Renamed create_face_neighbors_index() to its_face_edge_ids().

Renamed its_create_neighbors_index() / its_create_neighbors_index_par() to its_face_neighbors() / its_face_neighbors_par().
New variant of its_face_edge_ids() to create edge IDs from face neighbors.
Fixed some incorrect use of _NDEBUG, it should be NDEBUG.
PrintObject::slice_support_volumes() returns newly Polygons, which are cheaper than ExPolygons.
Updated SeamPlacer and SupportMaterial to use regions defined as Polygons, not ExPolygons.
TriangleSelector::get_facets_strict() returning a patch with T-joints retriangulated.
New slice_mesh_slabs() - slicing projections of a triangle patch into top / bottom layers of slices, for MMU top / bottom segmentation.
TriangleMeshSlicer - use 64 mutexes instead of one when scattering sliced triangles into layers. This makes a big difference on modern many core desktop computers.
When applying MM segmented regions to input regions, the split regions are now re-merged with 10x higher positive offset epsilon to avoid creating gaps.
When testing for existence of paint-on supports or seam, use a more efficient has_facets() test, which does not deserialize into the expensive TriangleSelector tree structure.
GLIndexedVertexArray newly uses Eigen::AlignedBox<float, 3> for efficiency instead of our double based BoundingBoxf3.
Improved MMU painting refresh speed by optimizing generation of the vertex buffers.
Refactored MMU segmentation - projection of painted surfaces from top / bottom.
	1) Parallelized.
	2) Using the new slice_mesh_slabs() instead of projecting one triangle by the other and merging them with Clipper.
This commit is contained in:
Vojtech Bubnik 2021-06-20 15:21:12 +02:00
parent d08a70478e
commit 0d70a2be69
23 changed files with 1357 additions and 489 deletions

View file

@ -403,10 +403,8 @@ void PrintObject::generate_support_material()
// Notify the user in that case.
if (! this->has_support()) {
for (const ModelVolume* mv : this->model_object()->volumes) {
bool has_enforcers = mv->is_support_enforcer()
|| (mv->is_model_part()
&& ! mv->supported_facets.empty()
&& ! mv->supported_facets.get_facets(*mv, EnforcerBlockerType::ENFORCER).indices.empty());
bool has_enforcers = mv->is_support_enforcer() ||
(mv->is_model_part() && mv->supported_facets.has_facets(*mv, EnforcerBlockerType::ENFORCER));
if (has_enforcers) {
this->active_step_add_warning(PrintStateBase::WarningLevel::CRITICAL,
L("An object has custom support enforcers which will not be used "
@ -2102,206 +2100,206 @@ void PrintObject::_generate_support_material()
support_material.generate(*this);
}
void PrintObject::project_and_append_custom_facets(
bool seam, EnforcerBlockerType type, std::vector<ExPolygons>& expolys) const
static void project_triangles_to_slabs(ConstLayerPtrsAdaptor layers, const indexed_triangle_set &custom_facets, const Transform3f &tr, bool seam, std::vector<Polygons> &out)
{
for (const ModelVolume* mv : this->model_object()->volumes) {
const indexed_triangle_set custom_facets = seam
? mv->seam_facets.get_facets(*mv, type)
: mv->supported_facets.get_facets(*mv, type);
if (! mv->is_model_part() || custom_facets.indices.empty())
if (custom_facets.indices.empty())
return;
const float tr_det_sign = (tr.matrix().determinant() > 0. ? 1.f : -1.f);
// The projection will be at most a pentagon. Let's minimize heap
// reallocations by saving in in the following struct.
// Points are used so that scaling can be done in parallel
// and they can be moved from to create an ExPolygon later.
struct LightPolygon {
LightPolygon() { pts.reserve(5); }
LightPolygon(const std::array<Vec2f, 3>& tri) {
pts.reserve(3);
pts.emplace_back(scaled<coord_t>(tri.front()));
pts.emplace_back(scaled<coord_t>(tri[1]));
pts.emplace_back(scaled<coord_t>(tri.back()));
}
Points pts;
void add(const Vec2f& pt) {
pts.emplace_back(scaled<coord_t>(pt));
assert(pts.size() <= 5);
}
};
// Structure to collect projected polygons. One element for each triangle.
// Saves vector of polygons and layer_id of the first one.
struct TriangleProjections {
size_t first_layer_id;
std::vector<LightPolygon> polygons;
};
// Vector to collect resulting projections from each triangle.
std::vector<TriangleProjections> projections_of_triangles(custom_facets.indices.size());
// Iterate over all triangles.
tbb::parallel_for(
tbb::blocked_range<size_t>(0, custom_facets.indices.size()),
[&custom_facets, &tr, tr_det_sign, seam, layers, &projections_of_triangles](const tbb::blocked_range<size_t>& range) {
for (size_t idx = range.begin(); idx < range.end(); ++ idx) {
std::array<Vec3f, 3> facet;
// Transform the triangle into worlds coords.
for (int i=0; i<3; ++i)
facet[i] = tr * custom_facets.vertices[custom_facets.indices[idx](i)];
// Ignore triangles with upward-pointing normal. Don't forget about mirroring.
float z_comp = (facet[1]-facet[0]).cross(facet[2]-facet[0]).z();
if (! seam && tr_det_sign * z_comp > 0.)
continue;
const Transform3f& tr1 = mv->get_matrix().cast<float>();
const Transform3f& tr2 = this->trafo().cast<float>();
const Transform3f tr = tr2 * tr1;
const float tr_det_sign = (tr.matrix().determinant() > 0. ? 1.f : -1.f);
const Vec2f center = unscaled<float>(this->center_offset());
ConstLayerPtrsAdaptor layers = this->layers();
// The algorithm does not process vertical triangles, but it should for seam.
// In that case, tilt the triangle a bit so the projection does not degenerate.
if (seam && z_comp == 0.f)
facet[0].x() += float(EPSILON);
// The projection will be at most a pentagon. Let's minimize heap
// reallocations by saving in in the following struct.
// Points are used so that scaling can be done in parallel
// and they can be moved from to create an ExPolygon later.
struct LightPolygon {
LightPolygon() { pts.reserve(5); }
LightPolygon(const std::array<Vec2f, 3>& tri) {
pts.reserve(3);
pts.emplace_back(scaled<coord_t>(tri.front()));
pts.emplace_back(scaled<coord_t>(tri[1]));
pts.emplace_back(scaled<coord_t>(tri.back()));
}
// Sort the three vertices according to z-coordinate.
std::sort(facet.begin(), facet.end(),
[](const Vec3f& pt1, const Vec3f&pt2) {
return pt1.z() < pt2.z();
});
Points pts;
std::array<Vec2f, 3> trianglef;
for (int i=0; i<3; ++i)
trianglef[i] = to_2d(facet[i]);
void add(const Vec2f& pt) {
pts.emplace_back(scaled<coord_t>(pt));
assert(pts.size() <= 5);
}
};
// Structure to collect projected polygons. One element for each triangle.
// Saves vector of polygons and layer_id of the first one.
struct TriangleProjections {
size_t first_layer_id;
std::vector<LightPolygon> polygons;
};
// Vector to collect resulting projections from each triangle.
std::vector<TriangleProjections> projections_of_triangles(custom_facets.indices.size());
// Iterate over all triangles.
tbb::parallel_for(
tbb::blocked_range<size_t>(0, custom_facets.indices.size()),
[center, &custom_facets, &tr, tr_det_sign, seam, layers, &projections_of_triangles](const tbb::blocked_range<size_t>& range) {
for (size_t idx = range.begin(); idx < range.end(); ++ idx) {
std::array<Vec3f, 3> facet;
// Transform the triangle into worlds coords.
for (int i=0; i<3; ++i)
facet[i] = tr * custom_facets.vertices[custom_facets.indices[idx](i)];
// Ignore triangles with upward-pointing normal. Don't forget about mirroring.
float z_comp = (facet[1]-facet[0]).cross(facet[2]-facet[0]).z();
if (! seam && tr_det_sign * z_comp > 0.)
continue;
// The algorithm does not process vertical triangles, but it should for seam.
// In that case, tilt the triangle a bit so the projection does not degenerate.
if (seam && z_comp == 0.f)
facet[0].x() += float(EPSILON);
// Sort the three vertices according to z-coordinate.
std::sort(facet.begin(), facet.end(),
[](const Vec3f& pt1, const Vec3f&pt2) {
return pt1.z() < pt2.z();
// Find lowest slice not below the triangle.
auto it = std::lower_bound(layers.begin(), layers.end(), facet[0].z()+EPSILON,
[](const Layer* l1, float z) {
return l1->slice_z < z;
});
std::array<Vec2f, 3> trianglef;
for (int i=0; i<3; ++i)
trianglef[i] = to_2d(facet[i]) - center;
// Count how many projections will be generated for this triangle
// and allocate respective amount in projections_of_triangles.
size_t first_layer_id = projections_of_triangles[idx].first_layer_id = it - layers.begin();
size_t last_layer_id = first_layer_id;
// The cast in the condition below is important. The comparison must
// be an exact opposite of the one lower in the code where
// the polygons are appended. And that one is on floats.
while (last_layer_id + 1 < layers.size()
&& float(layers[last_layer_id]->slice_z) <= facet[2].z())
++last_layer_id;
// Find lowest slice not below the triangle.
auto it = std::lower_bound(layers.begin(), layers.end(), facet[0].z()+EPSILON,
[](const Layer* l1, float z) {
return l1->slice_z < z;
});
// Count how many projections will be generated for this triangle
// and allocate respective amount in projections_of_triangles.
size_t first_layer_id = projections_of_triangles[idx].first_layer_id = it - layers.begin();
size_t last_layer_id = first_layer_id;
// The cast in the condition below is important. The comparison must
// be an exact opposite of the one lower in the code where
// the polygons are appended. And that one is on floats.
while (last_layer_id + 1 < layers.size()
&& float(layers[last_layer_id]->slice_z) <= facet[2].z())
++last_layer_id;
if (first_layer_id == last_layer_id) {
// The triangle fits just a single slab, just project it. This also avoids division by zero for horizontal triangles.
float dz = facet[2].z() - facet[0].z();
assert(dz >= 0);
// The face is nearly horizontal and it crosses the slicing plane at first_layer_id - 1.
// Rather add this face to both the planes.
bool add_below = dz < float(2. * EPSILON) && first_layer_id > 0 && layers[first_layer_id - 1]->slice_z > facet[0].z() - EPSILON;
projections_of_triangles[idx].polygons.reserve(add_below ? 2 : 1);
if (first_layer_id == last_layer_id) {
// The triangle fits just a single slab, just project it. This also avoids division by zero for horizontal triangles.
float dz = facet[2].z() - facet[0].z();
assert(dz >= 0);
// The face is nearly horizontal and it crosses the slicing plane at first_layer_id - 1.
// Rather add this face to both the planes.
bool add_below = dz < float(2. * EPSILON) && first_layer_id > 0 && layers[first_layer_id - 1]->slice_z > facet[0].z() - EPSILON;
projections_of_triangles[idx].polygons.reserve(add_below ? 2 : 1);
projections_of_triangles[idx].polygons.emplace_back(trianglef);
if (add_below) {
-- projections_of_triangles[idx].first_layer_id;
projections_of_triangles[idx].polygons.emplace_back(trianglef);
if (add_below) {
-- projections_of_triangles[idx].first_layer_id;
projections_of_triangles[idx].polygons.emplace_back(trianglef);
}
continue;
}
projections_of_triangles[idx].polygons.resize(last_layer_id - first_layer_id + 1);
// Calculate how to move points on triangle sides per unit z increment.
Vec2f ta(trianglef[1] - trianglef[0]);
Vec2f tb(trianglef[2] - trianglef[0]);
ta *= 1.f/(facet[1].z() - facet[0].z());
tb *= 1.f/(facet[2].z() - facet[0].z());
// Projection on current slice will be build directly in place.
LightPolygon* proj = &projections_of_triangles[idx].polygons[0];
proj->add(trianglef[0]);
bool passed_first = false;
bool stop = false;
// Project a sub-polygon on all slices intersecting the triangle.
while (it != layers.end()) {
const float z = float((*it)->slice_z);
// Projections of triangle sides intersections with slices.
// a moves along one side, b tracks the other.
Vec2f a;
Vec2f b;
// If the middle vertex was already passed, append the vertex
// and use ta for tracking the remaining side.
if (z > facet[1].z() && ! passed_first) {
proj->add(trianglef[1]);
ta = trianglef[2]-trianglef[1];
ta *= 1.f/(facet[2].z() - facet[1].z());
passed_first = true;
}
// This slice is above the triangle already.
if (z > facet[2].z() || it+1 == layers.end()) {
proj->add(trianglef[2]);
stop = true;
}
else {
// Move a, b along the side it currently tracks to get
// projected intersection with current slice.
a = passed_first ? (trianglef[1]+ta*(z-facet[1].z()))
: (trianglef[0]+ta*(z-facet[0].z()));
b = trianglef[0]+tb*(z-facet[0].z());
proj->add(a);
proj->add(b);
}
if (stop)
break;
// Advance to the next layer.
++it;
++proj;
assert(proj <= &projections_of_triangles[idx].polygons.back() );
// a, b are first two points of the polygon for the next layer.
proj->add(b);
proj->add(a);
}
continue;
}
}); // end of parallel_for
// Make sure that the output vector can be used.
expolys.resize(layers.size());
projections_of_triangles[idx].polygons.resize(last_layer_id - first_layer_id + 1);
// Now append the collected polygons to respective layers.
for (auto& trg : projections_of_triangles) {
int layer_id = int(trg.first_layer_id);
for (LightPolygon &poly : trg.polygons) {
if (layer_id >= int(expolys.size()))
break; // part of triangle could be projected above top layer
assert(! poly.pts.empty());
// The resulting triangles are fed to the Clipper library, which seem to handle flipped triangles well.
// Calculate how to move points on triangle sides per unit z increment.
Vec2f ta(trianglef[1] - trianglef[0]);
Vec2f tb(trianglef[2] - trianglef[0]);
ta *= 1.f/(facet[1].z() - facet[0].z());
tb *= 1.f/(facet[2].z() - facet[0].z());
// Projection on current slice will be built directly in place.
LightPolygon* proj = &projections_of_triangles[idx].polygons[0];
proj->add(trianglef[0]);
bool passed_first = false;
bool stop = false;
// Project a sub-polygon on all slices intersecting the triangle.
while (it != layers.end()) {
const float z = float((*it)->slice_z);
// Projections of triangle sides intersections with slices.
// a moves along one side, b tracks the other.
Vec2f a;
Vec2f b;
// If the middle vertex was already passed, append the vertex
// and use ta for tracking the remaining side.
if (z > facet[1].z() && ! passed_first) {
proj->add(trianglef[1]);
ta = trianglef[2]-trianglef[1];
ta *= 1.f/(facet[2].z() - facet[1].z());
passed_first = true;
}
// This slice is above the triangle already.
if (z > facet[2].z() || it+1 == layers.end()) {
proj->add(trianglef[2]);
stop = true;
}
else {
// Move a, b along the side it currently tracks to get
// projected intersection with current slice.
a = passed_first ? (trianglef[1]+ta*(z-facet[1].z()))
: (trianglef[0]+ta*(z-facet[0].z()));
b = trianglef[0]+tb*(z-facet[0].z());
proj->add(a);
proj->add(b);
}
if (stop)
break;
// Advance to the next layer.
++it;
++proj;
assert(proj <= &projections_of_triangles[idx].polygons.back() );
// a, b are first two points of the polygon for the next layer.
proj->add(b);
proj->add(a);
}
}
}); // end of parallel_for
// Make sure that the output vector can be used.
out.resize(layers.size());
// Now append the collected polygons to respective layers.
for (auto& trg : projections_of_triangles) {
int layer_id = int(trg.first_layer_id);
for (LightPolygon &poly : trg.polygons) {
if (layer_id >= int(out.size()))
break; // part of triangle could be projected above top layer
assert(! poly.pts.empty());
// The resulting triangles are fed to the Clipper library, which seem to handle flipped triangles well.
// if (cross2(Vec2d((poly.pts[1] - poly.pts[0]).cast<double>()), Vec2d((poly.pts[2] - poly.pts[1]).cast<double>())) < 0)
// std::swap(poly.pts.front(), poly.pts.back());
expolys[layer_id].emplace_back(std::move(poly.pts));
++layer_id;
}
out[layer_id].emplace_back(std::move(poly.pts));
++layer_id;
}
} // loop over ModelVolumes
}
}
void PrintObject::project_and_append_custom_facets(
bool seam, EnforcerBlockerType type, std::vector<Polygons>& out) const
{
for (const ModelVolume* mv : this->model_object()->volumes)
if (mv->is_model_part()) {
const indexed_triangle_set custom_facets = seam
? mv->seam_facets.get_facets_strict(*mv, type)
: mv->supported_facets.get_facets_strict(*mv, type);
if (! custom_facets.indices.empty())
project_triangles_to_slabs(this->layers(), custom_facets,
(Eigen::Translation3d(to_3d(unscaled<double>(this->center_offset()), 0.)) * this->trafo() * mv->get_matrix()).cast<float>(),
seam, out);
}
}
const Layer* PrintObject::get_layer_at_printz(coordf_t print_z) const {
auto it = Slic3r::lower_bound_by_predicate(m_layers.begin(), m_layers.end(), [print_z](const Layer *layer) { return layer->print_z < print_z; });