
|             // Share left / right vertices if possible.
 | ||||
| 			double v_dot    = dot(v_prev, v); | ||||
| 			double v_dot    = v_prev.dot(v); | ||||
|             bool   sharp    = v_dot < 0.707; // sin(45 degrees)
 | ||||
|             if (sharp) { | ||||
|                 if (!bottom_z_different) | ||||
|  | @ -1023,8 +1023,8 @@ static void thick_lines_to_indexed_vertex_array( | |||
|                     Geometry::ray_ray_intersection(b1_prev, v_prev, a1, v, intersection); | ||||
|                     a1 = intersection; | ||||
|                     a2 = 2. * a - intersection; | ||||
|                     assert(length(a1.vector_to(a)) < width); | ||||
|                     assert(length(a2.vector_to(a)) < width); | ||||
|                     assert((a - a1).norm() < width); | ||||
|                     assert((a - a2).norm() < width); | ||||
|                     float *n_left_prev  = volume.vertices_and_normals_interleaved.data() + idx_prev[LEFT ] * 6; | ||||
|                     float *p_left_prev  = n_left_prev  + 3; | ||||
|                     float *n_right_prev = volume.vertices_and_normals_interleaved.data() + idx_prev[RIGHT] * 6; | ||||
|  | @ -1035,7 +1035,7 @@ static void thick_lines_to_indexed_vertex_array( | |||
|                     p_right_prev[1] = float(a1.y()); | ||||
|                     xy_right_normal.x() += n_right_prev[0]; | ||||
|                     xy_right_normal.y() += n_right_prev[1]; | ||||
|                     xy_right_normal.scale(1. / length(xy_right_normal)); | ||||
|                     xy_right_normal *= 1. / xy_right_normal.norm(); | ||||
|                     n_left_prev [0] = float(-xy_right_normal.x()); | ||||
|                     n_left_prev [1] = float(-xy_right_normal.y()); | ||||
|                     n_right_prev[0] = float( xy_right_normal.x()); | ||||
|  | @ -1044,7 +1044,7 @@ static void thick_lines_to_indexed_vertex_array( | |||
|                     idx_a[RIGHT] = idx_prev[RIGHT]; | ||||
|                 } | ||||
|             } | ||||
|             else if (cross(v_prev, v) > 0.) { | ||||
|             else if (cross2(v_prev, v) > 0.) { | ||||
|                 // Right turn. Fill in the right turn wedge.
 | ||||
|                 volume.push_triangle(idx_prev[RIGHT], idx_a   [RIGHT],  idx_prev[TOP]   ); | ||||
|                 volume.push_triangle(idx_prev[RIGHT], idx_prev[BOTTOM], idx_a   [RIGHT] ); | ||||
|  | @ -1172,7 +1172,7 @@ static void thick_lines_to_indexed_vertex_array(const Lines3& lines, | |||
|         double height = heights[i]; | ||||
|         double width = widths[i]; | ||||
| 
 | ||||
|         Vectorf3 unit_v = normalize(Vectorf3::new_unscale(line.vector())); | ||||
|         Vectorf3 unit_v = Vectorf3::new_unscale(line.vector()).normalized(); | ||||
| 
 | ||||
|         Vectorf3 n_top; | ||||
|         Vectorf3 n_right; | ||||
|  | @ -1187,8 +1187,8 @@ static void thick_lines_to_indexed_vertex_array(const Lines3& lines, | |||
|         else | ||||
|         { | ||||
|             // generic segment
 | ||||
|             n_right = normalize(cross(unit_v, unit_positive_z)); | ||||
|             n_top = normalize(cross(n_right, unit_v)); | ||||
|             n_right = unit_v.cross(unit_positive_z).normalized(); | ||||
|             n_top = n_right.cross(unit_v).normalized(); | ||||
|         } | ||||
| 
 | ||||
|         Vectorf3 rl_displacement = 0.5 * width * n_right; | ||||
|  | @ -1247,9 +1247,9 @@ static void thick_lines_to_indexed_vertex_array(const Lines3& lines, | |||
|         { | ||||
|             // Continuing a previous segment.
