mirror of
https://github.com/SoftFever/OrcaSlicer.git
synced 2025-07-21 13:47:59 -06:00
Renamed create_face_neighbors_index() to its_face_edge_ids().
Renamed its_create_neighbors_index() / its_create_neighbors_index_par() to its_face_neighbors() / its_face_neighbors_par(). New variant of its_face_edge_ids() to create edge IDs from face neighbors. Fixed some incorrect use of _NDEBUG, it should be NDEBUG. PrintObject::slice_support_volumes() returns newly Polygons, which are cheaper than ExPolygons. Updated SeamPlacer and SupportMaterial to use regions defined as Polygons, not ExPolygons. TriangleSelector::get_facets_strict() returning a patch with T-joints retriangulated. New slice_mesh_slabs() - slicing projections of a triangle patch into top / bottom layers of slices, for MMU top / bottom segmentation. TriangleMeshSlicer - use 64 mutexes instead of one when scattering sliced triangles into layers. This makes a big difference on modern many core desktop computers. When applying MM segmented regions to input regions, the split regions are now re-merged with 10x higher positive offset epsilon to avoid creating gaps. When testing for existence of paint-on supports or seam, use a more efficient has_facets() test, which does not deserialize into the expensive TriangleSelector tree structure. GLIndexedVertexArray newly uses Eigen::AlignedBox<float, 3> for efficiency instead of our double based BoundingBoxf3. Improved MMU painting refresh speed by optimizing generation of the vertex buffers. Refactored MMU segmentation - projection of painted surfaces from top / bottom. 1) Parallelized. 2) Using the new slice_mesh_slabs() instead of projecting one triangle by the other and merging them with Clipper.
This commit is contained in:
parent
d08a70478e
commit
0d70a2be69
23 changed files with 1357 additions and 489 deletions
|
@ -1151,67 +1151,16 @@ static void cut_segmented_layers(const std::vector<ExPolygons>
|
|||
BOOST_LOG_TRIVIAL(debug) << "MMU segmentation - cutting segmented layers in parallel - end";
|
||||
}
|
||||
|
||||
// #define MMU_SEGMENTATION_DEBUG_TOP_BOTTOM
|
||||
|
||||
// Returns MMU segmentation of top and bottom layers based on painting in MMU segmentation gizmo
|
||||
static inline std::vector<std::vector<ExPolygons>> mmu_segmentation_top_and_bottom_layers(const PrintObject &print_object,
|
||||
const std::vector<ExPolygons> &input_expolygons,
|
||||
const std::function<void()> &throw_on_cancel_callback)
|
||||
{
|
||||
const size_t num_extruders = print_object.print()->config().nozzle_diameter.size() + 1;
|
||||
const size_t num_layers = input_expolygons.size();
|
||||
const ConstLayerPtrsAdaptor layers = print_object.layers();
|
||||
std::vector<std::vector<ExPolygons>> triangles_by_color(num_extruders);
|
||||
triangles_by_color.assign(num_extruders, std::vector<ExPolygons>(layers.size()));
|
||||
|
||||
BOOST_LOG_TRIVIAL(debug) << "MMU segmentation - top and bottom layers - projection of painted triangles - begin";
|
||||
for (const ModelVolume *mv : print_object.model_object()->volumes) {
|
||||
for (size_t extruder_idx = 0; extruder_idx < num_extruders; ++extruder_idx) {
|
||||
throw_on_cancel_callback();
|
||||
const indexed_triangle_set custom_facets = mv->mmu_segmentation_facets.get_facets(*mv, EnforcerBlockerType(extruder_idx));
|
||||
if (!mv->is_model_part() || custom_facets.indices.empty())
|
||||
continue;
|
||||
|
||||
const Transform3f tr = print_object.trafo().cast<float>() * mv->get_matrix().cast<float>();
|
||||
for (size_t facet_idx = 0; facet_idx < custom_facets.indices.size(); ++facet_idx) {
|
||||
float min_z = std::numeric_limits<float>::max();
|
||||
float max_z = std::numeric_limits<float>::lowest();
|
||||
|
||||
std::array<Vec3f, 3> facet;
|
||||
Points projected_facet(3);
|
||||
for (int p_idx = 0; p_idx < 3; ++p_idx) {
|
||||
facet[p_idx] = tr * custom_facets.vertices[custom_facets.indices[facet_idx](p_idx)];
|
||||
max_z = std::max(max_z, facet[p_idx].z());
|
||||
min_z = std::min(min_z, facet[p_idx].z());
|
||||
}
|
||||
|
||||
// Sort the vertices by z-axis for simplification of projected_facet on slices
|
||||
std::sort(facet.begin(), facet.end(), [](const Vec3f &p1, const Vec3f &p2) { return p1.z() < p2.z(); });
|
||||
|
||||
for (int p_idx = 0; p_idx < 3; ++p_idx) {
|
||||
projected_facet[p_idx] = Point(scale_(facet[p_idx].x()), scale_(facet[p_idx].y()));
|
||||
projected_facet[p_idx] = projected_facet[p_idx] - print_object.center_offset();
|
||||
}
|
||||
|
||||
ExPolygon triangle = ExPolygon(projected_facet);
|
||||
|
||||
// Find lowest slice not below the triangle.
