mirror of
https://github.com/SoftFever/OrcaSlicer.git
synced 2025-10-19 23:01:22 -06:00
Add the full source of BambuStudio
using version 1.0.10
This commit is contained in:
parent
30bcadab3e
commit
1555904bef
3771 changed files with 1251328 additions and 0 deletions
140
src/libslic3r/Optimize/BruteforceOptimizer.hpp
Normal file
140
src/libslic3r/Optimize/BruteforceOptimizer.hpp
Normal file
|
@ -0,0 +1,140 @@
|
|||
#ifndef BRUTEFORCEOPTIMIZER_HPP
|
||||
#define BRUTEFORCEOPTIMIZER_HPP
|
||||
|
||||
#include <libslic3r/Optimize/Optimizer.hpp>
|
||||
|
||||
namespace Slic3r { namespace opt {
|
||||
|
||||
namespace detail {
|
||||
// Implementing a bruteforce optimizer
|
||||
|
||||
// Return the number of iterations needed to reach a specific grid position (idx)
|
||||
template<size_t N>
|
||||
long num_iter(const std::array<size_t, N> &idx, size_t gridsz)
|
||||
{
|
||||
long ret = 0;
|
||||
for (size_t i = 0; i < N; ++i) ret += idx[i] * std::pow(gridsz, i);
|
||||
return ret;
|
||||
}
|
||||
|
||||
// Implementation of a grid search where the search interval is sampled in
|
||||
// equidistant points for each dimension. Grid size determines the number of
|
||||
// samples for one dimension so the number of function calls is gridsize ^ dimension.
|
||||
struct AlgBurteForce {
|
||||
bool to_min;
|
||||
StopCriteria stc;
|
||||
size_t gridsz;
|
||||
|
||||
AlgBurteForce(const StopCriteria &cr, size_t gs): stc{cr}, gridsz{gs} {}
|
||||
|
||||
// This function is called recursively for each dimension and generates
|
||||
// the grid values for the particular dimension. If D is less than zero,
|
||||
// the object function input values are generated for each dimension and it
|
||||
// can be evaluated. The current best score is compared with the newly
|
||||
// returned score and changed appropriately.
|
||||
template<int D, size_t N, class Fn, class Cmp>
|
||||
bool run(std::array<size_t, N> &idx,
|
||||
Result<N> &result,
|
||||
const Bounds<N> &bounds,
|
||||
Fn &&fn,
|
||||
Cmp &&cmp)
|
||||
{
|
||||
if (stc.stop_condition()) return false;
|
||||
|
||||
if constexpr (D < 0) { // Let's evaluate fn
|
||||
Input<N> inp;
|
||||
|
||||
auto max_iter = stc.max_iterations();
|
||||
if (max_iter && num_iter(idx, gridsz) >= max_iter)
|
||||
return false;
|
||||
|
||||
for (size_t d = 0; d < N; ++d) {
|
||||
const Bound &b = bounds[d];
|
||||
double step = (b.max() - b.min()) / (gridsz - 1);
|
||||
inp[d] = b.min() + idx[d] * step;
|
||||
}
|
||||
|
||||
auto score = fn(inp);
|
||||
if (cmp(score, result.score)) { // Change current score to the new
|
||||
double absdiff = std::abs(score - result.score);
|
||||
|
||||
result.score = score;
|
||||
result.optimum = inp;
|
||||
|
||||
// Check if the required precision is reached.
|
||||
if (absdiff < stc.abs_score_diff() ||
|
||||
absdiff < stc.rel_score_diff() * std::abs(score))
|
||||
return false;
|
||||
}
|
||||
|
||||
} else {
|
||||
for (size_t i = 0; i < gridsz; ++i) {
|
||||
idx[D] = i; // Mark the current grid position and dig down
|
||||
if (!run<D - 1>(idx, result, bounds, std::forward<Fn>(fn),
|
||||
std::forward<Cmp>(cmp)))
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
template<class Fn, size_t N>
|
||||
Result<N> optimize(Fn&& fn,
|
||||
const Input<N> &/*initvals*/,
|
||||
const Bounds<N>& bounds)
|
||||
{
|
||||
std::array<size_t, N> idx = {};
|
||||
Result<N> result;
|
||||
|
||||
if (to_min) {
|
||||
result.score = std::numeric_limits<double>::max();
|
||||
run<int(N) - 1>(idx, result, bounds, std::forward<Fn>(fn),
|
||||
std::less<double>{});
|
||||
}
|
||||
else {
|
||||
result.score = std::numeric_limits<double>::lowest();
|
||||
run<int(N) - 1>(idx, result, bounds, std::forward<Fn>(fn),
|
||||
std::greater<double>{});
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace detail
|
||||
|
||||
using AlgBruteForce = detail::AlgBurteForce;
|
||||
|
||||
template<>
|
||||
class Optimizer<AlgBruteForce> {
|
||||
AlgBruteForce m_alg;
|
||||
|
||||
public:
|
||||
|
||||
Optimizer(const StopCriteria &cr = {}, size_t gridsz = 100)
|
||||
: m_alg{cr, gridsz}
|
||||
{}
|
||||
|
||||
Optimizer& to_max() { m_alg.to_min = false; return *this; }
|
||||
Optimizer& to_min() { m_alg.to_min = true; return *this; }
|
||||
|
||||
template<class Func, size_t N>
|
||||
Result<N> optimize(Func&& func,
|
||||
const Input<N> &initvals,
|
||||
const Bounds<N>& bounds)
|
||||
{
|
||||
return m_alg.optimize(std::forward<Func>(func), initvals, bounds);
|
||||
}
|
||||
|
||||
Optimizer &set_criteria(const StopCriteria &cr)
|
||||
{
|
||||
m_alg.stc = cr; return *this;
|
||||
}
|
||||
|
||||
const StopCriteria &get_criteria() const { return m_alg.stc; }
|
||||
};
|
||||
|
||||
}} // namespace Slic3r::opt
|
||||
|
||||
#endif // BRUTEFORCEOPTIMIZER_HPP
|
Loading…
Add table
Add a link
Reference in a new issue