mirror of
https://github.com/SoftFever/OrcaSlicer.git
synced 2025-07-15 02:37:51 -06:00
More work for porting PerimeterGenerator to XS
This commit is contained in:
parent
b8aecbd56c
commit
0e18b094d1
8 changed files with 538 additions and 103 deletions
|
@ -5,14 +5,439 @@ namespace Slic3r {
|
|||
void
|
||||
PerimeterGenerator::process()
|
||||
{
|
||||
|
||||
// other perimeters
|
||||
this->_mm3_per_mm = this->perimeter_flow.mm3_per_mm();
|
||||
coord_t pwidth = this->perimeter_flow.scaled_width();
|
||||
coord_t pspacing = this->perimeter_flow.scaled_spacing();
|
||||
|
||||
// external perimeters
|
||||
this->_ext_mm3_per_mm = this->ext_perimeter_flow.mm3_per_mm();
|
||||
coord_t = ext_pwidth = this->ext_perimeter_flow.scaled_width();
|
||||
coord_t = ext_pspacing = scale_(this->ext_perimeter_flow.spacing_to(this->perimeter_flow));
|
||||
|
||||
// overhang perimeters
|
||||
this->_mm3_per_mm_overhang = this->overhang_flow.mm3_per_mm();
|
||||
|
||||
// solid infill
|
||||
coord_t ispacing = this->solid_infill_flow->scaled_spacing;
|
||||
coord_t gap_area_threshold = pwidth * pwidth;
|
||||
|
||||
// Calculate the minimum required spacing between two adjacent traces.
|
||||
// This should be equal to the nominal flow spacing but we experiment
|
||||
// with some tolerance in order to avoid triggering medial axis when
|
||||
// some squishing might work. Loops are still spaced by the entire
|
||||
// flow spacing; this only applies to collapsing parts.
|
||||
coord_t min_spacing = pspacing * (1 - INSET_OVERLAP_TOLERANCE);
|
||||
coord_t ext_min_spacing = ext_pspacing * (1 - INSET_OVERLAP_TOLERANCE);
|
||||
|
||||
// prepare grown lower layer slices for overhang detection
|
||||
if (this->lower_slices != NULL && this->config->overhangs) {
|
||||
// We consider overhang any part where the entire nozzle diameter is not supported by the
|
||||
// lower layer, so we take lower slices and offset them by half the nozzle diameter used
|
||||
// in the current layer
|
||||
double nozzle_diameter = this->print_config->nozzle_diameter.get_at(this->config->perimeter_extruder-1);
|
||||
|
||||
this->_lower_slices_p = offset(this->lower_slices, scale_(+nozzle_diameter/2));
|
||||
}
|
||||
|
||||
// we need to process each island separately because we might have different
|
||||
// extra perimeters for each one
|
||||
for (Surfaces::const_iterator surface = this->slices->surfaces.begin();
|
||||
surface != this->slices->surfaces.end(); ++surface) {
|
||||
// detect how many perimeters must be generated for this island
|
||||
unsigned short loop_number = this->config->perimeters + surface->extra_perimeters;
|
||||
loop_number--; // 0-indexed loops
|
||||
|
||||
Polygons gaps;
|
||||
|
||||
Polygons last = surface->expolygon.simplify_p(SCALED_RESOLUTION);
|
||||
if (loop_number >= 0) { // no loops = -1
|
||||
|
||||
std::vector<PerimeterGeneratorLoops> contours(loop_number); // depth => loops
|
||||
std::vector<PerimeterGeneratorLoops> holes(loop_number); // depth => loops
|
||||
Polylines thin_walls;
|
||||
|
||||
// we loop one time more than needed in order to find gaps after the last perimeter was applied
|
||||
for (unsigned short i = 0; i <= loop_number+1; ++i) { // outer loop is 0
|
||||
Polygons offsets;
|
||||
if (i == 0) {
|
||||
// the minimum thickness of a single loop is:
|
||||
// ext_width/2 + ext_spacing/2 + spacing/2 + width/2
|
||||
if (this->config->thin_walls) {
|
||||
offsets = offset2(
|
||||
\@last,
|
||||
-(0.5*ext_pwidth + 0.5*ext_min_spacing - 1),
|
||||
+(0.5*ext_min_spacing - 1)
|
||||
);
|
||||
} else {
|
||||
offsets = offset(last, -0.5*ext_pwidth);
|
||||
}
|
||||
|
||||
// look for thin walls
|
||||
if (this->config->thin_walls) {
|
||||
Polygons diff = diff(
|
||||
last,
|
||||
offset(offsets, +0.5*ext_pwidth),
|
||||
true // medial axis requires non-overlapping geometry
|
||||
);
|
||||
|
||||
// the following offset2 ensures almost nothing in @thin_walls is narrower than $min_width
|
||||
// (actually, something larger than that still may exist due to mitering or other causes)
|
||||
coord_t min_width = ext_pwidth / 2;
|
||||
ExPolygons expp = offset2(diff, -min_width/2, +min_width/2)};
|
||||
|
||||
// the maximum thickness of our thin wall area is equal to the minimum thickness of a single loop
|
||||
Polylines pp;
|
||||
for (ExPolygons::const_iterator ex = expp.begin(); ex != expp.end(); ++ex)
|
||||
ex->medial_axis(ext_pwidth + ext_pspacing, min_width, &pp);
|
||||
|
||||
double threshold = ext_pwidth * ext_pwidth;
|
||||
for (Polylines::const_iterator p = pp.begin(); p != pp.end(); ++p) {
|
||||
if (p->length() > threshold) {
|
||||
thin_walls.push_back(*p);
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef DEBUG
|
||||
printf(" %zu thin walls detected\n", thin_walls.size());
|
||||
#endif
|
||||
|
||||
/*
|
||||
if (false) {
|
||||
require "Slic3r/SVG.pm";
|
||||
Slic3r::SVG::output(
|
||||
"medial_axis.svg",
|
||||
no_arrows => 1,
|
||||
#expolygons => \@expp,
|
||||
polylines => \@thin_walls,
|
||||
);
|
||||
}
|
||||
*/
|
||||
}
|
||||
} else {
|
||||
coord_t distance = (i == 1) ? ext_pspacing : pspacing;
|
||||
|
||||
if (this->config->thin_walls) {
|
||||
offsets = offset2(
|
||||
last,
|
||||
-(distance + 0.5*min_spacing - 1),
|
||||
+(0.5*min_spacing - 1),
|
||||
);
|
||||
} else {
|
||||
offsets = offset(
|
||||
last,
|
||||
-distance,
|
||||
);
|
||||
}
|
||||
|
||||
// look for gaps
|
||||
if (this->config->gap_fill_speed > 0 && this->config->fill_density > 0) {
|
||||
// not using safety offset here would "detect" very narrow gaps
|
||||
// (but still long enough to escape the area threshold) that gap fill
|
||||
// won't be able to fill but we'd still remove from infill area
|
||||
ExPolygons diff = diff_ex(
|
||||
offset(last, -0.5*distance),
|
||||
offset(offsets, +0.5*distance + 10), // safety offset
|
||||
);
|
||||
for (ExPolygons::const_iterator ex = diff.begin(); ex != diff.end(); ++ex) {
|
||||
if (fabs(ex->area()) >= gap_area_threshold)
|
||||
gaps.push_back(*ex);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (offsets.empty()) break;
|
||||
if (i > loop_number) break; // we were only looking for gaps this time
|
||||
|
||||
last = offsets;
|
||||
|
||||
for (Polygons::const_iterator polygon = offsets.begin(); polygon != offsets.end(); ++polygon) {
|
||||
PerimeterGeneratorLoop loop(*polygon, i);
|
||||
loop.is_contour = polygon->is_counter_clockwise();
|
||||
if (loop.is_contour) {
|
||||
contours[i].push_back(loop);
|
||||
} else {
|
||||
holes[i].push_back(loop);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// nest loops: holes first
|
||||
for (unsigned short d = 0; <= loop_number; ++d) {
|
||||
PerimeterGeneratorLoops &holes_d = holes[d];
|
||||
|
||||
// loop through all holes having depth == d
|
||||
for (unsigned short i = 0; i < holes_d.size(); ++i) {
|
||||
const PerimeterGeneratorLoop &loop = holes_d[i];
|
||||
|
||||
// find the hole loop that contains this one, if any
|
||||
for (unsigned short t = d+1; t <= loop_number; ++t) {
|
||||