|
||||
auto first_layer = std::upper_bound(layers.begin(), layers.end(), float(min_z - EPSILON),
|
||||
[](float z, const Layer *l1) { return z < l1->slice_z + l1->height * 0.5; });
|
||||
auto last_layer = std::upper_bound(layers.begin(), layers.end(), float(max_z - EPSILON),
|
||||
[](float z, const Layer *l1) { return z < l1->slice_z + l1->height * 0.5; });
|
||||
|
||||
if (last_layer == layers.end())
|
||||
--last_layer;
|
||||
|
||||
if (first_layer == layers.end() || (first_layer != layers.begin() && facet[0].z() < (*first_layer)->print_z - EPSILON))
|
||||
--first_layer;
|
||||
|
||||
for (auto layer_it = first_layer; (layer_it != (last_layer + 1) && layer_it != layers.end()); ++layer_it) {
|
||||
size_t layer_idx = layer_it - layers.begin();
|
||||
triangles_by_color[extruder_idx][layer_idx].emplace_back(triangle);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
BOOST_LOG_TRIVIAL(debug) << "MMU segmentation - top and bottom layers - projection of painted triangles - end";
|
||||
|
||||
auto get_extrusion_width = [&layers = std::as_const(layers)](const size_t layer_idx) -> float {
|
||||
auto extrusion_width_it = std::max_element(layers[layer_idx]->regions().begin(), layers[layer_idx]->regions().end(),
|
||||
|
@ -1241,9 +1190,10 @@ static inline std::vector<std::vector<ExPolygons>> mmu_segmentation_top_and_bott
|
|||
return (*top_bottom_layer_it)->region().config().bottom_solid_layers;
|
||||
};
|
||||
|
||||
std::vector<ExPolygons> top_layers(input_expolygons.size());
|
||||
#if 0
|
||||
std::vector<ExPolygons> top_layers(num_layers);
|
||||
top_layers.back() = input_expolygons.back();
|
||||
tbb::parallel_for(tbb::blocked_range<size_t>(1, input_expolygons.size()), [&](const tbb::blocked_range<size_t> &range) {
|
||||
tbb::parallel_for(tbb::blocked_range<size_t>(1, num_layers), [&](const tbb::blocked_range<size_t> &range) {
|
||||
for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++layer_idx) {
|
||||
throw_on_cancel_callback();
|
||||
float extrusion_width = 0.1f * float(scale_(get_extrusion_width(layer_idx)));
|
||||
|
@ -1251,9 +1201,9 @@ static inline std::vector<std::vector<ExPolygons>> mmu_segmentation_top_and_bott
|
|||
}
|
||||
}); // end of parallel_for
|
||||
|
||||
std::vector<ExPolygons> bottom_layers(input_expolygons.size());
|
||||
std::vector<ExPolygons> bottom_layers(num_layers);
|
||||
bottom_layers.front() = input_expolygons.front();
|
||||
tbb::parallel_for(tbb::blocked_range<size_t>(0, input_expolygons.size() - 1), [&](const tbb::blocked_range<size_t> &range) {
|
||||
tbb::parallel_for(tbb::blocked_range<size_t>(0, num_layers - 1), [&](const tbb::blocked_range<size_t> &range) {
|
||||
for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++layer_idx) {
|
||||
throw_on_cancel_callback();
|
||||
float extrusion_width = 0.1f * float(scale_(get_extrusion_width(layer_idx)));
|
||||
|
@ -1261,28 +1211,84 @@ static inline std::vector<std::vector<ExPolygons>> mmu_segmentation_top_and_bott
|
|||
}
|
||||
}); // end of parallel_for
|
||||
|