 | ||||
|             // Share left / right vertices if possible.
 | ||||
|             double v_dot = dot(unit_v_prev, unit_v); | ||||
|             double v_dot = unit_v_prev.dot(unit_v); | ||||
|             bool is_sharp = v_dot < 0.707; // sin(45 degrees)
 | ||||
|             bool is_right_turn = dot(n_top_prev, cross(unit_v_prev, unit_v)) > 0.0; | ||||
|             bool is_right_turn = n_top_prev.dot(unit_v_prev.cross(unit_v)) > 0.0; | ||||
| 
 | ||||
|             if (is_sharp) | ||||
|             { | ||||
|  | @ -1272,7 +1272,7 @@ static void thick_lines_to_indexed_vertex_array(const Lines3& lines, | |||
|                 // At the crease angle of 45 degrees, the overshot at the corner will be less than (1-1/cos(PI/8)) = 8.2% over an arc.
 | ||||
| 
 | ||||
|                 // averages normals
 | ||||
|                 Vectorf3 average_n_right = normalize(0.5 * (n_right + n_right_prev)); | ||||
|                 Vectorf3 average_n_right = 0.5 * (n_right + n_right_prev).normalized(); | ||||
|                 Vectorf3 average_n_left = -average_n_right; | ||||
|                 Vectorf3 average_rl_displacement = 0.5 * width * average_n_right; | ||||
| 
 | ||||
|  |  | |||
|  | @ -179,7 +179,7 @@ void BedShapePanel::set_shape(ConfigOptionPoints* points) | |||
| 		double avg_dist = 0; | ||||
| 		for (auto pt: polygon.points) | ||||
| 		{ | ||||
| 			double distance = center.distance_to(pt); | ||||
| 			double distance = (pt - center).cast<double>().norm(); | ||||
| 			vertex_distances.push_back(distance); | ||||
| 			avg_dist += distance; | ||||
| 		} | ||||
|  |  | |||
|  | @ -1177,7 +1177,7 @@ void GLCanvas3D::Gizmos::update_hover_state(const GLCanvas3D& canvas, const Poin | |||
|         // we currently use circular icons for gizmo, so we check the radius
 | ||||
|         if (it->second->get_state() != GLGizmoBase::On) | ||||
|         { | ||||
|             bool inside = length(Pointf(OverlayOffsetX + half_tex_size, top_y + half_tex_size).vector_to(mouse_pos)) < half_tex_size; | ||||
|             bool inside = (mouse_pos - Pointf(OverlayOffsetX + half_tex_size, top_y + half_tex_size)).norm() < half_tex_size; | ||||
|             it->second->set_state(inside ? GLGizmoBase::Hover : GLGizmoBase::Off); | ||||
|         } | ||||
|         top_y += (tex_size + OverlayGapY); | ||||
|  | @ -1201,7 +1201,7 @@ void GLCanvas3D::Gizmos::update_on_off_state(const GLCanvas3D& canvas, const Poi | |||
|         float half_tex_size = 0.5f * tex_size; | ||||
| 
 | ||||
|         // we currently use circular icons for gizmo, so we check the radius
 | ||||
|         if (length(Pointf(OverlayOffsetX + half_tex_size, top_y + half_tex_size).vector_to(mouse_pos)) < half_tex_size) | ||||
|         if ((mouse_pos - Pointf(OverlayOffsetX + half_tex_size, top_y + half_tex_size)).norm() < half_tex_size) | ||||
|         { | ||||
|             if ((it->second->get_state() == GLGizmoBase::On)) | ||||
|             { | ||||
|  | @ -1267,7 +1267,7 @@ bool GLCanvas3D::Gizmos::overlay_contains_mouse(const GLCanvas3D& canvas, const | |||
|         float half_tex_size = 0.5f * tex_size; | ||||
| 
 | ||||
|         // we currently use circular icons for gizmo, so we check the radius
 | ||||
|         if (length(Pointf(OverlayOffsetX + half_tex_size, top_y + half_tex_size).vector_to(mouse_pos)) < half_tex_size) | ||||
|         if ((mouse_pos - Pointf(OverlayOffsetX + half_tex_size, top_y + half_tex_size)).norm() < half_tex_size) | ||||
|             return true; | ||||
| 
 | ||||
|         top_y += (tex_size + OverlayGapY); | ||||
|  | @ -3114,7 +3114,7 @@ void GLCanvas3D::on_mouse(wxMouseEvent& evt) | |||
|                         m_mouse.drag.start_position_3D = pos3d; | ||||
|                         // Remember the shift to to the object center.The object center will later be used
 | ||||
|                         // to limit the object placement close to the bed.
 | ||||
|                         m_mouse.drag.volume_center_offset = pos3d.vector_to(volume_bbox.center()); | ||||
|                         m_mouse.drag.volume_center_offset = volume_bbox.center() - pos3d; | ||||
|                     } | ||||
|                 } | ||||
|                 else if (evt.RightDown()) | ||||
|  | @ -3136,7 +3136,7 @@ void GLCanvas3D::on_mouse(wxMouseEvent& evt) | |||
|         Pointf3 cur_pos = Linef3(_mouse_to_3d(pos, &z0), _mouse_to_3d(pos, &z1)).intersect_plane(m_mouse.drag.start_position_3D.z()); | ||||
| 
 | ||||
|         // Clip the new position, so the object center remains close to the bed.
 | ||||
|         cur_pos.translate(m_mouse.drag.volume_center_offset); | ||||
|         cur_pos += m_mouse.drag.volume_center_offset; | ||||
|         Point cur_pos2(scale_(cur_pos.x()), scale_(cur_pos.y())); | ||||
|         if (!m_bed.contains(cur_pos2)) | ||||
|         { | ||||
|  | @ -3144,10 +3144,10 @@ void GLCanvas3D::on_mouse(wxMouseEvent& evt) | |||
|             cur_pos.x() = unscale(ip.x()); | ||||
|             cur_pos.y() = unscale(ip.y()); | ||||
|         } | ||||
|         cur_pos.translate(m_mouse.drag.volume_center_offset.negative()); | ||||
|         cur_pos -= m_mouse.drag.volume_center_offset; | ||||
| 
 | ||||
|         // Calculate the translation vector.
 | ||||
|         Vectorf3 vector = m_mouse.drag.start_position_3D.vector_to(cur_pos); | ||||
|         Vectorf3 vector = cur_pos - m_mouse.drag.start_position_3D; | ||||
|         // Get the volume being dragged.
 | ||||
|         GLVolume* volume = m_volumes.volumes[m_mouse.drag.move_volume_idx]; | ||||
|         // Get all volumes belonging to the same group, if any.
 | ||||
|  | @ -3169,11 +3169,7 @@ void GLCanvas3D::on_mouse(wxMouseEvent& evt) | |||
| 
 | ||||
|         // Apply new temporary volume origin and ignore Z.
