Merge branch 'master' of https://github.com/prusa3d/Slic3r into objects_centering

This commit is contained in:
Enrico Turri 2019-01-25 08:29:15 +01:00
commit 16bd7325c1
25 changed files with 964 additions and 660 deletions

View file

@ -2,6 +2,7 @@
#include "GLCanvas3D.hpp"
#include "admesh/stl.h"
#include "polypartition.h"
#include "libslic3r/libslic3r.h"
#include "libslic3r/ClipperUtils.hpp"
#include "libslic3r/PrintConfig.hpp"
@ -6431,6 +6432,219 @@ void GLCanvas3D::_render_camera_target() const
}
#endif // ENABLE_SHOW_CAMERA_TARGET
class TessWrapper {
public:
static Pointf3s tesselate(const ExPolygon &expoly, double z_, bool flipped_)
{
z = z_;
flipped = flipped_;
triangles.clear();
intersection_points.clear();
std::vector<GLdouble> coords;
{
size_t num_coords = expoly.contour.points.size();
for (const Polygon &poly : expoly.holes)
num_coords += poly.points.size();
coords.reserve(num_coords * 3);
}
GLUtesselator *tess = gluNewTess(); // create a tessellator
// register callback functions
gluTessCallback(tess, GLU_TESS_BEGIN, (void(__stdcall*)(void))tessBeginCB);
gluTessCallback(tess, GLU_TESS_END, (void(__stdcall*)(void))tessEndCB);
gluTessCallback(tess, GLU_TESS_ERROR, (void(__stdcall*)(void))tessErrorCB);
gluTessCallback(tess, GLU_TESS_VERTEX, (void(__stdcall*)())tessVertexCB);
gluTessCallback(tess, GLU_TESS_COMBINE, (void (__stdcall*)(void))tessCombineCB);
gluTessBeginPolygon(tess, 0); // with NULL data
gluTessBeginContour(tess);
for (const Point &pt : expoly.contour.points) {
coords.emplace_back(unscale<double>(pt[0]));
coords.emplace_back(unscale<double>(pt[1]));
coords.emplace_back(0.);
gluTessVertex(tess, &coords[coords.size() - 3], &coords[coords.size() - 3]);
}
gluTessEndContour(tess);
for (const Polygon &poly : expoly.holes) {
gluTessBeginContour(tess);
for (const Point &pt : poly.points) {
coords.emplace_back(unscale<double>(pt[0]));
coords.emplace_back(unscale<double>(pt[1]));
coords.emplace_back(0.);
gluTessVertex(tess, &coords[coords.size() - 3], &coords[coords.size() - 3]);
}
gluTessEndContour(tess);
}
gluTessEndPolygon(tess);
gluDeleteTess(tess);
return std::move(triangles);
}
private:
static void tessBeginCB(GLenum which)
{
assert(which == GL_TRIANGLES || which == GL_TRIANGLE_FAN || which == GL_TRIANGLE_STRIP);
if (!(which == GL_TRIANGLES || which == GL_TRIANGLE_FAN || which == GL_TRIANGLE_STRIP))
printf("Co je to za haluz!?\n");
primitive_type = which;
num_points = 0;
}
static void tessEndCB()
{
num_points = 0;
}
static void tessVertexCB(const GLvoid *data)
{
if (data == nullptr)
return;
const GLdouble *ptr = (const GLdouble*)data;
++ num_points;
if (num_points == 1) {
memcpy(pt0, ptr, sizeof(GLdouble) * 3);
} else if (num_points == 2) {
memcpy(pt1, ptr, sizeof(GLdouble) * 3);
} else {
bool flip = flipped;
if (primitive_type == GL_TRIANGLE_STRIP && num_points == 4) {
flip = !flip;
num_points = 2;
}
triangles.emplace_back(pt0[0], pt0[1], z);
if (flip) {
triangles.emplace_back(ptr[0], ptr[1], z);
triangles.emplace_back(pt1[0], pt1[1], z);
} else {
triangles.emplace_back(pt1[0], pt1[1], z);
triangles.emplace_back(ptr[0], ptr[1], z);
}
if (primitive_type == GL_TRIANGLE_STRIP) {
memcpy(pt0, pt1, sizeof(GLdouble) * 3);
memcpy(pt1, ptr, sizeof(GLdouble) * 3);
} else if (primitive_type == GL_TRIANGLE_FAN) {
memcpy(pt1, ptr, sizeof(GLdouble) * 3);
} else {
assert(which == GL_TRIANGLES);
assert(num_points == 3);
num_points = 0;
}
}
}
static void tessCombineCB(const GLdouble newVertex[3], const GLdouble *neighborVertex[4], const GLfloat neighborWeight[4], GLdouble **outData)
{
intersection_points.emplace_back(newVertex[0], newVertex[1], newVertex[2]);
*outData = intersection_points.back().data();
}
static void tessErrorCB(GLenum errorCode)
{
const GLubyte *errorStr;
errorStr = gluErrorString(errorCode);
printf("Error: %s\n", (const char*)errorStr);
}
static GLenum primitive_type;
static GLdouble pt0[3];
static GLdouble pt1[3];
static int num_points;
static Pointf3s triangles;
static std::deque<Vec3d> intersection_points;
static double z;
static bool flipped;
};
GLenum TessWrapper::primitive_type;
GLdouble TessWrapper::pt0[3];
GLdouble TessWrapper::pt1[3];
int TessWrapper::num_points;
Pointf3s TessWrapper::triangles;
std::deque<Vec3d> TessWrapper::intersection_points;
double TessWrapper::z;
bool TessWrapper::flipped;
static Pointf3s triangulate_expolygons(const ExPolygons &polys, coordf_t z, bool flip)
{
Pointf3s triangles;
#if 0
for (const ExPolygon& poly : polys) {
Polygons poly_triangles;
// poly.triangulate() is based on a trapezoidal decomposition implemented in an extremely expensive way by clipping the whole input contour with a polygon!
poly.triangulate(&poly_triangles);
// poly.triangulate_p2t() is based on the poly2tri library, which is not quite stable, it often ends up in a nice stack overflow!
// poly.triangulate_p2t(&poly_triangles);
for (const Polygon &t : poly_triangles)
if (flip) {
triangles.emplace_back(to_3d(unscale(t.points[2]), z));
triangles.emplace_back(to_3d(unscale(t.points[1]), z));
triangles.emplace_back(to_3d(unscale(t.points[0]), z));
} else {
triangles.emplace_back(to_3d(unscale(t.points[0]), z));
triangles.emplace_back(to_3d(unscale(t.points[1]), z));
triangles.emplace_back(to_3d(unscale(t.points[2]), z));
}
}
#else
// for (const ExPolygon &poly : union_ex(simplify_polygons(to_polygons(polys), true))) {
for (const ExPolygon &poly : polys) {
append(triangles, TessWrapper::tesselate(poly, z, flip));
continue;
std::list<TPPLPoly> input = expoly_to_polypartition_input(poly);
std::list<TPPLPoly> output;
// int res = TPPLPartition().Triangulate_MONO(&input, &output);
int res = TPPLPartition().Triangulate_EC(&input, &output);
if (res == 1) {
// Triangulation succeeded. Convert to triangles.
size_t num_triangles = 0;
for (const TPPLPoly &poly : output)
if (poly.GetNumPoints() >= 3)
num_triangles += (size_t)poly.GetNumPoints() - 2;
triangles.reserve(triangles.size() + num_triangles * 3);
for (const TPPLPoly &poly : output) {
long num_points = poly.GetNumPoints();
if (num_points >= 3) {
const TPPLPoint *pt0 = &poly[0];
const TPPLPoint *pt1 = nullptr;
const TPPLPoint *pt2 = &poly[1];
for (long i = 2; i < num_points; ++i) {
pt1 = pt2;
pt2 = &poly[i];
if (flip) {
triangles.emplace_back(unscale<double>(pt2->x), unscale<double>(pt2->y), z);
triangles.emplace_back(unscale<double>(pt1->x), unscale<double>(pt1->y), z);
triangles.emplace_back(unscale<double>(pt0->x), unscale<double>(pt0->y), z);
} else {
triangles.emplace_back(unscale<double>(pt0->x), unscale<double>(pt0->y), z);
triangles.emplace_back(unscale<double>(pt1->x), unscale<double>(pt1->y), z);
triangles.emplace_back(unscale<double>(pt2->x), unscale<double>(pt2->y), z);
}
}
}
}
} else {
// Triangulation by polypartition failed. Use the expensive slow implementation.
Polygons poly_triangles;
// poly.triangulate() is based on a trapezoidal decomposition implemented in an extremely expensive way by clipping the whole input contour with a polygon!
poly.triangulate(&poly_triangles);
// poly.triangulate_p2t() is based on the poly2tri library, which is not quite stable, it often ends up in a nice stack overflow!
// poly.triangulate_p2t(&poly_triangles);
for (const Polygon &t : poly_triangles)
if (flip) {
triangles.emplace_back(to_3d(unscale(t.points[2]), z));
triangles.emplace_back(to_3d(unscale(t.points[1]), z));
triangles.emplace_back(to_3d(unscale(t.points[0]), z));
} else {
triangles.emplace_back(to_3d(unscale(t.points[0]), z));
triangles.emplace_back(to_3d(unscale(t.points[1]), z));
triangles.emplace_back(to_3d(unscale(t.points[2]), z));
}
}
}
#endif
return triangles;
}
void GLCanvas3D::_render_sla_slices() const
{
if (!m_use_clipping_planes || wxGetApp().preset_bundle->printers.get_edited_preset().printer_technology() != ptSLA)
@ -6448,34 +6662,32 @@ void GLCanvas3D::_render_sla_slices() const
{
const SLAPrintObject* obj = print_objects[i];
Pointf3s bottom_obj_triangles;
Pointf3s bottom_sup_triangles;
Pointf3s top_obj_triangles;
Pointf3s top_sup_triangles;
double shift_z = obj->get_current_elevation();
double min_z = clip_min_z - shift_z;
double max_z = clip_max_z - shift_z;
if (m_sla_caps[0].matches(min_z))
SlaCap::ObjectIdToTrianglesMap::iterator it_caps_bottom = m_sla_caps[0].triangles.find(i);
SlaCap::ObjectIdToTrianglesMap::iterator it_caps_top = m_sla_caps[1].triangles.find(i);
{
SlaCap::ObjectIdToTrianglesMap::const_iterator it = m_sla_caps[0].triangles.find(i);
if (it != m_sla_caps[0].triangles.end())
{
bottom_obj_triangles = it->second.object;
bottom_sup_triangles = it->second.suppports;
}
}
if (m_sla_caps[1].matches(max_z))
{
SlaCap::ObjectIdToTrianglesMap::const_iterator it = m_sla_caps[1].triangles.find(i);
if (it != m_sla_caps[1].triangles.end())
{
top_obj_triangles = it->second.object;
top_sup_triangles = it->second.suppports;
if (it_caps_bottom == m_sla_caps[0].triangles.end())
it_caps_bottom = m_sla_caps[0].triangles.emplace(i, SlaCap::Triangles()).first;
if (! m_sla_caps[0].matches(min_z)) {
m_sla_caps[0].z = min_z;
it_caps_bottom->second.object.clear();
it_caps_bottom->second.supports.clear();
}
if (it_caps_top == m_sla_caps[1].triangles.end())
it_caps_top = m_sla_caps[1].triangles.emplace(i, SlaCap::Triangles()).first;
if (! m_sla_caps[1].matches(max_z)) {
m_sla_caps[1].z = max_z;
it_caps_top->second.object.clear();
it_caps_top->second.supports.clear();
}
}
Pointf3s &bottom_obj_triangles = it_caps_bottom->second.object;
Pointf3s &bottom_sup_triangles = it_caps_bottom->second.supports;
Pointf3s &top_obj_triangles = it_caps_top->second.object;
Pointf3s &top_sup_triangles = it_caps_top->second.supports;
const std::vector<SLAPrintObject::Instance>& instances = obj->instances();
struct InstanceTransform
@ -6501,86 +6713,22 @@ void GLCanvas3D::_render_sla_slices() const
if (it_min_z != index.end())
{
// calculate model bottom cap
if (bottom_obj_triangles.empty() && (it_min_z->second.model_slices_idx < model_slices.size()))
{
// calculate model bottom cap
const ExPolygons& polys = model_slices[it_min_z->second.model_slices_idx];
for (const ExPolygon& poly : polys)
{
Polygons poly_triangles;
poly.triangulate(&poly_triangles);
for (const Polygon& t : poly_triangles)
{
for (int v = 2; v >= 0; --v)
{
bottom_obj_triangles.emplace_back(to_3d(unscale(t.points[v]), min_z));
}
}
}
}
bottom_obj_triangles = triangulate_expolygons(model_slices[it_min_z->second.model_slices_idx], min_z, true);
// calculate support bottom cap
if (bottom_sup_triangles.empty() && (it_min_z->second.support_slices_idx < support_slices.size()))
{
// calculate support bottom cap
const ExPolygons& polys = support_slices[it_min_z->second.support_slices_idx];
for (const ExPolygon& poly : polys)
{
Polygons poly_triangles;
poly.triangulate(&poly_triangles);
for (const Polygon& t : poly_triangles)
{
for (int v = 2; v >= 0; --v)
{
bottom_sup_triangles.emplace_back(to_3d(unscale(t.points[v]), min_z));
}
}
}
m_sla_caps[0].triangles.insert(SlaCap::ObjectIdToTrianglesMap::value_type(i, { bottom_obj_triangles, bottom_sup_triangles }));
m_sla_caps[0].z = min_z;
}
bottom_sup_triangles = triangulate_expolygons(support_slices[it_min_z->second.support_slices_idx], min_z, true);
}
if (it_max_z != index.end())
{
// calculate model top cap
if (top_obj_triangles.empty() && (it_max_z->second.model_slices_idx < model_slices.size()))
{
// calculate model top cap
const ExPolygons& polys = model_slices[it_max_z->second.model_slices_idx];
for (const ExPolygon& poly : polys)
{
Polygons poly_triangles;
poly.triangulate(&poly_triangles);
for (const Polygon& t : poly_triangles)
{
for (int v = 0; v < 3; ++v)
{
top_obj_triangles.emplace_back(to_3d(unscale(t.points[v]), max_z));
}
}
}
}
top_obj_triangles = triangulate_expolygons(model_slices[it_max_z->second.model_slices_idx], max_z, false);
// calculate support top cap
if (top_sup_triangles.empty() && (it_max_z->second.support_slices_idx < support_slices.size()))
{
// calculate support top cap
const ExPolygons& polys = support_slices[it_max_z->second.support_slices_idx];
for (const ExPolygon& poly : polys)
{
Polygons poly_triangles;
poly.triangulate(&poly_triangles);
for (const Polygon& t : poly_triangles)
{
for (int v = 0; v < 3; ++v)
{
top_sup_triangles.emplace_back(to_3d(unscale(t.points[v]), max_z));
}
}
}
}
m_sla_caps[1].triangles.insert(SlaCap::ObjectIdToTrianglesMap::value_type(i, { top_obj_triangles, top_sup_triangles }));
m_sla_caps[1].z = max_z;
top_sup_triangles = triangulate_expolygons(support_slices[it_max_z->second.support_slices_idx], max_z, false);
}
}