||||
tbb::parallel_for(tbb::blocked_range<size_t>(0, input_expolygons.size()), [&](const tbb::blocked_range<size_t> &range) {
|
||||
for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++layer_idx) {
|
||||
throw_on_cancel_callback();
|
||||
float extrusion_width = 0.1f * float(scale_(get_extrusion_width(layer_idx)));
|
||||
for (std::vector<ExPolygons> &triangles : triangles_by_color) {
|
||||
if (!triangles[layer_idx].empty() && (!top_layers[layer_idx].empty() || !bottom_layers[layer_idx].empty())) {
|
||||
ExPolygons connected = union_ex(offset_ex(triangles[layer_idx], float(10 * SCALED_EPSILON)));
|
||||
triangles[layer_idx] = union_ex(offset_ex(offset_ex(connected, -extrusion_width / 1), extrusion_width / 1));
|
||||
} else {
|
||||
triangles[layer_idx].clear();
|
||||
std::vector<std::vector<ClipperLib::Paths>> triangles_by_color_raw(num_extruders, std::vector<ClipperLib::Paths>(layers.size()));
|
||||
BOOST_LOG_TRIVIAL(debug) << "MMU segmentation - top and bottom layers - projection of painted triangles - begin";
|
||||
{
|
||||
auto delta = float(10 * SCALED_EPSILON);
|
||||
std::vector<float> deltas { delta, delta, delta };
|
||||
Points projected_facet;
|
||||
for (const ModelVolume *mv : print_object.model_object()->volumes)
|
||||
if (mv->is_model_part()) {
|
||||
const Transform3f tr = print_object.trafo().cast<float>() * mv->get_matrix().cast<float>();
|
||||
|
||||
for (size_t extruder_idx = 0; extruder_idx < num_extruders; ++extruder_idx) {
|
||||
const indexed_triangle_set custom_facets = mv->mmu_segmentation_facets.get_facets(*mv, EnforcerBlockerType(extruder_idx));
|
||||
if (custom_facets.indices.empty())
|
||||
continue;
|
||||
|
||||
throw_on_cancel_callback();
|
||||
for (size_t facet_idx = 0; facet_idx < custom_facets.indices.size(); ++facet_idx) {
|
||||
float min_z = std::numeric_limits<float>::max();
|
||||
float max_z = std::numeric_limits<float>::lowest();
|
||||
|
||||
std::array<Vec3f, 3> facet;
|
||||
for (int p_idx = 0; p_idx < 3; ++p_idx) {
|
||||
facet[p_idx] = tr * custom_facets.vertices[custom_facets.indices[facet_idx](p_idx)];
|
||||
max_z = std::max(max_z, facet[p_idx].z());
|
||||
min_z = std::min(min_z, facet[p_idx].z());
|
||||
}
|
||||
|
||||
// Sort the vertices by z-axis for simplification of projected_facet on slices
|
||||
std::sort(facet.begin(), facet.end(), [](const Vec3f &p1, const Vec3f &p2) { return p1.z() < p2.z(); });
|
||||
projected_facet.clear();
|
||||
projected_facet.reserve(3);
|
||||
for (int p_idx = 0; p_idx < 3; ++p_idx)
|
||||
projected_facet.emplace_back(Point(scale_(facet[p_idx].x()), scale_(facet[p_idx].y())) - print_object.center_offset());
|
||||
if (cross2((projected_facet[1] - projected_facet[0]).cast<int64_t>(), (projected_facet[2] - projected_facet[1]).cast<int64_t>()) < 0)
|
||||
// Make CCW.
|
||||
std::swap(projected_facet[1], projected_facet[2]);
|
||||
ClipperLib::Path offsetted = mittered_offset_path_scaled(projected_facet, deltas, 3.);
|
||||
|
||||
// Find lowest slice not below the triangle.
