mirror of
				https://github.com/SoftFever/OrcaSlicer.git
				synced 2025-11-02 20:51:23 -07:00 
			
		
		
		
	Manual rebase of the avoid_crossing_perimeters feature
This commit is contained in:
		
							parent
							
								
									d278998f11
								
							
						
					
					
						commit
						0eadc5adba
					
				
					 12 changed files with 362 additions and 11 deletions
				
			
		
							
								
								
									
										259
									
								
								lib/Slic3r/GCode/MotionPlanner.pm
									
										
									
									
									
										Normal file
									
								
							
							
						
						
									
										259
									
								
								lib/Slic3r/GCode/MotionPlanner.pm
									
										
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,259 @@
 | 
			
		|||
package Slic3r::GCode::MotionPlanner;
 | 
			
		||||
use Moo;
 | 
			
		||||
 | 
			
		||||
has 'islands'       => (is => 'ro', required => 1);
 | 
			
		||||
has 'no_internal'   => (is => 'ro');
 | 
			
		||||
has 'last_crossings'=> (is => 'rw');
 | 
			
		||||
has '_inner'        => (is => 'rw', default => sub { [] });  # arrayref of arrayrefs of expolygons
 | 
			
		||||
has '_outer'        => (is => 'rw', default => sub { [] });  # arrayref of arrayrefs of polygons
 | 
			
		||||
has '_contours_ex'  => (is => 'rw', default => sub { [] });  # arrayref of arrayrefs of expolygons
 | 
			
		||||
has '_pointmap'     => (is => 'rw', default => sub { {} });  # { id => $point }
 | 
			
		||||
has '_edges'        => (is => 'rw', default => sub { {} });  # node_idx => { node_idx => distance, ... }
 | 
			
		||||
has '_crossing_edges' => (is => 'rw', default => sub { {} });  # edge_idx => bool
 | 
			
		||||
 | 
			
		||||
use List::Util qw(first);
 | 
			
		||||
use Slic3r::Geometry qw(scale epsilon nearest_point);
 | 
			
		||||
use Slic3r::Geometry::Clipper qw(diff_ex JT_MITER);
 | 
			
		||||
 | 
			
		||||
# clearance (in mm) from the perimeters
 | 
			
		||||
has '_inner_margin' => (is => 'ro', default => sub { scale 0.5 });
 | 
			
		||||
has '_outer_margin' => (is => 'ro', default => sub { scale 2 });
 | 
			
		||||
 | 
			
		||||
# this factor weigths the crossing of a perimeter 
 | 
			
		||||
# vs. the alternative path. a value of 5 means that
 | 
			
		||||
# a perimeter will be crossed if the alternative path
 | 
			
		||||
# is >= 5x the length of the straight line we could
 | 
			
		||||
# follow if we decided to cross the perimeter.
 | 
			
		||||
# a nearly-infinite value for this will only permit
 | 
			
		||||
# perimeter crossing when there's no alternative path.
 | 
			
		||||
use constant CROSSING_FACTOR => 20;
 | 
			
		||||
 | 
			
		||||
use constant INFINITY => 'inf';
 | 
			
		||||
 | 
			
		||||
# setup our configuration space
 | 
			
		||||
sub BUILD {
 | 
			
		||||
    my $self = shift;
 | 
			
		||||
    
 | 
			
		||||
    my $edges = $self->_edges;
 | 
			
		||||
    my $crossing_edges = $self->_crossing_edges;
 | 
			
		||||
    my $tolerance = scale epsilon;
 | 
			
		||||
    
 | 
			
		||||
    my $add_expolygon = sub {
 | 
			
		||||
        my ($expolygon, $crosses_perimeter) = @_;
 | 
			
		||||
        my @points = map @$_, @$expolygon;
 | 
			
		||||
        for my $i (0 .. $#points) {
 | 
			
		||||
            for my $j (($i+1) .. $#points) {
 | 
			
		||||
                my $line = Slic3r::Line->new($points[$i], $points[$j]);
 | 
			
		||||
                if ($expolygon->encloses_line($line, scale Slic3r::Geometry::epsilon)) {
 | 
			
		||||
                    my $dist = $line->length * ($crosses_perimeter ? CROSSING_FACTOR : 1);
 | 
			
		||||
                    $edges->{$points[$i]}{$points[$j]} = $dist;
 | 
			
		||||
                    $edges->{$points[$j]}{$points[$i]} = $dist;
 | 
			
		||||
                    $crossing_edges->{$points[$i]}{$points[$j]} = 1;
 | 
			
		||||
                    $crossing_edges->{$points[$j]}{$points[$i]} = 1;
 | 
			
		||||
                }
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
    };
 | 
			
		||||
    
 | 
			
		||||
    for my $i (0 .. $#{$self->islands}) {
 | 
			
		||||
        $self->islands->[$i]->simplify($self->_inner_margin);
 | 
			
		||||
        $self->_inner->[$i] = [ $self->islands->[$i]->offset_ex(-$self->_inner_margin) ]
 | 
			
		||||
            if !$self->no_internal;
 | 
			
		||||
        $self->_outer->[$i] = [ $self->islands->[$i]->contour->offset($self->_outer_margin) ];
 | 
			
		||||
        $_->simplify($self->_inner_margin) for @{$self->_inner->[$i]}, @{$self->_outer->[$i]};
 | 
			
		||||
        
 | 
			
		||||
        if (!$self->no_internal) {
 | 
			
		||||
            $self->_contours_ex->[$i] = diff_ex(
 | 
			
		||||
                $self->_outer->[$i],
 | 
			
		||||
                [ map $_->contour, @{$self->_inner->[$i]} ],
 | 
			
		||||
            );
 | 
			
		||||
            
 | 
			
		||||
            # lines enclosed in inner expolygons are visible
 | 
			
		||||
            $add_expolygon->($_) for @{ $self->_inner->[$i] };
 | 
			
		||||
            
 | 
			
		||||
            # lines enclosed in expolygons covering perimeters are visible
 | 
			
		||||
            # (but discouraged)
 | 
			
		||||
            $add_expolygon->($_, 1) for @{ $self->_contours_ex->[$i] };
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
    my $intersects = sub {
 | 
			
		||||
        my ($polygon, $line) = @_;
 | 
			
		||||
        @{Boost::Geometry::Utils::polygon_linestring_intersection(
 | 
			
		||||
            $polygon->boost_polygon,
 | 
			
		||||
            Boost::Geometry::Utils::linestring($line),
 | 
			
		||||
        )} > 0;
 | 
			
		||||
    };
 | 
			
		||||
    
 | 
			
		||||
    # lines connecting outer polygons are visible
 | 
			
		||||
    {
 | 
			
		||||
        my @outer = (map @$_, @{$self->_outer});
 | 
			
		||||
        for my $i (0 .. $#outer) {
 | 
			
		||||
            for my $j (($i+1) .. $#outer) {
 | 
			
		||||
                for my $m (0 .. $#{$outer[$i]}) {
 | 
			
		||||
                    for my $n (0 .. $#{$outer[$j]}) {
 | 
			
		||||
                        my $line = Slic3r::Line->new($outer[$i][$m], $outer[$j][$n]);
 | 
			
		||||
                        if (!first { $intersects->($_, $line) } @outer) {
 | 
			
		||||
                            # this line does not cross any polygon
 | 
			
		||||
                            my $dist = $line->length;
 | 
			
		||||
                            $edges->{$outer[$i][$m]}{$outer[$j][$n]} = $dist;
 | 
			
		||||
                            $edges->{$outer[$j][$n]}{$outer[$i][$m]} = $dist;
 | 
			
		||||
                        }
 | 
			
		||||
                    }
 | 
			
		||||
                }
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
    # lines connecting inner polygons contours are visible but discouraged
 | 
			
		||||
    if (!$self->no_internal) {
 | 
			
		||||
        my @inner = (map $_->contour, map @$_, @{$self->_inner});
 | 
			
		||||
        for my $i (0 .. $#inner) {
 | 
			
		||||
            for my $j (($i+1) .. $#inner) {
 | 
			
		||||
                for my $m (0 .. $#{$inner[$i]}) {
 | 
			
		||||
                    for my $n (0 .. $#{$inner[$j]}) {
 | 
			
		||||
                        my $line = Slic3r::Line->new($inner[$i][$m], $inner[$j][$n]);
 | 
			
		||||
                        if (!first { $intersects->($_, $line) } @inner) {
 | 
			
		||||
                            # this line does not cross any polygon
 | 
			
		||||
                            my $dist = $line->length * CROSSING_FACTOR;
 | 
			
		||||
                            $edges->{$inner[$i][$m]}{$inner[$j][$n]} = $dist;
 | 
			
		||||
                            $edges->{$inner[$j][$n]}{$inner[$i][$m]} = $dist;
 | 
			
		||||
                            $crossing_edges->{$inner[$i][$m]}{$inner[$j][$n]} = 1;
 | 
			
		||||
                            $crossing_edges->{$inner[$j][$n]}{$inner[$i][$m]} = 1;
 | 
			
		||||
                        }
 | 
			
		||||
                    }
 | 
			
		||||
                }
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
    $self->_pointmap({
 | 
			
		||||
        map +("$_" => $_), 
 | 
			
		||||
            (map @$_, map @$_, map @$_, @{$self->_inner}),
 | 
			
		||||
            (map @$_, map @$_, @{$self->_outer}),
 | 
			
		||||
            (map @$_, map @$_, map @$_, @{$self->_contours_ex}),
 | 
			
		||||
    });
 | 
			
		||||
    
 | 
			
		||||
    if (0) {
 | 
			
		||||
        my @lines = ();
 | 
			
		||||
        my %lines = ();
 | 
			
		||||
        for my $i (keys %{$self->_edges}) {
 | 
			
		||||
            for my $j (keys %{$self->_edges->{$i}}) {
 | 
			
		||||
                next if $lines{join '_', sort $i, $j};
 | 
			
		||||
                push @lines, [ map $self->_pointmap->{$_}, $i, $j ];
 | 
			
		||||
                $lines{join '_', sort $i, $j} = 1;
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
        
 | 
			
		||||
        require "Slic3r/SVG.pm";
 | 
			
		||||
        Slic3r::SVG::output(undef, "space.svg",
 | 
			
		||||
            lines           => \@lines,
 | 
			
		||||
            no_arrows       => 1,
 | 
			
		||||
            polygons        => [ map @$_, @{$self->islands} ],
 | 
			
		||||
            red_polygons    => [ map $_->holes, map @$_, @{$self->_inner} ],
 | 
			
		||||
            white_polygons    => [ map @$_, @{$self->_outer} ],
 | 
			
		||||
        );
 | 
			
		||||
        printf "%d islands\n", scalar @{$self->islands};
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
sub find_node {
 | 
			
		||||
    my $self = shift;
 | 
			
		||||
    my ($point, $near_to) = @_;
 | 
			
		||||
    
 | 
			
		||||
    # for optimal pathing, we should check visibility from $point to all $candidates, and then
 | 
			
		||||
    # choose the one that is nearest to $near_to among the visible ones; however this is probably too slow
 | 
			
		||||
    
 | 
			
		||||
    # if we're inside a hole, move to a point on hole;
 | 
			
		||||
    {
 | 
			
		||||
        my $polygon = first { $_->encloses_point($point) } (map $_->holes, map @$_, @{$self->_inner});
 | 
			
		||||
        return nearest_point($point, $polygon) if $polygon;
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
    # if we're inside an expolygon move to a point on contour or holes
 | 
			
		||||
    {
 | 
			
		||||
        my $expolygon = first { $_->encloses_point_quick($point) } (map @$_, @{$self->_inner});
 | 
			
		||||
        return nearest_point($point, [ map @$_, @$expolygon ]) if $expolygon;
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
    {
 | 
			
		||||
        my $outer_polygon_idx;
 | 
			
		||||
        if (!$self->no_internal) {
 | 
			
		||||
            # look for an outer expolygon whose contour contains our point
 | 
			
		||||
            $outer_polygon_idx = first { first { $_->contour->encloses_point($point) } @{$self->_contours_ex->[$_]} }
 | 
			
