mirror of
https://github.com/SoftFever/OrcaSlicer.git
synced 2025-07-20 21:27:52 -06:00
Renamed create_face_neighbors_index() to its_face_edge_ids().
Renamed its_create_neighbors_index() / its_create_neighbors_index_par() to its_face_neighbors() / its_face_neighbors_par(). New variant of its_face_edge_ids() to create edge IDs from face neighbors. Fixed some incorrect use of _NDEBUG, it should be NDEBUG. PrintObject::slice_support_volumes() returns newly Polygons, which are cheaper than ExPolygons. Updated SeamPlacer and SupportMaterial to use regions defined as Polygons, not ExPolygons. TriangleSelector::get_facets_strict() returning a patch with T-joints retriangulated. New slice_mesh_slabs() - slicing projections of a triangle patch into top / bottom layers of slices, for MMU top / bottom segmentation. TriangleMeshSlicer - use 64 mutexes instead of one when scattering sliced triangles into layers. This makes a big difference on modern many core desktop computers. When applying MM segmented regions to input regions, the split regions are now re-merged with 10x higher positive offset epsilon to avoid creating gaps. When testing for existence of paint-on supports or seam, use a more efficient has_facets() test, which does not deserialize into the expensive TriangleSelector tree structure. GLIndexedVertexArray newly uses Eigen::AlignedBox<float, 3> for efficiency instead of our double based BoundingBoxf3. Improved MMU painting refresh speed by optimizing generation of the vertex buffers. Refactored MMU segmentation - projection of painted surfaces from top / bottom. 1) Parallelized. 2) Using the new slice_mesh_slabs() instead of projecting one triangle by the other and merging them with Clipper.
This commit is contained in:
parent
d08a70478e
commit
0d70a2be69
23 changed files with 1357 additions and 489 deletions
|
@ -77,6 +77,21 @@ inline std::vector<ExPolygons> slice_mesh_ex(
|
|||
return slice_mesh_ex(mesh, zs, params, throw_on_cancel);
|
||||
}
|
||||
|
||||
// Slice a triangle set with a set of Z slabs (thick layers).
|
||||
// The effect is similar to producing the usual top / bottom layers from a sliced mesh by
|
||||
// subtracting layer[i] from layer[i - 1] for the top surfaces resp.
|
||||
// subtracting layer[i] from layer[i + 1] for the bottom surfaces,
|
||||
// with the exception that the triangle set this function processes may not cover the whole top resp. bottom surface.
|
||||
// top resp. bottom surfaces are calculated only if out_top resp. out_bottom is not null.
|
||||
void slice_mesh_slabs(
|
||||
const indexed_triangle_set &mesh,
|
||||
// Unscaled Zs
|
||||
const std::vector<float> &zs,
|
||||
const Transform3d &trafo,
|
||||
std::vector<Polygons> *out_top,
|
||||
std::vector<Polygons> *out_bottom,
|
||||
std::function<void()> throw_on_cancel);
|
||||
|
||||
void cut_mesh(
|
||||
const indexed_triangle_set &mesh,
|
||||
float z,
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue