mirror of
https://github.com/SoftFever/OrcaSlicer.git
synced 2025-10-19 14:51:11 -06:00
Add the full source of BambuStudio
using version 1.0.10
This commit is contained in:
parent
30bcadab3e
commit
1555904bef
3771 changed files with 1251328 additions and 0 deletions
152
src/libslic3r/SLA/Clustering.cpp
Normal file
152
src/libslic3r/SLA/Clustering.cpp
Normal file
|
@ -0,0 +1,152 @@
|
|||
#include "Clustering.hpp"
|
||||
#include "boost/geometry/index/rtree.hpp"
|
||||
|
||||
#include <libslic3r/SLA/SpatIndex.hpp>
|
||||
#include <libslic3r/SLA/BoostAdapter.hpp>
|
||||
|
||||
namespace Slic3r { namespace sla {
|
||||
|
||||
namespace bgi = boost::geometry::index;
|
||||
using Index3D = bgi::rtree< PointIndexEl, bgi::rstar<16, 4> /* ? */ >;
|
||||
|
||||
namespace {
|
||||
|
||||
bool cmp_ptidx_elements(const PointIndexEl& e1, const PointIndexEl& e2)
|
||||
{
|
||||
return e1.second < e2.second;
|
||||
};
|
||||
|
||||
ClusteredPoints cluster(Index3D &sindex,
|
||||
unsigned max_points,
|
||||
std::function<std::vector<PointIndexEl>(
|
||||
const Index3D &, const PointIndexEl &)> qfn)
|
||||
{
|
||||
using Elems = std::vector<PointIndexEl>;
|
||||
|
||||
// Recursive function for visiting all the points in a given distance to
|
||||
// each other
|
||||
std::function<void(Elems&, Elems&)> group =
|
||||
[&sindex, &group, max_points, qfn](Elems& pts, Elems& cluster)
|
||||
{
|
||||
for(auto& p : pts) {
|
||||
std::vector<PointIndexEl> tmp = qfn(sindex, p);
|
||||
|
||||
std::sort(tmp.begin(), tmp.end(), cmp_ptidx_elements);
|
||||
|
||||
Elems newpts;
|
||||
std::set_difference(tmp.begin(), tmp.end(),
|
||||
cluster.begin(), cluster.end(),
|
||||
std::back_inserter(newpts), cmp_ptidx_elements);
|
||||
|
||||
int c = max_points && newpts.size() + cluster.size() > max_points?
|
||||
int(max_points - cluster.size()) : int(newpts.size());
|
||||
|
||||
cluster.insert(cluster.end(), newpts.begin(), newpts.begin() + c);
|
||||
std::sort(cluster.begin(), cluster.end(), cmp_ptidx_elements);
|
||||
|
||||
if(!newpts.empty() && (!max_points || cluster.size() < max_points))
|
||||
group(newpts, cluster);
|
||||
}
|
||||
};
|
||||
|
||||
std::vector<Elems> clusters;
|
||||
for(auto it = sindex.begin(); it != sindex.end();) {
|
||||
Elems cluster = {};
|
||||
Elems pts = {*it};
|
||||
group(pts, cluster);
|
||||
|
||||
for(auto& c : cluster) sindex.remove(c);
|
||||
it = sindex.begin();
|
||||
|
||||
clusters.emplace_back(cluster);
|
||||
}
|
||||
|
||||
ClusteredPoints result;
|
||||
for(auto& cluster : clusters) {
|
||||
result.emplace_back();
|
||||
for(auto c : cluster) result.back().emplace_back(c.second);
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
std::vector<PointIndexEl> distance_queryfn(const Index3D& sindex,
|
||||
const PointIndexEl& p,
|
||||
double dist,
|
||||
unsigned max_points)
|
||||
{
|
||||
std::vector<PointIndexEl> tmp; tmp.reserve(max_points);
|
||||
sindex.query(
|
||||
bgi::nearest(p.first, max_points),
|
||||
std::back_inserter(tmp)
|
||||
);
|
||||
|
||||
for(auto it = tmp.begin(); it < tmp.end(); ++it)
|
||||
if((p.first - it->first).norm() > dist) it = tmp.erase(it);
|
||||
|
||||
return tmp;
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
// Clustering a set of points by the given criteria
|
||||
ClusteredPoints cluster(
|
||||
const std::vector<unsigned>& indices,
|
||||
std::function<Vec3d(unsigned)> pointfn,
|
||||
double dist,
|
||||
unsigned max_points)
|
||||
{
|
||||
// A spatial index for querying the nearest points
|
||||
Index3D sindex;
|
||||
|
||||
// Build the index
|
||||
for(auto idx : indices) sindex.insert( std::make_pair(pointfn(idx), idx));
|
||||
|
||||
return cluster(sindex, max_points,
|
||||
[dist, max_points](const Index3D& sidx, const PointIndexEl& p)
|
||||
{
|
||||
return distance_queryfn(sidx, p, dist, max_points);
|
||||
});
|
||||
}
|
||||
|
||||
// Clustering a set of points by the given criteria
|
||||
ClusteredPoints cluster(
|
||||
const std::vector<unsigned>& indices,
|
||||
std::function<Vec3d(unsigned)> pointfn,
|
||||
std::function<bool(const PointIndexEl&, const PointIndexEl&)> predicate,
|
||||
unsigned max_points)
|
||||
{
|
||||
// A spatial index for querying the nearest points
|
||||
Index3D sindex;
|
||||
|
||||
// Build the index
|
||||
for(auto idx : indices) sindex.insert( std::make_pair(pointfn(idx), idx));
|
||||
|
||||
return cluster(sindex, max_points,
|
||||
[max_points, predicate](const Index3D& sidx, const PointIndexEl& p)
|
||||
{
|
||||
std::vector<PointIndexEl> tmp; tmp.reserve(max_points);
|
||||
sidx.query(bgi::satisfies([p, predicate](const PointIndexEl& e){
|
||||
return predicate(p, e);
|
||||
}), std::back_inserter(tmp));
|
||||
return tmp;
|
||||
});
|
||||
}
|
||||
|
||||
ClusteredPoints cluster(const Eigen::MatrixXd& pts, double dist, unsigned max_points)
|
||||
{
|
||||
// A spatial index for querying the nearest points
|
||||
Index3D sindex;
|
||||
|
||||
// Build the index
|
||||
for(Eigen::Index i = 0; i < pts.rows(); i++)
|
||||
sindex.insert(std::make_pair(Vec3d(pts.row(i)), unsigned(i)));
|
||||
|
||||
return cluster(sindex, max_points,
|
||||
[dist, max_points](const Index3D& sidx, const PointIndexEl& p)
|
||||
{
|
||||
return distance_queryfn(sidx, p, dist, max_points);
|
||||
});
|
||||
}
|
||||
|
||||
}} // namespace Slic3r::sla
|
Loading…
Add table
Add a link
Reference in a new issue