		||||
                0 .. $#{ $self->_contours_ex };
 | 
			
		||||
        } else {
 | 
			
		||||
            # # look for an outer expolygon containing our point
 | 
			
		||||
            $outer_polygon_idx = first { first { $_->encloses_point($point) } @{$self->_outer->[$_]} }
 | 
			
		||||
                0 .. $#{ $self->_outer };
 | 
			
		||||
        }
 | 
			
		||||
        my $candidates = defined $outer_polygon_idx
 | 
			
		||||
            ? [ map @{$_->contour}, @{$self->_inner->[$outer_polygon_idx]} ]
 | 
			
		||||
            : [ map @$_, map @$_, @{$self->_outer} ];
 | 
			
		||||
        $candidates = [ map @$_, @{$self->_outer->[$outer_polygon_idx]} ]
 | 
			
		||||
            if @$candidates == 0;
 | 
			
		||||
        return nearest_point($point, $candidates);
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
sub shortest_path {
 | 
			
		||||
    my $self = shift;
 | 
			
		||||
    my ($from, $to) = @_;
 | 
			
		||||
    
 | 
			
		||||
    # find nearest nodes
 | 
			
		||||
    my $new_from = $self->find_node($from, $to);
 | 
			
		||||
    my $new_to = $self->find_node($to, $from);
 | 
			
		||||
    
 | 
			
		||||
    my $root = "$new_from";
 | 
			
		||||
    my $target = "$new_to";
 | 
			
		||||
    my $edges = $self->_edges;
 | 
			
		||||
    my %dist = map { $_ => INFINITY } keys %$edges;
 | 
			
		||||
    $dist{$root} = 0;
 | 
			
		||||
    my %prev = map { $_ => undef } keys %$edges;
 | 
			
		||||
    my @unsolved = keys %$edges;
 | 
			
		||||
    my %crossings = ();  # node_idx => bool
 | 
			
		||||
    
 | 
			
		||||
    while (@unsolved) {
 | 
			
		||||
        # sort unsolved by distance from root
 | 
			
		||||
        # using a sorting option that accounts for infinity
 | 
			
		||||
        @unsolved = sort {
 | 
			
		||||
            $dist{$a} eq INFINITY ? +1 :
 | 
			
		||||
            $dist{$b} eq INFINITY ? -1 :
 | 
			
		||||
                $dist{$a} <=> $dist{$b};
 | 
			
		||||
        } @unsolved;
 | 
			
		||||
        
 | 
			
		||||
        # we'll solve the closest node
 | 
			
		||||
        last if $dist{$unsolved[0]} eq INFINITY;
 | 
			
		||||
        my $n = shift @unsolved;
 | 
			
		||||
        
 | 
			
		||||
        # stop search
 | 
			
		||||
        last if $n eq $target;
 | 
			
		||||
        
 | 
			
		||||
        # now, look at all the nodes connected to n
 | 
			
		||||
        foreach my $n2 (keys %{$edges->{$n}}) {
 | 
			
		||||
            # .. and find out if any of their estimated distances
 | 
			
		||||
	        # can be improved if we go through n
 | 
			
		||||
	        if ( ($dist{$n2} eq INFINITY) || ($dist{$n2} > ($dist{$n} + $edges->{$n}{$n2})) ) {
 | 
			
		||||
	            $dist{$n2} = $dist{$n} + $edges->{$n}{$n2};
 | 
			
		||||
	            $prev{$n2} = $n;
 | 
			
		||||
	            $crossings{$n} = 1 if $self->_crossing_edges->{$n}{$n2};
 | 
			
		||||
	        }
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
    my @points = ();
 | 
			
		||||
    my $crossings = 0;
 | 
			
		||||
    {
 | 
			
		||||
        my $pointmap = $self->_pointmap;
 | 
			
		||||
        my $u = $target;
 | 
			
		||||
        while (defined $prev{$u}) {
 | 
			
		||||
            unshift @points, $pointmap->{$u};
 | 
			
		||||
            $crossings++ if $crossings{$u};
 | 
			
		||||
            $u = $prev{$u};
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
    $self->last_crossings($crossings);
 | 
			
		||||
    return Slic3r::Polyline->new($from, $new_from, @points, $to); # @points already includes $new_to
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
1;
 | 
			
		||||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue