mirror of
https://github.com/SoftFever/OrcaSlicer.git
synced 2025-10-23 08:41:11 -06:00
Initial work for G-code sender and more intensive usage of Boost
This commit is contained in:
parent
43cbad8867
commit
11dd67ab34
1649 changed files with 1860 additions and 1642 deletions
466
xs/include/boost/polygon/transform.hpp
Normal file
466
xs/include/boost/polygon/transform.hpp
Normal file
|
@ -0,0 +1,466 @@
|
|||
// Boost.Polygon library point_data.hpp header file
|
||||
|
||||
// Copyright (c) Intel Corporation 2008.
|
||||
// Copyright (c) 2008-2012 Simonson Lucanus.
|
||||
// Copyright (c) 2012-2012 Andrii Sydorchuk.
|
||||
|
||||
// See http://www.boost.org for updates, documentation, and revision history.
|
||||
// Use, modification and distribution is subject to the Boost Software License,
|
||||
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
|
||||
// http://www.boost.org/LICENSE_1_0.txt)
|
||||
|
||||
#ifndef BOOST_POLYGON_TRANSFORM_HPP
|
||||
#define BOOST_POLYGON_TRANSFORM_HPP
|
||||
|
||||
#include "isotropy.hpp"
|
||||
|
||||
namespace boost {
|
||||
namespace polygon {
|
||||
// Transformation of Coordinate System.
|
||||
// Enum meaning:
|
||||
// Select which direction_2d to change the positive direction of each
|
||||
// axis in the old coordinate system to map it to the new coordiante system.
|
||||
// The first direction_2d listed for each enum is the direction to map the
|
||||
// positive horizontal direction to.
|
||||
// The second direction_2d listed for each enum is the direction to map the
|
||||
// positive vertical direction to.
|
||||
// The zero position bit (LSB) indicates whether the horizontal axis flips
|
||||
// when transformed.
|
||||
// The 1st postion bit indicates whether the vertical axis flips when
|
||||
// transformed.
|
||||
// The 2nd position bit indicates whether the horizontal and vertical axis
|
||||
// swap positions when transformed.
|
||||
// Enum Values:
|
||||
// 000 EAST NORTH
|
||||
// 001 WEST NORTH
|
||||
// 010 EAST SOUTH
|
||||
// 011 WEST SOUTH
|
||||
// 100 NORTH EAST
|
||||
// 101 SOUTH EAST
|
||||
// 110 NORTH WEST
|
||||
// 111 SOUTH WEST
|
||||
class axis_transformation {
|
||||
public:
|
||||
enum ATR {
|
||||
NULL_TRANSFORM = 0,
|
||||
BEGIN_TRANSFORM = 0,
|
||||
EN = 0, EAST_NORTH = 0,
|
||||
WN = 1, WEST_NORTH = 1, FLIP_X = 1,
|
||||
ES = 2, EAST_SOUTH = 2, FLIP_Y = 2,
|
||||
WS = 3, WEST_SOUTH = 3, FLIP_XY = 3,
|
||||
NE = 4, NORTH_EAST = 4, SWAP_XY = 4,
|
||||
SE = 5, SOUTH_EAST = 5, ROTATE_LEFT = 5,
|
||||
NW = 6, NORTH_WEST = 6, ROTATE_RIGHT = 6,
|
||||
SW = 7, SOUTH_WEST = 7, FLIP_SWAP_XY = 7,
|
||||
END_TRANSFORM = 7
|
||||
};
|
||||
|
||||
// Individual axis enum values indicate which axis an implicit individual
|
||||
// axis will be mapped to.
|
||||
// The value of the enum paired with an axis provides the information
|
||||
// about what the axis will transform to.
|
||||
// Three individual axis values, one for each axis, are equivalent to one
|
||||
// ATR enum value, but easier to work with because they are independent.
|
||||
// Converting to and from the individual axis values from the ATR value
|
||||
// is a convenient way to implement tranformation related functionality.
|
||||
// Enum meanings:
|
||||
// PX: map to positive x axis
|
||||
// NX: map to negative x axis
|
||||
// PY: map to positive y axis
|
||||
// NY: map to negative y axis
|
||||
enum INDIVIDUAL_AXIS {
|
||||
PX = 0,
|
||||
NX = 1,
|
||||
PY = 2,
|
||||
NY = 3
|
||||
};
|
||||
|
||||
axis_transformation() : atr_(NULL_TRANSFORM) {}
|
||||
explicit axis_transformation(ATR atr) : atr_(atr) {}
|
||||
axis_transformation(const axis_transformation& atr) : atr_(atr.atr_) {}
|
||||
|
||||
explicit axis_transformation(const orientation_2d& orient) {
|
||||
const ATR tmp[2] = {
|
||||
NORTH_EAST, // sort x, then y
|
||||
EAST_NORTH // sort y, then x
|
||||
};
|
||||
atr_ = tmp[orient.to_int()];
|
||||
}
|
||||
|
||||
explicit axis_transformation(const direction_2d& dir) {
|
||||
const ATR tmp[4] = {
|
||||
SOUTH_EAST, // sort x, then y
|
||||
NORTH_EAST, // sort x, then y
|
||||
EAST_SOUTH, // sort y, then x
|
||||
EAST_NORTH // sort y, then x
|
||||
};
|
||||
atr_ = tmp[dir.to_int()];
|
||||
}
|
||||
|
||||
// assignment operator
|
||||
axis_transformation& operator=(const axis_transformation& a) {
|
||||
atr_ = a.atr_;
|
||||
return *this;
|
||||
}
|
||||
|
||||
// assignment operator
|
||||
axis_transformation& operator=(const ATR& atr) {
|
||||
atr_ = atr;
|
||||
return *this;
|
||||
}
|
||||
|
||||
// equivalence operator
|
||||
bool operator==(const axis_transformation& a) const {
|
||||
return atr_ == a.atr_;
|
||||
}
|
||||
|
||||
// inequivalence operator
|
||||
bool operator!=(const axis_transformation& a) const {
|
||||
return !(*this == a);
|
||||
}
|
||||
|
||||
// ordering
|
||||
bool operator<(const axis_transformation& a) const {
|
||||
return atr_ < a.atr_;
|
||||
}
|
||||
|
||||
// concatenate this with that
|
||||
axis_transformation& operator+=(const axis_transformation& a) {
|
||||
bool abit2 = (a.atr_ & 4) != 0;
|
||||
bool abit1 = (a.atr_ & 2) != 0;
|
||||
bool abit0 = (a.atr_ & 1) != 0;
|
||||
bool bit2 = (atr_ & 4) != 0;
|
||||
bool bit1 = (atr_ & 2) != 0;
|
||||
bool bit0 = (atr_ & 1) != 0;
|
||||
int indexes[2][2] = {
|
||||
{ (int)bit2, (int)(!bit2) },
|
||||
{ (int)abit2, (int)(!abit2) }
|
||||
};
|
||||
int zero_bits[2][2] = {
|
||||
{bit0, bit1}, {abit0, abit1}
|
||||
};
|
||||
int nbit1 = zero_bits[0][1] ^ zero_bits[1][indexes[0][1]];
|
||||
int nbit0 = zero_bits[0][0] ^ zero_bits[1][indexes[0][0]];
|
||||
indexes[0][0] = indexes[1][indexes[0][0]];
|
||||
indexes[0][1] = indexes[1][indexes[0][1]];
|
||||
int nbit2 = indexes[0][0] & 1; // swap xy
|
||||
atr_ = (ATR)((nbit2 << 2) + (nbit1 << 1) + nbit0);
|
||||
return *this;
|
||||
}
|
||||
|
||||
// concatenation operator
|
||||
axis_transformation operator+(const axis_transformation& a) const {
|
||||
axis_transformation retval(*this);
|
||||
return retval+=a;
|
||||
}
|
||||
|
||||
// populate_axis_array writes the three INDIVIDUAL_AXIS values that the
|
||||
// ATR enum value of 'this' represent into axis_array
|
||||
void populate_axis_array(INDIVIDUAL_AXIS axis_array[]) const {
|
||||
bool bit2 = (atr_ & 4) != 0;
|
||||
bool bit1 = (atr_ & 2) != 0;
|
||||
bool bit0 = (atr_ & 1) != 0;
|
||||
axis_array[1] = (INDIVIDUAL_AXIS)(((int)(!bit2) << 1) + bit1);
|
||||
axis_array[0] = (INDIVIDUAL_AXIS)(((int)(bit2) << 1) + bit0);
|
||||
}
|
||||
|
||||
// it is recommended that the directions stored in an array
|
||||
// in the caller code for easier isotropic access by orientation value
|
||||
void get_directions(direction_2d& horizontal_dir,
|
||||
direction_2d& vertical_dir) const {
|
||||
bool bit2 = (atr_ & 4) != 0;
|
||||
bool bit1 = (atr_ & 2) != 0;
|
||||
bool bit0 = (atr_ & 1) != 0;
|
||||
vertical_dir = direction_2d((direction_2d_enum)(((int)(!bit2) << 1) + !bit1));
|
||||
horizontal_dir = direction_2d((direction_2d_enum)(((int)(bit2) << 1) + !bit0));
|
||||
}
|
||||
|
||||
// combine_axis_arrays concatenates this_array and that_array overwriting
|
||||
// the result into this_array
|
||||
static void combine_axis_arrays(INDIVIDUAL_AXIS this_array[],
|
||||
const INDIVIDUAL_AXIS that_array[]) {
|
||||
int indexes[2] = { this_array[0] >> 1, this_array[1] >> 1 };
|
||||
int zero_bits[2][2] = {
|
||||
{ this_array[0] & 1, this_array[1] & 1 },
|
||||
{ that_array[0] & 1, that_array[1] & 1 }
|
||||
};
|
||||
this_array[0] = (INDIVIDUAL_AXIS)((int)this_array[0] |
|
||||
((int)zero_bits[0][0] ^
|
||||
(int)zero_bits[1][indexes[0]]));
|
||||
this_array[1] = (INDIVIDUAL_AXIS)((int)this_array[1] |
|
||||
((int)zero_bits[0][1] ^
|
||||
(int)zero_bits[1][indexes[1]]));
|
||||
}
|
||||
|
||||
// write_back_axis_array converts an array of three INDIVIDUAL_AXIS values
|
||||
// to the ATR enum value and sets 'this' to that value
|
||||
void write_back_axis_array(const INDIVIDUAL_AXIS this_array[]) {
|
||||
int bit2 = ((int)this_array[0] & 2) != 0; // swap xy
|
||||
int bit1 = ((int)this_array[1] & 1);
|
||||
int bit0 = ((int)this_array[0] & 1);
|
||||
atr_ = ATR((bit2 << 2) + (bit1 << 1) + bit0);
|
||||
}
|
||||
|
||||
// behavior is deterministic but undefined in the case where illegal
|
||||
// combinations of directions are passed in.
|
||||
axis_transformation& set_directions(const direction_2d& horizontal_dir,
|
||||
const direction_2d& vertical_dir) {
|
||||
int bit2 = (static_cast<orientation_2d>(horizontal_dir).to_int()) != 0;
|
||||
int bit1 = !(vertical_dir.to_int() & 1);
|
||||
int bit0 = !(horizontal_dir.to_int() & 1);
|
||||
atr_ = ATR((bit2 << 2) + (bit1 << 1) + bit0);
|
||||
return *this;
|
||||
}
|
||||
|
||||
// transform the three coordinates by reference
|
||||
template <typename coordinate_type>
|
||||
void transform(coordinate_type& x, coordinate_type& y) const {
|
||||
int bit2 = (atr_ & 4) != 0;
|
||||
int bit1 = (atr_ & 2) != 0;
|
||||
int bit0 = (atr_ & 1) != 0;
|
||||
x *= -((bit0 << 1) - 1);
|
||||
y *= -((bit1 << 1) - 1);
|
||||
predicated_swap(bit2 != 0, x, y);
|
||||
}
|
||||
|
||||
// invert this axis_transformation
|
||||
axis_transformation& invert() {
|
||||
int bit2 = ((atr_ & 4) != 0);
|
||||
int bit1 = ((atr_ & 2) != 0);
|
||||
int bit0 = ((atr_ & 1) != 0);
|
||||
// swap bit 0 and bit 1 if bit2 is 1
|
||||
predicated_swap(bit2 != 0, bit0, bit1);
|
||||
bit1 = bit1 << 1;
|
||||
atr_ = (ATR)(atr_ & (32+16+8+4)); // mask away bit0 and bit1
|
||||
atr_ = (ATR)(atr_ | bit0 | bit1);
|
||||
return *this;
|
||||
}
|
||||
|
||||
// get the inverse axis_transformation of this
|
||||
axis_transformation inverse() const {
|
||||
axis_transformation retval(*this);
|
||||
return retval.invert();
|
||||
}
|
||||
|
||||
private:
|
||||
ATR atr_;
|
||||
};
|
||||
|
||||
// Scaling object to be used to store the scale factor for each axis.
|
||||
// For use by the transformation object, in that context the scale factor
|
||||
// is the amount that each axis scales by when transformed.
|
||||
template <typename scale_factor_type>
|
||||
class anisotropic_scale_factor {
|
||||
public:
|
||||
anisotropic_scale_factor() {
|
||||
scale_[0] = 1;
|
||||
scale_[1] = 1;
|
||||
}
|
||||
anisotropic_scale_factor(scale_factor_type xscale,
|
||||
scale_factor_type yscale) {
|
||||
scale_[0] = xscale;
|
||||
scale_[1] = yscale;
|
||||
}
|
||||
|
||||
// get a component of the anisotropic_scale_factor by orientation
|
||||
scale_factor_type get(orientation_2d orient) const {
|
||||
return scale_[orient.to_int()];
|
||||
}
|
||||
|
||||
// set a component of the anisotropic_scale_factor by orientation
|
||||
void set(orientation_2d orient, scale_factor_type value) {
|
||||
scale_[orient.to_int()] = value;
|
||||
}
|
||||
|
||||
scale_factor_type x() const {
|
||||
return scale_[HORIZONTAL];
|
||||
}
|
||||
|
||||
scale_factor_type y() const {
|
||||
return scale_[VERTICAL];
|
||||
}
|
||||
|
||||
void x(scale_factor_type value) {
|
||||
scale_[HORIZONTAL] = value;
|
||||
}
|
||||
|
||||
void y(scale_factor_type value) {
|
||||
scale_[VERTICAL] = value;
|
||||
}
|
||||
|
||||
// concatination operator (convolve scale factors)
|
||||
anisotropic_scale_factor operator+(const anisotropic_scale_factor& s) const {
|
||||
anisotropic_scale_factor<scale_factor_type> retval(*this);
|
||||
return retval += s;
|
||||
}
|
||||
|
||||
// concatinate this with that
|
||||
const anisotropic_scale_factor& operator+=(
|
||||
const anisotropic_scale_factor& s) {
|
||||
scale_[0] *= s.scale_[0];
|
||||
scale_[1] *= s.scale_[1];
|
||||
return *this;
|
||||
}
|
||||
|
||||
// transform this scale with an axis_transform
|
||||
anisotropic_scale_factor& transform(axis_transformation atr) {
|
||||
direction_2d dirs[2];
|
||||
atr.get_directions(dirs[0], dirs[1]);
|
||||
scale_factor_type tmp[2] = {scale_[0], scale_[1]};
|
||||
for (int i = 0; i < 2; ++i) {
|
||||
scale_[orientation_2d(dirs[i]).to_int()] = tmp[i];
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
// scale the two coordinates
|
||||
template <typename coordinate_type>
|
||||
void scale(coordinate_type& x, coordinate_type& y) const {
|
||||
x = scaling_policy<coordinate_type>::round(
|
||||
(scale_factor_type)x * get(HORIZONTAL));
|
||||
y = scaling_policy<coordinate_type>::round(
|
||||
(scale_factor_type)y * get(HORIZONTAL));
|
||||
}
|
||||
|
||||
// invert this scale factor to give the reverse scale factor
|
||||
anisotropic_scale_factor& invert() {
|
||||
x(1/x());
|
||||
y(1/y());
|
||||
return *this;
|
||||
}
|
||||
|
||||
private:
|
||||
scale_factor_type scale_[2];
|
||||
};
|
||||
|
||||
// Transformation object, stores and provides services for transformations.
|
||||
// Consits of axis transformation, scale factor and translation.
|
||||
// The tranlation is the position of the origin of the new coordinate system of
|
||||
// in the old system. Coordinates are scaled before they are transformed.
|
||||
template <typename coordinate_type>
|
||||
class transformation {
|
||||
public:
|
||||
transformation() : atr_(), p_(0, 0) {}
|
||||
explicit transformation(axis_transformation atr) : atr_(atr), p_(0, 0) {}
|
||||
explicit transformation(axis_transformation::ATR atr) : atr_(atr), p_(0, 0) {}
|
||||
transformation(const transformation& tr) : atr_(tr.atr_), p_(tr.p_) {}
|
||||
|
||||
template <typename point_type>
|
||||
explicit transformation(const point_type& p) : atr_(), p_(0, 0) {
|
||||
set_translation(p);
|
||||
}
|
||||
|
||||
template <typename point_type>
|
||||
transformation(axis_transformation atr,
|
||||
const point_type& p) : atr_(atr), p_(0, 0) {
|
||||
set_translation(p);
|
||||
}
|
||||
|
||||
template <typename point_type>
|
||||
transformation(axis_transformation atr,
|
||||
const point_type& referencePt,
|
||||
const point_type& destinationPt) : atr_(), p_(0, 0) {
|
||||
transformation<coordinate_type> tmp(referencePt);
|
||||
transformation<coordinate_type> rotRef(atr);
|
||||
transformation<coordinate_type> tmpInverse = tmp.inverse();
|
||||
point_type decon(referencePt);
|
||||
deconvolve(decon, destinationPt);
|
||||
transformation<coordinate_type> displacement(decon);
|
||||
tmp += rotRef;
|
||||
tmp += tmpInverse;
|
||||
tmp += displacement;
|
||||
(*this) = tmp;
|
||||
}
|
||||
|
||||
// equivalence operator
|
||||
bool operator==(const transformation& tr) const {
|
||||
return (atr_ == tr.atr_) && (p_ == tr.p_);
|
||||
}
|
||||
|
||||
// inequivalence operator
|
||||
bool operator!=(const transformation& tr) const {
|
||||
return !(*this == tr);
|
||||
}
|
||||
|
||||
// ordering
|
||||
bool operator<(const transformation& tr) const {
|
||||
return (atr_ < tr.atr_) || ((atr_ == tr.atr_) && (p_ < tr.p_));
|
||||
}
|
||||
|
||||
// concatenation operator
|
||||
transformation operator+(const transformation& tr) const {
|
||||
transformation<coordinate_type> retval(*this);
|
||||
return retval+=tr;
|
||||
}
|
||||
|
||||
// concatenate this with that
|
||||
const transformation& operator+=(const transformation& tr) {
|
||||
coordinate_type x, y;
|
||||
transformation<coordinate_type> inv = inverse();
|
||||
inv.transform(x, y);
|
||||
p_.set(HORIZONTAL, p_.get(HORIZONTAL) + x);
|
||||
p_.set(VERTICAL, p_.get(VERTICAL) + y);
|
||||
// concatenate axis transforms
|
||||
atr_ += tr.atr_;
|
||||
return *this;
|
||||
}
|
||||
|
||||
// get the axis_transformation portion of this
|
||||
axis_transformation get_axis_transformation() const {
|
||||
return atr_;
|
||||
}
|
||||
|
||||
// set the axis_transformation portion of this
|
||||
void set_axis_transformation(const axis_transformation& atr) {
|
||||
atr_ = atr;
|
||||
}
|
||||
|
||||
// get the translation
|
||||
template <typename point_type>
|
||||
void get_translation(point_type& p) const {
|
||||
assign(p, p_);
|
||||
}
|
||||
|
||||
// set the translation
|
||||
template <typename point_type>
|
||||
void set_translation(const point_type& p) {
|
||||
assign(p_, p);
|
||||
}
|
||||
|
||||
// apply the 2D portion of this transformation to the two coordinates given
|
||||
void transform(coordinate_type& x, coordinate_type& y) const {
|
||||
y -= p_.get(VERTICAL);
|
||||
x -= p_.get(HORIZONTAL);
|
||||
atr_.transform(x, y);
|
||||
}
|
||||
|
||||
// invert this transformation
|
||||
transformation& invert() {
|
||||
coordinate_type x = p_.get(HORIZONTAL), y = p_.get(VERTICAL);
|
||||
atr_.transform(x, y);
|
||||
x *= -1;
|
||||
y *= -1;
|
||||
p_ = point_data<coordinate_type>(x, y);
|
||||
atr_.invert();
|
||||
return *this;
|
||||
}
|
||||
|
||||
// get the inverse of this transformation
|
||||
transformation inverse() const {
|
||||
transformation<coordinate_type> ret_val(*this);
|
||||
return ret_val.invert();
|
||||
}
|
||||
|
||||
void get_directions(direction_2d& horizontal_dir,
|
||||
direction_2d& vertical_dir) const {
|
||||
return atr_.get_directions(horizontal_dir, vertical_dir);
|
||||
}
|
||||
|
||||
private:
|
||||
axis_transformation atr_;
|
||||
point_data<coordinate_type> p_;
|
||||
};
|
||||
} // polygon
|
||||
} // boost
|
||||
|
||||
#endif // BOOST_POLYGON_TRANSFORM_HPP
|
Loading…
Add table
Add a link
Reference in a new issue