for (unsigned short j = 0; j < holes_d.size(); ++j) {
|
||||
PerimeterGeneratorLoop &candidate_parent = holes[t][j];
|
||||
if (candidate_parent.polygon.contains(loop.polygon.first_point())) {
|
||||
candidate_parent.add_child(loop);
|
||||
holes_d.erase(holes_d.begin() + i);
|
||||
--i;
|
||||
goto NEXT_HOLE;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// if no hole contains this hole, find the contour loop that contains it
|
||||
for (unsigned short t = loop_number; t >= 0; --t) {
|
||||
for (unsigned short j = 0; j < contours[t].size(); ++j) {
|
||||
PerimeterGeneratorLoop &candidate_parent = contours[t][j];
|
||||
if (candidate_parent.polygon.contains(loop.polygon.first_point())) {
|
||||
candidate_parent.add_child(loop);
|
||||
holes_d.erase(holes_d.begin() + i);
|
||||
--i;
|
||||
goto NEXT_HOLE;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
NEXT_HOLE:
|
||||
}
|
||||
|
||||
// nest contour loops
|
||||
for (unsigned short d = loop_number; d >= 1; --d) {
|
||||
PerimeterGeneratorLoops &contours_d = contours[d];
|
||||
|
||||
// loop through all contours having depth == d
|
||||
for (unsigned short i = 0; i < contours_d.size(); ++i) {
|
||||
const PerimeterGeneratorLoop &loop = contours_d[i];
|
||||
|
||||
// find the contour loop that contains it
|
||||
for (unsigned short t = d-1; t >= 0; --t) {
|
||||
for (unsigned short j = 0; j < contours_d[t].size(); ++j) {
|
||||
PerimeterGeneratorLoop &candidate_parent = contours[t][j];
|
||||
if (candidate_parent.polygon.contains(loop.polygon.first_point())) {
|
||||
candidate_parent.add_child(loop);
|
||||
contours_d.erase(contours_d.begin() + i);
|
||||
--i;
|
||||
goto NEXT_CONTOUR;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
NEXT_CONTOUR:
|
||||
}
|
||||
}
|
||||
|
||||
// at this point, all loops should be in contours[0]
|
||||
|
||||
ExtrusionEntityCollection entities = this->_traverse_loops(contours.front(), thin_walls);
|
||||
|
||||
// if brim will be printed, reverse the order of perimeters so that
|
||||
// we continue inwards after having finished the brim
|
||||
// TODO: add test for perimeter order
|
||||
if (this->config->external_perimeters_first
|
||||
|| (this->layer_id == 0 && this->print_config->brim_width > 0))
|
||||
entities.reverse();
|
||||
|
||||
// append perimeters for this slice as a collection
|
||||
if (!entities.empty())
|
||||
this->loops->append(entities);
|
||||
}
|
||||
|
||||
// fill gaps
|
||||
if (!gaps.empty()) {
|
||||
/*
|
||||
if (false) {
|
||||
require "Slic3r/SVG.pm";
|
||||
Slic3r::SVG::output(
|
||||
"gaps.svg",
|
||||
expolygons => union_ex(\@gaps),
|
||||
);
|
||||
}
|
||||
*/
|
||||
|
||||
// where $pwidth < thickness < 2*$pspacing, infill with width = 2*$pwidth
|
||||
// where 0.1*$pwidth < thickness < $pwidth, infill with width = 1*$pwidth
|
||||
std::vector<PerimeterGeneratorGapSize> gap_sizes;
|
||||
gap_sizes.push_back(PerimeterGeneratorGapSize(pwidth, 2*pspacing, unscale(2*pwidth)));
|
||||
gap_sizes.push_back(PerimeterGeneratorGapSize(0.1*pwidth, pwidth, unscale(1*pwidth)));
|
||||
|
||||
for (std::vector<PerimeterGeneratorGapSize>::const_iterator gap_size = gap_sizes.begin();
|
||||
gap_size != gap_sizes.end(); ++gap_size) {
|
||||
ExtrusionEntityCollection gap_fill = this->_fill_gaps(gap_size.min, gap_size.max, gap_size.width);
|
||||
this->gap_fill->append(gap_fill);
|
||||
|
||||
// Make sure we don't infill narrow parts that are already gap-filled
|
||||
// (we only consider this surface's gaps to reduce the diff() complexity).
|
||||
// Growing actual extrusions ensures that gaps not filled by medial axis
|
||||
// are not subtracted from fill surfaces (they might be too short gaps
|
||||
// that medial axis skips but infill might join with other infill regions
|
||||
// and use zigzag).
|
||||
double dist = scale_(gap_size->width/2);
|
||||
Polygons filled;
|
||||
for (ExtrusionEntitiesPtr::const_iterator it = gap_fill.entities.begin();
|
||||
it != gap_fill.entities.end(); ++it)
|
||||
offset((*it)->as_polyline(), &filled, dist);
|
||||
|
||||
last = diff(last, filled);
|
||||
gaps = diff(gaps, filled); // prevent more gap fill here
|
||||
}
|
||||
}
|
||||
|
||||
// create one more offset to be used as boundary for fill
|
||||
// we offset by half the perimeter spacing (to get to the actual infill boundary)
|
||||
// and then we offset back and forth by half the infill spacing to only consider the
|
||||
// non-collapsing regions
|
||||
coord_t inset = 0;
|
||||
if (loop_number == 0) {
|
||||
// one loop
|
||||
inset += ext_pspacing/2;
|
||||
} else if (loop_number > 0) {
|
||||
// two or more loops
|
||||
inset += pspacing/2;
|
||||
}
|
||||
|
||||
// only apply infill overlap if we actually have one perimeter
|
||||
if (inset > 0)
|
||||
inset -= this->config->get_abs_value("infill_overlap", inset + ispacing/2);
|
||||
|
||||
{
|
||||
ExPolygons expp = union_(last);
|
||||
|
||||
// simplify infill contours according to resolution
|
||||
Polygons pp;
|
||||
for (ExPolygons::const_iterator ex = expp.begin(); ex != expp.end(); ++ex)
|
||||
ex->simplify_p(SCALED_RESOLUTION, &pp);
|
||||
|
||||
// collapse too narrow infill areas
|
||||
coord_t min_perimeter_infill_spacing = ispacing * (1 - INSET_OVERLAP_TOLERANCE);
|
||||
expp = offset2(
|
||||
pp,
|
||||
-inset -min_perimeter_infill_spacing/2,
|
||||
+min_perimeter_infill_spacing/2,
|
||||
);
|
||||
|
||||
// append infill areas to fill_surfaces
|
||||
for (ExPolygons::const_iterator ex = expp.begin(); ex != expp.end(); ++ex)
|
||||
this->fill_surfaces->surfaces.push_back(Surface(stInternal, *ex)); // use a bogus surface type
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
ExtrusionEntityCollection
|
||||
PerimeterGenerator::_traverse_loops(const std::vector<PerimeterGeneratorLoop> &loops,
|
||||
PerimeterGenerator::_traverse_loops(const PerimeterGeneratorLoops &loops,
|
||||
const Polylines &thin_walls) const
|
||||
{
|
||||
// loops is an arrayref of ::Loop objects
|
||||
// turn each one into an ExtrusionLoop object
|
||||
ExtrusionEntityCollection coll;
|
||||
for (PerimeterGeneratorLoops::const_iterator loop = loops.begin();
|
||||
loop != loops.end(); ++loop) {
|
||||
bool is_external = loop->is_external();
|
||||
|
||||
ExtrusionRole role;
|
||||
ExtrusionLoopRole loop_role;
|
||||
role = is_external ? erExternalPerimeter : erPerimeter;
|
||||
if (loop->is_internal_contour()) {
|
||||
// Note that we set loop role to ContourInternalPerimeter
|
||||
// also when loop is both internal and external (i.e.
|
||||
// there's only one contour loop).
|
||||
loop_role = elrContourInternalPerimeter;
|
||||
} else {
|
||||
loop_role = elrDefault;
|
||||
}
|
||||
|
||||
// detect overhanging/bridging perimeters
|
||||
ExtrusionPaths paths;
|
||||
if (this->config->overhangs && this->layer_id > 0
|
||||
&& !(this->object_config->support_material && this->object_config->support_material_contact_distance == 0)) {
|
||||
// get non-overhang paths by intersecting this loop with the grown lower slices
|
||||
{
|
||||
Polylines polylines;
|
||||
intersection(loop->polygon(), this->_lower_slices_p, &polylines);
|
||||
|
||||
for (Polylines::const_iterator polyline = polylines.begin(); polyline != polylines.end(); ++polyline) {
|
||||
ExtrusionPath path(role);
|
||||
path.polyline = *polyline;
|
||||
path.mm3_per_mm = is_external ? this->_ext_mm3_per_mm : this->_mm3_per_mm;
|
||||
path.width = is_external ? this->ext_perimeter_flow->width : this->perimeter_flow.width;
|
||||
path.height = this->layer_height;
|
||||
paths.push_back(path);
|
||||
}
|
||||
}
|
||||
|
||||
// get overhang paths by checking what parts of this loop fall
|
||||
// outside the grown lower slices (thus where the distance between
|
||||
// the loop centerline and original lower slices is >= half nozzle diameter
|
||||
{
|
||||
Polylines polylines;
|
||||
diff(loop->polygon(), this->_lower_slices_p, &polylines);
|
||||
|
||||
for (Polylines::const_iterator polyline = polylines.begin(); polyline != polylines.end(); ++polyline) {
|
||||
ExtrusionPath path(erOverhangPerimeter);
|
||||
path.polyline = *polyline;
|
||||
path.mm3_per_mm = this->_mm3_per_mm_overhang;
|
||||
path.width = this->overhang_flow.width;
|
||||
path.height = this->overhang_flow.height;
|
||||
paths.push_back(path);
|
||||
}
|
||||
}
|
||||
|
||||
// reapply the nearest point search for starting point
|
||||
// We allow polyline reversal because Clipper may have randomly
|
||||
// reversed polylines during clipping.
|
||||
paths = ExtrusionEntityCollection(paths).chained_path();
|
||||
} else {
|
||||
ExtrusionPath path(role);
|
||||
path.polyline = loop.polygon().split_at_first_point();
|
||||
path.mm3_per_mm = is_external ? this->_ext_mm3_per_mm : this->_mm3_per_mm;
|
||||
path.width = is_external ? this->ext_perimeter_flow->width : this->perimeter_flow.width;
|
||||
path.height = this->layer_height;
|
||||
}
|
||||
|
||||
coll.append(ExtrusionLoop(paths, loop_role));
|
||||
}
|
||||
|
||||
// append thin walls to the nearest-neighbor search (only for first iteration)
|
||||
if (!thin_walls.empty()) {
|
||||
for (Polylines::const_iterator polyline = thin_walls.begin(); polyline != thin_walls.end(); ++polyline) {
|
||||
ExtrusionPath path(erExternalPerimeter);
|
||||
path.polyline = *polyline;
|
||||
path.mm3_per_mm = this->_mm3_per_mm;
|
||||
path.width = this->perimeter_flow.width;
|
||||
path.height = this->layer_height;
|
||||
coll.append(path);
|
||||
}
|
||||
|
||||
thin_walls.clear();
|
||||
}
|
||||
|
||||
// sort entities
|
||||
ExtrusionPathCollection sorted_coll;
|
||||
coll.chained_path(&sorted_coll, false, &sorted_coll.orig_indices);
|
||||
|
||||
// traverse children
|
||||
ExtrusionPathCollection entities;
|
||||
for (unsigned short i = 0; i < sorted_coll.orig_indices.size(); ++i) {
|
||||
size_t idx = sorted_coll.orig_indices[i];
|
||||
if (idx >= loops.size()) {
|
||||
// this is a thin wall
|
||||
// let's get it from the sorted collection as it might have been reversed
|
||||
entities.append(*sorted_coll.entities[i]);
|
||||
} else {
|
||||
PerimeterGeneratorLoop &loop = loops[i];
|
||||
ExtrusionLoop eloop = *coll.entities[idx];
|
||||
|
||||
ExtrusionEntityCollection children = this->_traverse_loops(loop->children, thin_walls);
|
||||
if (loop->is_contour()) {
|
||||
eloop.make_counter_clockwise();
|
||||
entities.append(children);
|
||||
entities.append(elooop);
|
||||
} else {
|
||||
eloop.make_clockwise();
|
||||
push @entities, $eloop, @children;
|
||||
entities.append(elooop);
|
||||
entities.append(children);
|
||||
}
|
||||
}
|
||||
}
|
||||
return entities;
|
||||
}
|
||||
|
||||
ExtrusionEntityCollection
|
||||
|
@ -47,44 +472,20 @@ PerimeterGenerator::_fill_gaps(double min, double max, double w,
|
|||
|
||||
double mm3_per_mm = flow.mm3_per_mm();
|
||||
|
||||
/*
|
||||
my %path_args = (
|
||||
role => EXTR_ROLE_GAPFILL,
|
||||
mm3_per_mm => $flow->mm3_per_mm,
|
||||
width => $flow->width,
|
||||
height => $self->layer_height,
|
||||
);
|
||||
*/
|
||||
|
||||
for (Polylines::const_iterator p = polylines.begin(); p != polylines.end(); ++p) {
|
||||
/*
|
||||
#if ($polylines[$i]->isa('Slic3r::Polygon')) {
|
||||
# my $loop = Slic3r::ExtrusionLoop->new;
|
||||
# $loop->append(Slic3r::ExtrusionPath->new(polyline => $polylines[$i]->split_at_first_point, %path_args));
|
||||
# $polylines[$i] = $loop;
|
||||
*/
|
||||
ExtrusionPath path(erGapFill);
|
||||
path.polyline = *p;
|
||||
path.mm3_per_mm = mm3_per_mm;
|
||||
path.width = flow.width;
|
||||
path.height = this->layer_height;
|
||||
|
||||
if (p->is_valid() && p->first_point().coincides_with(p->last_point())) {
|
||||
// since medial_axis() now returns only Polyline objects, detect loops here
|
||||
|
||||
|
||||
ExtrusionLoop loop;
|
||||
loop.paths.push_back();
|
||||
loop.paths.push_back(path);
|
||||
coll.append(loop);
|
||||
} else {
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
foreach my $polyline (@polylines) {
|
||||
#if ($polylines[$i]->isa('Slic3r::Polygon')) {
|
||||
# my $loop = Slic3r::ExtrusionLoop->new;
|
||||
# $loop->append(Slic3r::ExtrusionPath->new(polyline => $polylines[$i]->split_at_first_point, %path_args));
|
||||
# $polylines[$i] = $loop;
|
||||
if ($polyline->is_valid && $polyline->first_point->coincides_with($polyline->last_point)) {
|
||||
# since medial_axis() now returns only Polyline objects, detect loops here
|
||||
push @entities, my $loop = Slic3r::ExtrusionLoop->new;
|
||||
$loop->append(Slic3r::ExtrusionPath->new(polyline => $polyline, %path_args));
|
||||
} else {
|
||||
push @entities, Slic3r::ExtrusionPath->new(polyline => $polyline, %path_args);
|
||||
coll.append(path);
|
||||
}
|
||||
}
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue