mirror of
				https://github.com/SoftFever/OrcaSlicer.git
				synced 2025-10-31 04:31:15 -06:00 
			
		
		
		
	
						commit
						15c0183647
					
				
					 2 changed files with 191 additions and 72 deletions
				
			
		|  | @ -90,12 +90,29 @@ inline R rectarea(const Pt& w, const std::array<It, 4>& rect) | ||||||
|     return rectarea<Pt, Unit, R>(w, *rect[0], *rect[1], *rect[2], *rect[3]); |     return rectarea<Pt, Unit, R>(w, *rect[0], *rect[1], *rect[2], *rect[3]); | ||||||
| } | } | ||||||
| 
 | 
 | ||||||
|  | template<class Pt, class Unit = TCompute<Pt>, class R = TCompute<Pt>> | ||||||
|  | inline R rectarea(const Pt& w, // the axis
 | ||||||
|  |                   const Unit& a, | ||||||
|  |                   const Unit& b) | ||||||
|  | { | ||||||
|  |     R m = R(a) / pl::magnsq<Pt, Unit>(w); | ||||||
|  |     m = m * b; | ||||||
|  |     return m; | ||||||
|  | }; | ||||||
|  | 
 | ||||||
|  | template<class R, class Pt, class Unit> | ||||||
|  | inline R rectarea(const RotatedBox<Pt, Unit> &rb) | ||||||
|  | { | ||||||
|  |     return rectarea<Pt, Unit, R>(rb.axis(), rb.bottom_extent(), rb.right_extent()); | ||||||
|  | }; | ||||||
|  | 
 | ||||||
| // This function is only applicable to counter-clockwise oriented convex
 | // This function is only applicable to counter-clockwise oriented convex
 | ||||||
| // polygons where only two points can be collinear witch each other.
 | // polygons where only two points can be collinear witch each other.
 | ||||||
| template <class RawShape, | template <class RawShape, | ||||||
|           class Unit = TCompute<RawShape>, |           class Unit = TCompute<RawShape>, | ||||||
|           class Ratio = TCompute<RawShape>>  |           class Ratio = TCompute<RawShape>, | ||||||
| RotatedBox<TPoint<RawShape>, Unit> minAreaBoundingBox(const RawShape& sh)  |           class VisitFn> | ||||||
|  | void rotcalipers(const RawShape& sh, VisitFn &&visitfn) | ||||||
| { | { | ||||||
|     using Point = TPoint<RawShape>; |     using Point = TPoint<RawShape>; | ||||||
|     using Iterator = typename TContour<RawShape>::const_iterator; |     using Iterator = typename TContour<RawShape>::const_iterator; | ||||||
|  | @ -106,9 +123,9 @@ RotatedBox<TPoint<RawShape>, Unit> minAreaBoundingBox(const RawShape& sh) | ||||||
|     auto last = std::prev(sl::cend(sh)); |     auto last = std::prev(sl::cend(sh)); | ||||||
| 
 | 
 | ||||||
|     // Check conditions and return undefined box if input is not sane.
 |     // Check conditions and return undefined box if input is not sane.
 | ||||||
|     if(last == first) return {}; |     if(last == first) return; | ||||||
|     if(getX(*first) == getX(*last) && getY(*first) == getY(*last)) --last; |     if(getX(*first) == getX(*last) && getY(*first) == getY(*last)) --last; | ||||||
|     if(last - first < 2) return {}; |     if(last - first < 2) return; | ||||||
| 
 | 
 | ||||||
|     RawShape shcpy; // empty at this point
 |     RawShape shcpy; // empty at this point
 | ||||||
|     { |     { | ||||||
|  | @ -129,7 +146,7 @@ RotatedBox<TPoint<RawShape>, Unit> minAreaBoundingBox(const RawShape& sh) | ||||||
| 
 | 
 | ||||||
|     // Cyclic iterator increment
 |     // Cyclic iterator increment
 | ||||||
|     auto inc = [&first, &last](Iterator& it) { |     auto inc = [&first, &last](Iterator& it) { | ||||||
|        if(it == last) it = first; else ++it; |         if(it == last) it = first; else ++it; | ||||||
|     }; |     }; | ||||||
| 
 | 
 | ||||||
|     // Cyclic previous iterator
 |     // Cyclic previous iterator
 | ||||||
|  | @ -168,7 +185,7 @@ RotatedBox<TPoint<RawShape>, Unit> minAreaBoundingBox(const RawShape& sh) | ||||||
|     // the smallest rotation is selected and the supporting vertices are
 |     // the smallest rotation is selected and the supporting vertices are
 | ||||||
|     // returned in the 'rect' argument.
 |     // returned in the 'rect' argument.
 | ||||||
|     auto update = [&next, &inc] |     auto update = [&next, &inc] | ||||||
|             (const Point& w, std::array<Iterator, 4>& rect)  |         (const Point& w, std::array<Iterator, 4>& rect) | ||||||
|     { |     { | ||||||
|         Iterator B = rect[0], Bn = next(B); |         Iterator B = rect[0], Bn = next(B); | ||||||
|         Iterator R = rect[1], Rn = next(R); |         Iterator R = rect[1], Rn = next(R); | ||||||
|  | @ -219,12 +236,14 @@ RotatedBox<TPoint<RawShape>, Unit> minAreaBoundingBox(const RawShape& sh) | ||||||
|     }; |     }; | ||||||
| 
 | 
 | ||||||
|     Point w(1, 0); |     Point w(1, 0); | ||||||
|     Point w_min = w; |  | ||||||
|     Ratio minarea((Unit(getX(*maxX)) - getX(*minX)) *  |  | ||||||
|                   (Unit(getY(*maxY)) - getY(*minY))); |  | ||||||
|      |  | ||||||
|     std::array<Iterator, 4> rect = {minY, maxX, maxY, minX}; |     std::array<Iterator, 4> rect = {minY, maxX, maxY, minX}; | ||||||
|     std::array<Iterator, 4> minrect = rect; | 
 | ||||||
|  |     { | ||||||
|  |         Unit a = dot<Point, Unit>(w, *rect[1] - *rect[3]); | ||||||
|  |         Unit b = dot<Point, Unit>(-perp(w), *rect[2] - *rect[0]); | ||||||
|  |         if (!visitfn(RotatedBox<Point, Unit>{w, a, b})) | ||||||
|  |             return; | ||||||
|  |     } | ||||||
| 
 | 
 | ||||||
|     // An edge might be examined twice in which case the algorithm terminates.
 |     // An edge might be examined twice in which case the algorithm terminates.
 | ||||||
|     size_t c = 0, count = last - first + 1; |     size_t c = 0, count = last - first + 1; | ||||||
|  | @ -243,18 +262,35 @@ RotatedBox<TPoint<RawShape>, Unit> minAreaBoundingBox(const RawShape& sh) | ||||||
|         // get the unnormalized direction vector
 |         // get the unnormalized direction vector
 | ||||||
|         w = *rect[0] - *prev(rect[0]); |         w = *rect[0] - *prev(rect[0]); | ||||||
| 
 | 
 | ||||||
|         // get the area of the rotated rectangle
 |         Unit a = dot<Point, Unit>(w, *rect[1] - *rect[3]); | ||||||
|         Ratio rarea = rectarea<Point, Unit, Ratio>(w, rect); |         Unit b = dot<Point, Unit>(-perp(w), *rect[2] - *rect[0]); | ||||||
|          |         if (!visitfn(RotatedBox<Point, Unit>{w, a, b})) | ||||||
|         // Update min area and the direction of the min bounding box;
 |             break; | ||||||
|         if(rarea <= minarea) { w_min = w; minarea = rarea; minrect = rect; } |  | ||||||
|     } |     } | ||||||
|  | } | ||||||
| 
 | 
 | ||||||
|     Unit a = dot<Point, Unit>(w_min, *minrect[1] - *minrect[3]); | // This function is only applicable to counter-clockwise oriented convex
 | ||||||
|     Unit b = dot<Point, Unit>(-perp(w_min), *minrect[2] - *minrect[0]); | // polygons where only two points can be collinear witch each other.
 | ||||||
|     RotatedBox<Point, Unit> bb(w_min, a, b); | template <class S, | ||||||
|  |           class Unit = TCompute<S>, | ||||||
|  |           class Ratio = TCompute<S>> | ||||||
|  | RotatedBox<TPoint<S>, Unit> minAreaBoundingBox(const S& sh) | ||||||
|  | { | ||||||
|  |     RotatedBox<TPoint<S>, Unit> minbox; | ||||||
|  |     Ratio minarea = std::numeric_limits<Unit>::max(); | ||||||
|  |     auto minfn = [&minarea, &minbox](const RotatedBox<TPoint<S>, Unit> &rbox){ | ||||||
|  |         Ratio area = rectarea<Ratio>(rbox); | ||||||
|  |         if (area <= minarea)  { | ||||||
|  |             minarea = area; | ||||||
|  |             minbox = rbox; | ||||||
|  |         } | ||||||
| 
 | 
 | ||||||
|     return bb; |         return true; // continue search
 | ||||||
|  |     }; | ||||||
|  | 
 | ||||||
|  |     rotcalipers<S, Unit, Ratio>(sh, minfn); | ||||||
|  | 
 | ||||||
|  |     return minbox; | ||||||
| } | } | ||||||
| 
 | 
 | ||||||
| template <class RawShape> Radians minAreaBoundingBoxRotation(const RawShape& sh) | template <class RawShape> Radians minAreaBoundingBoxRotation(const RawShape& sh) | ||||||
|  | @ -262,7 +298,75 @@ template <class RawShape> Radians minAreaBoundingBoxRotation(const RawShape& sh) | ||||||
|     return minAreaBoundingBox(sh).angleToX(); |     return minAreaBoundingBox(sh).angleToX(); | ||||||
| } | } | ||||||
| 
 | 
 | ||||||
|  | // Function to find a rotation for a shape that makes it fit into a box.
 | ||||||
|  | //
 | ||||||
|  | // The method is based on finding a pair of rotations from the rotating calipers
 | ||||||
|  | // algorithm such that the aspect ratio is changing from being smaller than
 | ||||||
|  | // that of the target to being bigger or vice versa. So that the correct
 | ||||||
|  | // AR is somewhere between the obtained pair of angles. Then bisecting that
 | ||||||
|  | // interval is sufficient to find the correct angle.
 | ||||||
|  | //
 | ||||||
|  | // The argument eps is the absolute error limit for the searched angle interval.
 | ||||||
|  | template<class S, class Unit = TCompute<S>, class Ratio = TCompute<S>> | ||||||
|  | Radians fitIntoBoxRotation(const S &shape, const _Box<TPoint<S>> &box, Radians eps = 1e-4) | ||||||
|  | { | ||||||
|  |     constexpr auto get_aspect_r = [](const auto &b) -> double { | ||||||
|  |         return double(b.width()) / b.height(); | ||||||
|  |     }; | ||||||
| 
 | 
 | ||||||
|  |     auto aspect_r = get_aspect_r(box); | ||||||
|  | 
 | ||||||
|  |     RotatedBox<TPoint<S>, Unit> prev_rbox; | ||||||
|  |     Radians a_from = 0., a_to = 0.; | ||||||
|  |     auto visitfn = [&](const RotatedBox<TPoint<S>, Unit> &rbox) { | ||||||
|  |         bool lower_prev    = get_aspect_r(prev_rbox) < aspect_r; | ||||||
|  |         bool lower_current = get_aspect_r(rbox) < aspect_r; | ||||||
|  | 
 | ||||||
|  |         if (lower_prev != lower_current) { | ||||||
|  |             a_from = prev_rbox.angleToX(); | ||||||
|  |             a_to   = rbox.angleToX(); | ||||||
|  |             return false; | ||||||
|  |         } | ||||||
|  | 
 | ||||||
|  |         return true; | ||||||
|  |     }; | ||||||
|  | 
 | ||||||
|  |     rotcalipers<S, Unit, Ratio>(shape, visitfn); | ||||||
|  | 
 | ||||||
|  |     auto rot_shape_bb = [&shape](Radians r) { | ||||||
|  |         auto s = shape; | ||||||
|  |         sl::rotate(s, r); | ||||||
|  |         return sl::boundingBox(s); | ||||||
|  |     }; | ||||||
|  | 
 | ||||||
|  |     auto rot_aspect_r = [&rot_shape_bb, &get_aspect_r](Radians r) { | ||||||
|  |         return get_aspect_r(rot_shape_bb(r)); | ||||||
|  |     }; | ||||||
|  | 
 | ||||||
|  |     // Lets bisect the retrieved interval where the correct aspect ratio is.
 | ||||||
|  |     double ar_from = rot_aspect_r(a_from); | ||||||
|  |     auto would_fit = [&box](const _Box<TPoint<S>> &b) { | ||||||
|  |         return b.width() < box.width() && b.height() < box.height(); | ||||||
|  |     }; | ||||||
|  | 
 | ||||||
|  |     Radians middle = (a_from + a_to) / 2.; | ||||||
|  |     _Box<TPoint<S>> box_middle = rot_shape_bb(middle); | ||||||
|  |     while (!would_fit(box_middle) && std::abs(a_to - a_from) > eps) | ||||||
|  |     { | ||||||
|  |         double ar_middle = get_aspect_r(box_middle); | ||||||
|  |         if ((ar_from < aspect_r) != (ar_middle < aspect_r)) | ||||||
|  |             a_to = middle; | ||||||
|  |         else | ||||||
|  |             a_from = middle; | ||||||
|  | 
 | ||||||
|  |         ar_from = rot_aspect_r(a_from); | ||||||
|  |         middle = (a_from + a_to) / 2.; | ||||||
|  |         box_middle = rot_shape_bb(middle); | ||||||
|  |     } | ||||||
|  | 
 | ||||||
|  |     return middle; | ||||||
| } | } | ||||||
| 
 | 
 | ||||||
|  | } // namespace libnest2d
 | ||||||
|  | 
 | ||||||
| #endif // ROTCALIPERS_HPP
 | #endif // ROTCALIPERS_HPP
 | ||||||
|  |  | ||||||
|  | @ -472,6 +472,12 @@ template<class S> Radians min_area_boundingbox_rotation(const S &sh) | ||||||
|         .angleToX(); |         .angleToX(); | ||||||
| } | } | ||||||
| 
 | 
 | ||||||
|  | template<class S> | ||||||
|  | Radians fit_into_box_rotation(const S &sh, const _Box<TPoint<S>> &box) | ||||||
|  | { | ||||||
|  |     return fitIntoBoxRotation<S, TCompute<S>, boost::rational<LargeInt>>(sh, box); | ||||||
|  | } | ||||||
|  | 
 | ||||||
| template<class BinT> // Arrange for arbitrary bin type
 | template<class BinT> // Arrange for arbitrary bin type
 | ||||||
| void _arrange( | void _arrange( | ||||||
|         std::vector<Item> &           shapes, |         std::vector<Item> &           shapes, | ||||||
|  | @ -509,10 +515,19 @@ void _arrange( | ||||||
|     // Use the minimum bounding box rotation as a starting point.
 |     // Use the minimum bounding box rotation as a starting point.
 | ||||||
|     // TODO: This only works for convex hull. If we ever switch to concave
 |     // TODO: This only works for convex hull. If we ever switch to concave
 | ||||||
|     // polygon nesting, a convex hull needs to be calculated.
 |     // polygon nesting, a convex hull needs to be calculated.
 | ||||||
|     if (params.allow_rotations) |     if (params.allow_rotations) { | ||||||
|         for (auto &itm : shapes) |         for (auto &itm : shapes) { | ||||||
|             itm.rotation(min_area_boundingbox_rotation(itm.rawShape())); |             itm.rotation(min_area_boundingbox_rotation(itm.rawShape())); | ||||||
| 
 | 
 | ||||||
|  |             // If the item is too big, try to find a rotation that makes it fit
 | ||||||
|  |             if constexpr (std::is_same_v<BinT, Box>) { | ||||||
|  |                 auto bb = itm.boundingBox(); | ||||||
|  |                 if (bb.width() >= bin.width() || bb.height() >= bin.height()) | ||||||
|  |                     itm.rotate(fit_into_box_rotation(itm.transformedShape(), bin)); | ||||||
|  |             } | ||||||
|  |         } | ||||||
|  |     } | ||||||
|  | 
 | ||||||
|     arranger(inp.begin(), inp.end()); |     arranger(inp.begin(), inp.end()); | ||||||
|     for (Item &itm : inp) itm.inflate(-infl); |     for (Item &itm : inp) itm.inflate(-infl); | ||||||
| } | } | ||||||
|  |  | ||||||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue
	
	 tamasmeszaros
						tamasmeszaros