mirror of
https://github.com/SoftFever/OrcaSlicer.git
synced 2025-07-14 10:17:55 -06:00
Add the full source of BambuStudio
using version 1.0.10
This commit is contained in:
parent
30bcadab3e
commit
1555904bef
3771 changed files with 1251328 additions and 0 deletions
203
src/libslic3r/CurveAnalyzer.cpp
Normal file
203
src/libslic3r/CurveAnalyzer.cpp
Normal file
|
@ -0,0 +1,203 @@
|
|||
#include "CurveAnalyzer.hpp"
|
||||
|
||||
#include <cmath>
|
||||
#include <cassert>
|
||||
|
||||
static const int curvatures_sampling_number = 6;
|
||||
static const double curvatures_densify_width = 1; // mm
|
||||
static const double curvatures_sampling_width = 6; // mm
|
||||
static const double curvatures_angle_best = PI/6;
|
||||
static const double curvatures_angle_worst = 5*PI/6;
|
||||
|
||||
static const double curvatures_best = (curvatures_angle_best * 1000 / curvatures_sampling_width);
|
||||
static const double curvatures_worst = (curvatures_angle_worst * 1000 / curvatures_sampling_width);
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
// This function is used to calculate curvature for paths.
|
||||
// Paths must be generated from a closed polygon.
|
||||
// Data in paths may be modify, and paths will be spilited and regenerated
|
||||
// arrording to different curve degree.
|
||||
void CurveAnalyzer::calculate_curvatures(ExtrusionPaths& paths, ECurveAnalyseMode mode)
|
||||
{
|
||||
Polygon polygon;
|
||||
std::vector<float> paths_length(paths.size(), 0.0);
|
||||
for (size_t i = 0; i < paths.size(); i++) {
|
||||
if (i == 0) {
|
||||
paths_length[i] = paths[i].polyline.length();
|
||||
}
|
||||
else {
|
||||
paths_length[i] = paths_length[i - 1] + paths[i].polyline.length();
|
||||
}
|
||||
polygon.points.insert(polygon.points.end(), paths[i].polyline.points.begin(), paths[i].polyline.points.end() - 1);
|
||||
}
|
||||
// 1 generate point series which is on the line of polygon, point distance along the polygon is smaller than 1mm
|
||||
polygon.densify(scale_(curvatures_densify_width));
|
||||
std::vector<float> polygon_length = polygon.parameter_by_length();
|
||||
|
||||
// 2 calculate angle of every segment
|
||||
size_t point_num = polygon.points.size();
|
||||
std::vector<float> angles(point_num, 0.f);
|
||||
for (size_t i = 0; i < point_num; i++) {
|
||||
size_t curr = i;
|
||||
size_t prev = (curr == 0) ? point_num - 1 : curr - 1;
|
||||
size_t next = (curr == point_num - 1) ? 0 : curr + 1;
|
||||
const Point v1 = polygon.points[curr] - polygon.points[prev];
|
||||
const Point v2 = polygon.points[next] - polygon.points[curr];
|
||||
int64_t dot = int64_t(v1(0)) * int64_t(v2(0)) + int64_t(v1(1)) * int64_t(v2(1));
|
||||
int64_t cross = int64_t(v1(0)) * int64_t(v2(1)) - int64_t(v1(1)) * int64_t(v2(0));
|
||||
if (mode == ECurveAnalyseMode::RelativeMode)
|
||||
cross = abs(cross);
|
||||
angles[curr] = float(atan2(double(cross), double(dot)));
|
||||
}
|
||||
|
||||
// 3 generate sum of angle and length of the adjacent segment for eveny point, range is approximately curvatures_sampling_width.
|
||||
// And then calculate the curvature
|
||||
std::vector<float> sum_angles(point_num, 0.f);
|
||||
std::vector<double> average_curvatures(point_num, 0.f);
|
||||
if (paths_length.back() < scale_(curvatures_sampling_width)) {
|
||||
// loop is too short, so the curvatures is max
|
||||
double temp = 1000.0 * 2.0 * PI / ((double)(paths_length.back()) * SCALING_FACTOR);
|
||||
for (size_t i = 0; i < point_num; i++) {
|
||||
average_curvatures[i] = temp;
|
||||
}
|
||||
}
|
||||
else {
|
||||
for (size_t i = 0; i < point_num; i++) {
|
||||
// right segment
|
||||
size_t j = i;
|
||||
float right_length = 0;
|
||||
while (right_length < scale_(curvatures_sampling_width / 2)) {
|
||||
int next_j = (j + 1 >= point_num) ? 0 : j + 1;
|
||||
sum_angles[i] += angles[j];
|
||||
right_length += (polygon.points[next_j] - polygon.points[j]).cast<float>().norm();
|
||||
j = next_j;
|
||||
}
|
||||
// left segment
|
||||
size_t k = i;
|
||||
float left_length = 0;
|
||||
while (left_length < scale_(curvatures_sampling_width / 2)) {
|
||||
size_t next_k = (k < 1) ? point_num - 1 : k - 1;
|
||||
sum_angles[i] += angles[k];
|
||||
left_length += (polygon.points[k] - polygon.points[next_k]).cast<float>().norm();
|
||||
k = next_k;
|
||||
}
|
||||
sum_angles[i] = sum_angles[i] - angles[i];
|
||||
average_curvatures[i] = (1000.0 * (double)abs(sum_angles[i]) / (double)curvatures_sampling_width);
|
||||
}
|
||||
}
|
||||
|
||||
// 4 calculate the degree of curve
|
||||
// For angle >= curvatures_angle_worst, we think it's enough to be worst. Should make the speed to be slowest.
|
||||
// For angle <= curvatures_angle_best, we thins it's enough to be best. Should make the speed to be fastest.
|
||||
// Use several steps [0 1 2...curvatures_sampling_number - 1] to describe the degree of curve. 0 is the flatest. curvatures_sampling_number - 1 is the sharpest
|
||||
std::vector<int> curvatures_norm(point_num, 0.f);
|
||||
std::vector<int> sampling_step(curvatures_sampling_number - 1, 0);
|
||||
for (size_t i = 0; i < curvatures_sampling_number - 1; i++) {
|
||||
sampling_step[i] = (2 * i + 1) * 50 / (curvatures_sampling_number - 1);
|
||||
}
|
||||
sampling_step[0] = 0;
|
||||
sampling_step[curvatures_sampling_number - 2] = 100;
|
||||
for (size_t i = 0; i < point_num; i++) {
|
||||
curvatures_norm[i] = (int)(100 * (average_curvatures[i] - curvatures_best) / (curvatures_worst - curvatures_best));
|
||||
if (curvatures_norm[i] >= 100)
|
||||
curvatures_norm[i] = curvatures_sampling_number - 1;
|
||||
else
|
||||
for (size_t j = 0; j < curvatures_sampling_number - 1; j++) {
|
||||
if (curvatures_norm[i] < sampling_step[j]) {
|
||||
curvatures_norm[i] = j;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
std::vector<std::pair<std::pair<Point, int>, int>> curvature_list; // point, index, curve_degree
|
||||
int last_curvature_norm = -1;
|
||||
for (int i = 0; i < point_num; i++) {
|
||||
if (curvatures_norm[i] != last_curvature_norm) {
|
||||
last_curvature_norm = curvatures_norm[i];
|
||||
curvature_list.push_back(std::pair<std::pair<Point, int>, int>(std::pair<Point, int>(polygon.points[i], i), last_curvature_norm));
|
||||
}
|
||||
}
|
||||
curvature_list.push_back(std::pair<std::pair<Point, int>, int>(std::pair<Point, int>(polygon.points[0], point_num), curvatures_norm[0])); // the last point should be the first point
|
||||
|
||||
//5 split and modify the path according to the degree of curve
|
||||
if (curvature_list.size() == 2) { // all paths has same curva_degree
|
||||
for (size_t i = 0; i < paths.size(); i++) {
|
||||
paths[i].set_curve_degree(curvature_list[0].second);
|
||||
}
|
||||
}
|
||||
else {
|
||||
ExtrusionPaths out;
|
||||
out.reserve(paths.size() + curvature_list.size() - 1);
|
||||
size_t j = 1;
|
||||
int current_curva_norm = curvature_list[0].second;
|
||||
for (size_t i = 0; i < paths.size() && j < curvature_list.size(); i++) {
|
||||
if (paths[i].last_point() == curvature_list[j].first.first) {
|
||||
paths[i].set_curve_degree(current_curva_norm);
|
||||
out.push_back(paths[i]);
|
||||
current_curva_norm = curvature_list[j].second;
|
||||
j++;
|
||||
continue;
|
||||
}
|
||||
else if (paths[i].first_point() == curvature_list[j].first.first) {
|
||||
if (paths[i].polyline.points.front() == paths[i].polyline.points.back()) {
|
||||
paths[i].set_curve_degree(current_curva_norm);
|
||||
out.push_back(paths[i]);
|
||||
current_curva_norm = curvature_list[j].second;
|
||||
j++;
|
||||
continue;
|
||||
}
|
||||
else {
|
||||
// should never happen
|
||||
assert(0);
|
||||
}
|
||||
}
|
||||
|
||||
if (paths_length[i] <= polygon_length[curvature_list[j].first.second] ||
|
||||
paths[i].last_point() == curvature_list[j].first.first) {
|
||||
// save paths[i] directly
|
||||
paths[i].set_curve_degree(current_curva_norm);
|
||||
out.push_back(paths[i]);
|
||||
if (paths[i].last_point() == curvature_list[j].first.first) {
|
||||
current_curva_norm = curvature_list[j].second;
|
||||
j++;
|
||||
}
|
||||
}
|
||||
else {
|
||||
//split paths[i]
|
||||
ExtrusionPath current_path = paths[i];
|
||||
while (j < curvature_list.size()) {
|
||||
Polyline left, right;
|
||||
current_path.polyline.split_at(curvature_list[j].first.first, &left, &right);
|
||||
ExtrusionPath left_path(left, current_path);
|
||||
left_path.set_curve_degree(current_curva_norm);
|
||||
out.push_back(left_path);
|
||||
ExtrusionPath right_path(right, current_path);
|
||||
current_path = right_path;
|
||||
|
||||
current_curva_norm = curvature_list[j].second;
|
||||
j++;
|
||||
if (j < curvature_list.size() &&
|
||||
(paths_length[i] <= polygon_length[curvature_list[j].first.second] ||
|
||||
paths[i].last_point() == curvature_list[j].first.first)) {
|
||||
current_path.set_curve_degree(current_curva_norm);
|
||||
out.push_back(current_path);
|
||||
if (current_path.last_point() == curvature_list[j].first.first) {
|
||||
current_curva_norm = curvature_list[j].second;
|
||||
j++;
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
paths.clear();
|
||||
paths.reserve(out.size());
|
||||
for (int i = 0; i < out.size(); i++) {
|
||||
paths.push_back(out[i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue