mirror of
https://github.com/SoftFever/OrcaSlicer.git
synced 2025-07-17 11:47:54 -06:00
Add the full source of BambuStudio
using version 1.0.10
This commit is contained in:
parent
30bcadab3e
commit
1555904bef
3771 changed files with 1251328 additions and 0 deletions
347
src/libslic3r/libslic3r.h
Normal file
347
src/libslic3r/libslic3r.h
Normal file
|
@ -0,0 +1,347 @@
|
|||
#ifndef _libslic3r_h_
|
||||
#define _libslic3r_h_
|
||||
|
||||
#include "libslic3r_version.h"
|
||||
#define SLIC3R_APP_FULL_NAME "Bambu Studio"
|
||||
#define GCODEVIEWER_APP_NAME "BambuStudio G-code Viewer"
|
||||
#define GCODEVIEWER_APP_KEY "BambuStudioGcodeViewer"
|
||||
#define GCODEVIEWER_BUILD_ID std::string("BambuStudio G-code Viewer-") + std::string(SLIC3R_VERSION) + std::string("-RC")
|
||||
|
||||
// this needs to be included early for MSVC (listing it in Build.PL is not enough)
|
||||
#include <memory>
|
||||
#include <array>
|
||||
#include <algorithm>
|
||||
#include <ostream>
|
||||
#include <iostream>
|
||||
#include <math.h>
|
||||
#include <queue>
|
||||
#include <sstream>
|
||||
#include <cstdio>
|
||||
#include <stdint.h>
|
||||
#include <stdarg.h>
|
||||
#include <vector>
|
||||
#include <cassert>
|
||||
#include <cmath>
|
||||
#include <type_traits>
|
||||
|
||||
#include "Technologies.hpp"
|
||||
#include "Semver.hpp"
|
||||
|
||||
#if 1
|
||||
// Saves around 32% RAM after slicing step, 6.7% after G-code export (tested on PrusaSlicer 2.2.0 final).
|
||||
using coord_t = int32_t;
|
||||
#else
|
||||
//FIXME At least FillRectilinear2 and std::boost Voronoi require coord_t to be 32bit.
|
||||
typedef int64_t coord_t;
|
||||
#endif
|
||||
|
||||
using coordf_t = double;
|
||||
|
||||
//FIXME This epsilon value is used for many non-related purposes:
|
||||
// For a threshold of a squared Euclidean distance,
|
||||
// for a trheshold in a difference of radians,
|
||||
// for a threshold of a cross product of two non-normalized vectors etc.
|
||||
static constexpr double EPSILON = 1e-4;
|
||||
// Scaling factor for a conversion from coord_t to coordf_t: 10e-6
|
||||
// This scaling generates a following fixed point representation with for a 32bit integer:
|
||||
// 0..4294mm with 1nm resolution
|
||||
// int32_t fits an interval of (-2147.48mm, +2147.48mm)
|
||||
// with int64_t we don't have to worry anymore about the size of the int.
|
||||
static constexpr double SCALING_FACTOR = 0.000001;
|
||||
static constexpr double PI = 3.141592653589793238;
|
||||
// When extruding a closed loop, the loop is interrupted and shortened a bit to reduce the seam.
|
||||
static constexpr double LOOP_CLIPPING_LENGTH_OVER_NOZZLE_DIAMETER = 0.15;
|
||||
static constexpr double RESOLUTION = 0.0125;
|
||||
#define SCALED_RESOLUTION (RESOLUTION / SCALING_FACTOR)
|
||||
static constexpr double SPARSE_INFILL_RESOLUTION = 0.04;
|
||||
#define SCALED_SPARSE_INFILL_RESOLUTION (SPARSE_INFILL_RESOLUTION / SCALING_FACTOR)
|
||||
|
||||
static constexpr double SUPPORT_RESOLUTION = 0.05;
|
||||
#define SCALED_SUPPORT_RESOLUTION (SUPPORT_RESOLUTION / SCALING_FACTOR)
|
||||
// Maximum perimeter length for the loop to apply the small perimeter speed.
|
||||
#define SMALL_PERIMETER_LENGTH ((6.5 / SCALING_FACTOR) * 2 * PI)
|
||||
static constexpr double INSET_OVERLAP_TOLERANCE = 0.4;
|
||||
// 3mm ring around the top / bottom / bridging areas.
|
||||
//FIXME This is quite a lot.
|
||||
// BBS: 3mm is too large and will cause overflow when printing object which likes shell.
|
||||
// We decided to reduce this value according to superslicer.
|
||||
// The right way is that area should not be enlarged. But should find arched point at last layer, expecially for
|
||||
// bridge area.
|
||||
//static constexpr double EXTERNAL_INFILL_MARGIN = 3;
|
||||
static constexpr double EXTERNAL_INFILL_MARGIN = 1;
|
||||
//FIXME Better to use an inline function with an explicit return type.
|
||||
//inline coord_t scale_(coordf_t v) { return coord_t(floor(v / SCALING_FACTOR + 0.5f)); }
|
||||
#define scale_(val) ((val) / SCALING_FACTOR)
|
||||
|
||||
//BBS: BBS only support relative E and can't been changed by user at the moment. because
|
||||
//BBS need to support skip object when printing.
|
||||
static constexpr bool RELATIVE_E_AXIS = 1;
|
||||
|
||||
#define SCALED_EPSILON scale_(EPSILON)
|
||||
|
||||
#ifndef UNUSED
|
||||
#define UNUSED(x) (void)(x)
|
||||
#endif /* UNUSED */
|
||||
|
||||
//BBS: some global const config which user can not change, but developer can
|
||||
static constexpr bool g_config_thick_bridges = true;
|
||||
static constexpr bool g_config_support_sharp_tails = true;
|
||||
static constexpr bool g_config_remove_small_overhangs = true;
|
||||
static constexpr float g_config_tree_support_collision_resolution = 0.2;
|
||||
static constexpr float g_config_slice_closing_radius = 0.049;
|
||||
|
||||
// Write slices as SVG images into out directory during the 2D processing of the slices.
|
||||
// #define SLIC3R_DEBUG_SLICE_PROCESSING
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
extern Semver SEMVER;
|
||||
|
||||
template<typename T, typename Q>
|
||||
inline T unscale(Q v) { return T(v) * T(SCALING_FACTOR); }
|
||||
|
||||
enum Axis {
|
||||
X=0,
|
||||
Y,
|
||||
Z,
|
||||
E,
|
||||
F,
|
||||
//BBS: add I, J, P axis
|
||||
I,
|
||||
J,
|
||||
P,
|
||||
NUM_AXES,
|
||||
// For the GCodeReader to mark a parsed axis, which is not in "XYZEF", it was parsed correctly.
|
||||
UNKNOWN_AXIS = NUM_AXES,
|
||||
NUM_AXES_WITH_UNKNOWN,
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
inline void append(std::vector<T>& dest, const std::vector<T>& src)
|
||||
{
|
||||
if (dest.empty())
|
||||
dest = src;
|
||||
else
|
||||
dest.insert(dest.end(), src.begin(), src.end());
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
inline void append(std::vector<T>& dest, std::vector<T>&& src)
|
||||
{
|
||||
if (dest.empty())
|
||||
dest = std::move(src);
|
||||
else {
|
||||
dest.reserve(dest.size() + src.size());
|
||||
std::move(std::begin(src), std::end(src), std::back_inserter(dest));
|
||||
}
|
||||
src.clear();
|
||||
src.shrink_to_fit();
|
||||
}
|
||||
|
||||
// Append the source in reverse.
|
||||
template <typename T>
|
||||
inline void append_reversed(std::vector<T>& dest, const std::vector<T>& src)
|
||||
{
|
||||
if (dest.empty())
|
||||
dest = src;
|
||||
else
|
||||
dest.insert(dest.end(), src.rbegin(), src.rend());
|
||||
}
|
||||
|
||||
// Append the source in reverse.
|
||||
template <typename T>
|
||||
inline void append_reversed(std::vector<T>& dest, std::vector<T>&& src)
|
||||
{
|
||||
if (dest.empty())
|
||||
dest = std::move(src);
|
||||
else {
|
||||
dest.reserve(dest.size() + src.size());
|
||||
std::move(std::rbegin(src), std::rend(src), std::back_inserter(dest));
|
||||
}
|
||||
src.clear();
|
||||
src.shrink_to_fit();
|
||||
}
|
||||
|
||||
// Casting an std::vector<> from one type to another type without warnings about a loss of accuracy.
|
||||
template<typename T_TO, typename T_FROM>
|
||||
std::vector<T_TO> cast(const std::vector<T_FROM> &src)
|
||||
{
|
||||
std::vector<T_TO> dst;
|
||||
dst.reserve(src.size());
|
||||
for (const T_FROM &a : src)
|
||||
dst.emplace_back((T_TO)a);
|
||||
return dst;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
inline void remove_nulls(std::vector<T*> &vec)
|
||||
{
|
||||
vec.erase(
|
||||
std::remove_if(vec.begin(), vec.end(), [](const T *ptr) { return ptr == nullptr; }),
|
||||
vec.end());
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
inline void sort_remove_duplicates(std::vector<T> &vec)
|
||||
{
|
||||
std::sort(vec.begin(), vec.end());
|
||||
vec.erase(std::unique(vec.begin(), vec.end()), vec.end());
|
||||
}
|
||||
|
||||
// Older compilers do not provide a std::make_unique template. Provide a simple one.
|
||||
template<typename T, typename... Args>
|
||||
inline std::unique_ptr<T> make_unique(Args&&... args) {
|
||||
return std::unique_ptr<T>(new T(std::forward<Args>(args)...));
|
||||
}
|
||||
|
||||
// Variant of std::lower_bound() with compare predicate, but without the key.
|
||||
// This variant is very useful in case that the T type is large or it does not even have a public constructor.
|
||||
template<class ForwardIt, class LowerThanKeyPredicate>
|
||||
ForwardIt lower_bound_by_predicate(ForwardIt first, ForwardIt last, LowerThanKeyPredicate lower_than_key)
|
||||
{
|
||||
ForwardIt it;
|
||||
typename std::iterator_traits<ForwardIt>::difference_type count, step;
|
||||
count = std::distance(first, last);
|
||||
|
||||
while (count > 0) {
|
||||
it = first;
|
||||
step = count / 2;
|
||||
std::advance(it, step);
|
||||
if (lower_than_key(*it)) {
|
||||
first = ++it;
|
||||
count -= step + 1;
|
||||
}
|
||||
else
|
||||
count = step;
|
||||
}
|
||||
return first;
|
||||
}
|
||||
|
||||
// from https://en.cppreference.com/w/cpp/algorithm/lower_bound
|
||||
template<class ForwardIt, class T, class Compare=std::less<>>
|
||||
ForwardIt binary_find(ForwardIt first, ForwardIt last, const T& value, Compare comp={})
|
||||
{
|
||||
// Note: BOTH type T and the type after ForwardIt is dereferenced
|
||||
// must be implicitly convertible to BOTH Type1 and Type2, used in Compare.
|
||||
// This is stricter than lower_bound requirement (see above)
|
||||
|
||||
first = std::lower_bound(first, last, value, comp);
|
||||
return first != last && !comp(value, *first) ? first : last;
|
||||
}
|
||||
|
||||
// from https://en.cppreference.com/w/cpp/algorithm/lower_bound
|
||||
template<class ForwardIt, class LowerThanKeyPredicate, class EqualToKeyPredicate>
|
||||
ForwardIt binary_find_by_predicate(ForwardIt first, ForwardIt last, LowerThanKeyPredicate lower_thank_key, EqualToKeyPredicate equal_to_key)
|
||||
{
|
||||
// Note: BOTH type T and the type after ForwardIt is dereferenced
|
||||
// must be implicitly convertible to BOTH Type1 and Type2, used in Compare.
|
||||
// This is stricter than lower_bound requirement (see above)
|
||||
|
||||
first = lower_bound_by_predicate(first, last, lower_thank_key);
|
||||
return first != last && equal_to_key(*first) ? first : last;
|
||||
}
|
||||
|
||||
template<typename ContainerType, typename ValueType> inline bool contains(const ContainerType &c, const ValueType &v)
|
||||
{ return std::find(c.begin(), c.end(), v) != c.end(); }
|
||||
template<typename T> inline bool contains(const std::initializer_list<T> &il, const T &v)
|
||||
{ return std::find(il.begin(), il.end(), v) != il.end(); }
|
||||
|
||||
template<typename ContainerType, typename ValueType> inline bool one_of(const ValueType &v, const ContainerType &c)
|
||||
{ return contains(c, v); }
|
||||
template<typename T> inline bool one_of(const T& v, const std::initializer_list<T>& il)
|
||||
{ return contains(il, v); }
|
||||
|
||||
template<typename T>
|
||||
constexpr inline T sqr(T x)
|
||||
{
|
||||
return x * x;
|
||||
}
|
||||
|
||||
template <typename T, typename Number>
|
||||
constexpr inline T lerp(const T& a, const T& b, Number t)
|
||||
{
|
||||
assert((t >= Number(-EPSILON)) && (t <= Number(1) + Number(EPSILON)));
|
||||
return (Number(1) - t) * a + t * b;
|
||||
}
|
||||
|
||||
template <typename Number>
|
||||
constexpr inline bool is_approx(Number value, Number test_value)
|
||||
{
|
||||
return std::fabs(double(value) - double(test_value)) < double(EPSILON);
|
||||
}
|
||||
|
||||
// A meta-predicate which is true for integers wider than or equal to coord_t
|
||||
template<class I> struct is_scaled_coord
|
||||
{
|
||||
static const constexpr bool value =
|
||||
std::is_integral<I>::value &&
|
||||
std::numeric_limits<I>::digits >=
|
||||
std::numeric_limits<coord_t>::digits;
|
||||
};
|
||||
|
||||
// Meta predicates for floating, 'scaled coord' and generic arithmetic types
|
||||
// Can be used to restrict templates to work for only the specified set of types.
|
||||
// parameter T is the type we want to restrict
|
||||
// parameter O (Optional defaults to T) is the type that the whole expression
|
||||
// will be evaluated to.
|
||||
// e.g. template<class T> FloatingOnly<T, bool> is_nan(T val);
|
||||
// The whole template will be defined only for floating point types and the
|
||||
// return type will be bool.
|
||||
// For more info how to use, see docs for std::enable_if
|
||||
//
|
||||
template<class T, class O = T>
|
||||
using FloatingOnly = std::enable_if_t<std::is_floating_point<T>::value, O>;
|
||||
|
||||
template<class T, class O = T>
|
||||
using ScaledCoordOnly = std::enable_if_t<is_scaled_coord<T>::value, O>;
|
||||
|
||||
template<class T, class O = T>
|
||||
using IntegerOnly = std::enable_if_t<std::is_integral<T>::value, O>;
|
||||
|
||||
template<class T, class O = T>
|
||||
using ArithmeticOnly = std::enable_if_t<std::is_arithmetic<T>::value, O>;
|
||||
|
||||
template<class T, class O = T>
|
||||
using IteratorOnly = std::enable_if_t<
|
||||
!std::is_same_v<typename std::iterator_traits<T>::value_type, void>, O
|
||||
>;
|
||||
|
||||
template<class T, class I, class... Args> // Arbitrary allocator can be used
|
||||
IntegerOnly<I, std::vector<T, Args...>> reserve_vector(I capacity)
|
||||
{
|
||||
std::vector<T, Args...> ret;
|
||||
if (capacity > I(0)) ret.reserve(size_t(capacity));
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
// Borrowed from C++20
|
||||
template<class T>
|
||||
using remove_cvref_t = std::remove_cv_t<std::remove_reference_t<T>>;
|
||||
|
||||
// A very simple range concept implementation with iterator-like objects.
|
||||
// This should be replaced by std::ranges::subrange (C++20)
|
||||
template<class It> class Range
|
||||
{
|
||||
It from, to;
|
||||
public:
|
||||
|
||||
// The class is ready for range based for loops.
|
||||
It begin() const { return from; }
|
||||
It end() const { return to; }
|
||||
|
||||
// The iterator type can be obtained this way.
|
||||
using iterator = It;
|
||||
using value_type = typename std::iterator_traits<It>::value_type;
|
||||
|
||||
Range() = default;
|
||||
Range(It b, It e) : from(std::move(b)), to(std::move(e)) {}
|
||||
|
||||
// Some useful container-like methods...
|
||||
inline size_t size() const { return end() - begin(); }
|
||||
inline bool empty() const { return size() == 0; }
|
||||
};
|
||||
|
||||
} // namespace Slic3r
|
||||
|
||||
#endif
|
Loading…
Add table
Add a link
Reference in a new issue