 | ||||
|         for (GLVolume* v : volumes) | ||||
|         { | ||||
|             Pointf3 origin = v->get_origin(); | ||||
|             origin.translate(vector.x(), vector.y(), 0.0); | ||||
|             v->set_origin(origin); | ||||
|         } | ||||
|             v->set_origin(v->get_origin() + Vectorf3(vector.x(), vector.y(), 0.0)); | ||||
| 
 | ||||
|         m_mouse.drag.start_position_3D = cur_pos; | ||||
|         m_gizmos.refresh(); | ||||
|  | @ -3275,9 +3271,7 @@ void GLCanvas3D::on_mouse(wxMouseEvent& evt) | |||
|                 float z = 0.0f; | ||||
|                 const Pointf3& cur_pos = _mouse_to_3d(pos, &z); | ||||
|                 Pointf3 orig = _mouse_to_3d(m_mouse.drag.start_position_2D, &z); | ||||
|                 Pointf3 camera_target = m_camera.target; | ||||
|                 camera_target.translate(orig.vector_to(cur_pos).negative()); | ||||
|                 m_camera.target = camera_target; | ||||
|                 m_camera.target += orig - cur_pos; | ||||
| 
 | ||||
|                 m_on_viewport_changed_callback.call(); | ||||
| 
 | ||||
|  | @ -3571,11 +3565,11 @@ float GLCanvas3D::_get_zoom_to_bounding_box_factor(const BoundingBoxf3& bbox) co | |||
|     { | ||||
|         // project vertex on the plane perpendicular to camera forward axis
 | ||||
|         Pointf3 pos(v.x() - bb_center.x(), v.y() - bb_center.y(), v.z() - bb_center.z()); | ||||
|         Pointf3 proj_on_plane = pos - dot(pos, forward) * forward; | ||||
|         Pointf3 proj_on_plane = pos - pos.dot(forward) * forward; | ||||
| 
 | ||||
|         // calculates vertex coordinate along camera xy axes
 | ||||
|         coordf_t x_on_plane = dot(proj_on_plane, right); | ||||
|         coordf_t y_on_plane = dot(proj_on_plane, up); | ||||
|         coordf_t x_on_plane = proj_on_plane.dot(right); | ||||
|         coordf_t y_on_plane = proj_on_plane.dot(up); | ||||
| 
 | ||||
|         max_x = std::max(max_x, margin_factor * std::abs(x_on_plane)); | ||||
|         max_y = std::max(max_y, margin_factor * std::abs(y_on_plane)); | ||||
|  | @ -3653,7 +3647,7 @@ void GLCanvas3D::_camera_tranform() const | |||
|     ::glRotatef(-m_camera.get_theta(), 1.0f, 0.0f, 0.0f); // pitch
 | ||||
|     ::glRotatef(m_camera.phi, 0.0f, 0.0f, 1.0f);          // yaw
 | ||||
| 
 | ||||
|     Pointf3 neg_target = m_camera.target.negative(); | ||||
|     Pointf3 neg_target = - m_camera.target; | ||||
|     ::glTranslatef((GLfloat)neg_target.x(), (GLfloat)neg_target.y(), (GLfloat)neg_target.z()); | ||||
| } | ||||
| 
 | ||||
|  |  | |||
|  | @ -235,13 +235,13 @@ void GLGizmoRotate::on_set_state() | |||
| void GLGizmoRotate::on_update(const Pointf& mouse_pos) | ||||
| { | ||||
|     Vectorf orig_dir(1.0, 0.0); | ||||
|     Vectorf new_dir = normalize(mouse_pos - m_center); | ||||
|     coordf_t theta = ::acos(clamp(-1.0, 1.0, dot(new_dir, orig_dir))); | ||||
|     if (cross(orig_dir, new_dir) < 0.0) | ||||
|     Vectorf new_dir = (mouse_pos - m_center).normalized(); | ||||
|     coordf_t theta = ::acos(clamp(-1.0, 1.0, new_dir.dot(orig_dir))); | ||||
|     if (cross2(orig_dir, new_dir) < 0.0) | ||||
|         theta = 2.0 * (coordf_t)PI - theta; | ||||
| 
 | ||||
|     // snap
 | ||||
|     if (length(m_center.vector_to(mouse_pos)) < 2.0 * (double)m_radius / 3.0) | ||||
|     if ((mouse_pos - m_center).norm() < 2.0 * (double)m_radius / 3.0) | ||||
|     { | ||||
|         coordf_t step = 2.0 * (coordf_t)PI / (coordf_t)SnapRegionsCount; | ||||
|         theta = step * (coordf_t)std::round(theta / step); | ||||
|  | @ -444,8 +444,8 @@ void GLGizmoScale::on_update(const Pointf& mouse_pos) | |||
| { | ||||
|     Pointf center(0.5 * (m_grabbers[1].center.x() + m_grabbers[0].center.x()), 0.5 * (m_grabbers[3].center.y() + m_grabbers[0].center.y())); | ||||
| 
 | ||||
|     coordf_t orig_len = length(m_starting_drag_position - center); | ||||
|     coordf_t new_len = length(mouse_pos - center); | ||||
|     coordf_t orig_len = (m_starting_drag_position - center).norm(); | ||||
|     coordf_t new_len = (mouse_pos - center).norm(); | ||||
|     coordf_t ratio = (orig_len != 0.0) ? new_len / orig_len : 1.0; | ||||
| 
 | ||||
|     m_scale = m_starting_scale * (float)ratio; | ||||
|  |  | |||
|  | @ -894,10 +894,7 @@ void add_frequently_changed_parameters(wxWindow* parent, wxBoxSizer* sizer, wxFl | |||
|                 const std::vector<double> &init_matrix    = (config.option<ConfigOptionFloats>("wiping_volumes_matrix"))->values; | ||||
|                 const std::vector<double> &init_extruders = (config.option<ConfigOptionFloats>("wiping_volumes_extruders"))->values; | ||||
| 
 | ||||
| #pragma warning(push) | ||||
| #pragma warning(disable:4244) // disable Visual Studio's warning: conversion from 'double' to 'float', possible loss of data
 | ||||
|                 WipingDialog dlg(parent,std::vector<float>(init_matrix.begin(),init_matrix.end()),std::vector<float>(init_extruders.begin(),init_extruders.end())); | ||||
| #pragma warning(pop) | ||||
|                 WipingDialog dlg(parent,cast<float>(init_matrix),cast<float>(init_extruders)); | ||||
| 
 | ||||
| 				if (dlg.ShowModal() == wxID_OK) { | ||||
|                     std::vector<float> matrix = dlg.get_matrix(); | ||||
|  |  | |||
|  | @ -261,7 +261,7 @@ std::vector<float> Chart::get_ramming_speed(float sampling) const { | |||
| std::vector<std::pair<float,float>> Chart::get_buttons() const { | ||||
|     std::vector<std::pair<float, float>> buttons_out; | ||||
|     for (const auto& button : m_buttons) | ||||
|         buttons_out.push_back(std::make_pair(button.get_pos().m_x,button.get_pos().m_y));             | ||||
|         buttons_out.push_back(std::make_pair(float(button.get_pos().m_x),float(button.get_pos().m_y))); | ||||
|     return buttons_out; | ||||
| } | ||||
|      | ||||
|  |  | |||
|  | @ -74,6 +74,7 @@ extern "C" { | |||
| 	#undef realloc | ||||
| 	#undef free | ||||
| 	#undef Zero | ||||
|     #undef Packet | ||||
| 	#undef select | ||||
| #endif /* _MSC_VER */ | ||||
| } | ||||
|  |  | |||
|  | @ -58,11 +58,7 @@ | |||
|     Clone<Pointf3>      origin() const | ||||
|         %code%{ RETVAL = THIS->get_origin(); %}; | ||||
|     void                translate(double x, double y, double z) | ||||
|         %code%{ | ||||
|                 Pointf3 o = THIS->get_origin(); | ||||
|                 o.translate(x, y, z); | ||||
|                 THIS->set_origin(o); | ||||
|              %}; | ||||
|         %code%{ THIS->set_origin(THIS->get_origin() + Pointf3(x, y, z)); %}; | ||||
|     Clone<BoundingBoxf3> bounding_box() const | ||||
|         %code%{ RETVAL = THIS->bounding_box; %}; | ||||
|     Clone<BoundingBoxf3> transformed_bounding_box() const; | ||||
|  |  | |||
|  | @ -29,7 +29,6 @@ | |||
|     bool parallel_to_line(Line* line) | ||||
|         %code{% RETVAL = THIS->parallel_to(*line); %}; | ||||
|     Clone<Point> midpoint(); | ||||
|     Clone<Point> point_at(double distance); | ||||
|     Clone<Point> intersection_infinite(Line* other) | ||||
|         %code{% | ||||
|             Point p; | ||||
|  | @ -37,8 +36,8 @@ | |||
|             if (!res) CONFESS("Intersection failed"); | ||||
|             RETVAL = p; | ||||
|         %}; | ||||
|     Clone<Polyline> as_polyline() | ||||
|         %code{% RETVAL = Polyline(*THIS); %}; | ||||
|     Polyline* as_polyline() | ||||
|         %code{% RETVAL = new Polyline(THIS->a, THIS->b); %}; | ||||
|     Clone<Point> normal(); | ||||
|     Clone<Point> vector(); | ||||
|     double ccw(Point* point) | ||||
|  |  | |||
|  | @ -3,6 +3,7 @@ | |||
| %{ | ||||
| #include <xsinit.h> | ||||
| #include "libslic3r/Point.hpp" | ||||
| #include "libslic3r/Line.hpp" | ||||
| #include "libslic3r/Polygon.hpp" | ||||
| #include "libslic3r/Polyline.hpp" | ||||
| %} | ||||
|  | @ -12,8 +13,10 @@ | |||
|     ~Point(); | ||||
|     Clone<Point> clone() | ||||
|         %code{% RETVAL=THIS; %};  | ||||
|     void scale(double factor); | ||||
|     void translate(double x, double y); | ||||
|     void scale(double factor) | ||||
|         %code{% *THIS *= factor; %}; | ||||
|     void translate(double x, double y) | ||||
|         %code{% *THIS += Point(x, y); %}; | ||||
|     SV* arrayref() | ||||
|         %code{% RETVAL = to_SV_pureperl(THIS); %}; | ||||
|     SV* pp() | ||||
|  | @ -30,23 +33,23 @@ | |||
|     Clone<Point> nearest_point(Points points) | ||||
|         %code{% Point p; THIS->nearest_point(points, &p); RETVAL = p; %}; | ||||
|     double distance_to(Point* point) | ||||
|         %code{% RETVAL = THIS->distance_to(*point); %}; | ||||
|         %code{% RETVAL = (*point - *THIS).cast<double>().norm(); %}; | ||||
|     double distance_to_line(Line* line) | ||||
|         %code{% RETVAL = THIS->distance_to(*line); %}; | ||||
|         %code{% RETVAL = line->distance_to(*THIS); %}; | ||||
|     double perp_distance_to_line(Line* line) | ||||
|         %code{% RETVAL = THIS->perp_distance_to(*line); %}; | ||||
|         %code{% RETVAL = line->perp_distance_to(*THIS); %}; | ||||
|     double ccw(Point* p1, Point* p2) | ||||
|         %code{% RETVAL = THIS->ccw(*p1, *p2); %}; | ||||
|     double ccw_angle(Point* p1, Point* p2) | ||||
|         %code{% RETVAL = THIS->ccw_angle(*p1, *p2); %}; | ||||
|     Clone<Point> projection_onto_polygon(Polygon* polygon) | ||||
|     Point* projection_onto_polygon(Polygon* polygon) | ||||
|         %code{% RETVAL = new Point(THIS->projection_onto(*polygon)); %}; | ||||
|     Clone<Point> projection_onto_polyline(Polyline* polyline) | ||||
|     Point* projection_onto_polyline(Polyline* polyline) | ||||
|         %code{% RETVAL = new Point(THIS->projection_onto(*polyline)); %}; | ||||
|     Clone<Point> projection_onto_line(Line* line) | ||||
|     Point* projection_onto_line(Line* line) | ||||
|         %code{% RETVAL = new Point(THIS->projection_onto(*line)); %}; | ||||
|     Clone<Point> negative() | ||||
|         %code{% RETVAL = new Point(THIS->negative()); %}; | ||||
|     Point* negative() | ||||
|         %code{% RETVAL = new Point(- *THIS); %}; | ||||
|     bool coincides_with_epsilon(Point* point) | ||||
|         %code{% RETVAL = (*THIS) == *point; %}; | ||||
|     std::string serialize() %code{% char buf[2048]; sprintf(buf, "%ld,%ld", THIS->x(), THIS->y()); RETVAL = buf; %}; | ||||
|  | @ -107,14 +110,16 @@ Point::coincides_with(point_sv) | |||
|         %code{% THIS->x() = val; %}; | ||||
|     void set_y(double val) | ||||
|         %code{% THIS->y() = val; %}; | ||||
|     void translate(double x, double y); | ||||
|     void scale(double factor); | ||||
|     void translate(double x, double y) | ||||
|         %code{% *THIS += Pointf(x, y); %}; | ||||
|     void scale(double factor) | ||||
|         %code{% *THIS *= factor; %}; | ||||
|     void rotate(double angle, Pointf* center) | ||||
|         %code{% THIS->rotate(angle, *center); %}; | ||||
|     Clone<Pointf> negative() | ||||
|         %code{% RETVAL = THIS->negative(); %}; | ||||
|     Clone<Pointf> vector_to(Pointf* point) | ||||
|         %code{% RETVAL = THIS->vector_to(*point); %}; | ||||
|     Pointf* negative() | ||||
|         %code{% RETVAL = new Pointf(- *THIS); %}; | ||||
|     Pointf* vector_to(Pointf* point) | ||||
|         %code{% RETVAL = new Pointf(*point - *THIS); %}; | ||||
|     std::string serialize() %code{% char buf[2048]; sprintf(buf, "%lf,%lf", THIS->x(), THIS->y()); RETVAL = buf; %}; | ||||
| }; | ||||
| 
 | ||||
|  | @ -135,13 +140,15 @@ Point::coincides_with(point_sv) | |||
|         %code{% THIS->y() = val; %}; | ||||
|     void set_z(double val) | ||||
|         %code{% THIS->z() = val; %}; | ||||
|     void translate(double x, double y, double z); | ||||
|     void scale(double factor); | ||||
|     void translate(double x, double y, double z) | ||||
|         %code{% *THIS += Pointf3(x, y, z); %}; | ||||
|     void scale(double factor) | ||||
|         %code{% *THIS *= factor; %}; | ||||
|     double distance_to(Pointf3* point) | ||||
|         %code{% RETVAL = THIS->distance_to(*point); %}; | ||||
|     Clone<Pointf3> negative() | ||||
|         %code{% RETVAL = THIS->negative(); %}; | ||||
|     Clone<Pointf3> vector_to(Pointf3* point) | ||||
|         %code{% RETVAL = THIS->vector_to(*point); %}; | ||||
|         %code{% RETVAL = (*point - *THIS).norm(); %}; | ||||
|     Pointf3* negative() | ||||
|         %code{% RETVAL = new Pointf3(- *THIS); %}; | ||||
|     Pointf3* vector_to(Pointf3* point) | ||||
|         %code{% RETVAL = new Pointf3(*point - *THIS); %}; | ||||
|     std::string serialize() %code{% char buf[2048]; sprintf(buf, "%lf,%lf,%lf", THIS->x(), THIS->y(), THIS->z()); RETVAL = buf; %}; | ||||
| }; | ||||
|  |  | |||
|  | @ -176,15 +176,6 @@ _constant() | |||
|     void set_step_started(PrintStep step) | ||||
|         %code%{ THIS->state.set_started(step); %}; | ||||
|      | ||||
|     void clear_filament_stats() | ||||
|         %code%{ | ||||
|             THIS->filament_stats.clear(); | ||||
|         %}; | ||||
|     void set_filament_stats(int extruder_id, float length) | ||||
|         %code%{ | ||||
|             THIS->filament_stats.insert(std::pair<size_t,float>(extruder_id, 0)); | ||||
|             THIS->filament_stats[extruder_id] += length; | ||||
|         %}; | ||||
|     SV* filament_stats() | ||||
|         %code%{ | ||||
|             HV* hv = newHV(); | ||||
|  |  | |||
|  | @ -181,7 +181,7 @@ TriangleMesh::slice(z) | |||
|     std::vector<double> z | ||||
|     CODE: | ||||
|         // convert doubles to floats | ||||
|         std::vector<float> z_f(z.begin(), z.end()); | ||||
|         std::vector<float> z_f = cast<float>(z); | ||||
|          | ||||
|         std::vector<ExPolygons> layers; | ||||
|         TriangleMeshSlicer mslicer(THIS); | ||||
|  |  | |||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue
	
	 bubnikv
						bubnikv