|
||||
auto first_layer = std::upper_bound(layers.begin(), layers.end(), float(min_z - EPSILON),
|
||||
[](float z, const Layer *l1) { return z < l1->slice_z + l1->height * 0.5; });
|
||||
auto last_layer = std::upper_bound(layers.begin(), layers.end(), float(max_z - EPSILON),
|
||||
[](float z, const Layer *l1) { return z < l1->slice_z + l1->height * 0.5; });
|
||||
|
||||
if (last_layer == layers.end())
|
||||
--last_layer;
|
||||
|
||||
if (first_layer == layers.end() || (first_layer != layers.begin() && facet[0].z() < (*first_layer)->print_z - EPSILON))
|
||||
--first_layer;
|
||||
|
||||
for (auto layer_it = first_layer; (layer_it != (last_layer + 1) && layer_it != layers.end()); ++layer_it)
|
||||
if (size_t layer_idx = layer_it - layers.begin(); ! top_layers[layer_idx].empty() || ! bottom_layers[layer_idx].empty())
|
||||
triangles_by_color_raw[extruder_idx][layer_idx].emplace_back(offsetted);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
BOOST_LOG_TRIVIAL(debug) << "MMU segmentation - top and bottom layers - projection of painted triangles - end";
|
||||
|
||||
std::vector<std::vector<ExPolygons>> triangles_by_color(num_extruders, std::vector<ExPolygons>(layers.size()));
|
||||
tbb::parallel_for(tbb::blocked_range<size_t>(0, num_layers), [&](const tbb::blocked_range<size_t> &range) {
|
||||
for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++layer_idx) {
|
||||
throw_on_cancel_callback();
|
||||
float offset_factor = 0.1f * float(scale_(get_extrusion_width(layer_idx)));
|
||||
for (size_t extruder_id = 0; extruder_id < num_extruders; ++ extruder_id)
|
||||
if (ClipperLib::Paths &src_paths = triangles_by_color_raw[extruder_id][layer_idx]; !src_paths.empty())
|
||||
triangles_by_color[extruder_id][layer_idx] = offset_ex(offset_ex(ClipperPaths_to_Slic3rExPolygons(src_paths), -offset_factor), offset_factor);
|
||||
}
|
||||
}); // end of parallel_for
|
||||
triangles_by_color_raw.clear();
|
||||
|
||||
std::vector<std::vector<ExPolygons>> triangles_by_color_bottom(num_extruders);
|
||||
std::vector<std::vector<ExPolygons>> triangles_by_color_top(num_extruders);
|
||||
triangles_by_color_bottom.assign(num_extruders, std::vector<ExPolygons>(input_expolygons.size()));
|
||||
triangles_by_color_top.assign(num_extruders, std::vector<ExPolygons>(input_expolygons.size()));
|
||||
triangles_by_color_bottom.assign(num_extruders, std::vector<ExPolygons>(num_layers));
|
||||
triangles_by_color_top.assign(num_extruders, std::vector<ExPolygons>(num_layers));
|
||||
|
||||
BOOST_LOG_TRIVIAL(debug) << "MMU segmentation - segmentation of top layer - begin";
|
||||
for (size_t layer_idx = 0; layer_idx < input_expolygons.size(); ++layer_idx) {
|
||||
for (size_t layer_idx = 0; layer_idx < num_layers; ++layer_idx) {
|
||||
float extrusion_width = scale_(get_extrusion_width(layer_idx));
|
||||
int top_solid_layers = get_top_solid_layers(layer_idx);
|
||||
ExPolygons top_expolygon = top_layers[layer_idx];
|
||||
|
@ -1318,7 +1324,7 @@ static inline std::vector<std::vector<ExPolygons>> mmu_segmentation_top_and_bott
|
|||
BOOST_LOG_TRIVIAL(debug) << "MMU segmentation - segmentation of top layer - end";
|
||||
|
||||
BOOST_LOG_TRIVIAL(debug) << "MMU segmentation - segmentation of bottom layer - begin";
|
||||
for (size_t layer_idx = 0; layer_idx < input_expolygons.size(); ++layer_idx) {
|
||||
for (size_t layer_idx = 0; layer_idx < num_layers; ++layer_idx) {
|
||||
float extrusion_width = scale_(get_extrusion_width(layer_idx));
|
||||
int bottom_solid_layers = get_bottom_solid_layers(layer_idx);
|
||||
const ExPolygons &bottom_expolygon = bottom_layers[layer_idx];
|
||||
|
@ -1334,7 +1340,7 @@ static inline std::vector<std::vector<ExPolygons>> mmu_segmentation_top_and_bott
|
|||
if (!intersection_poly.empty()) {
|
||||
triangles_by_color_bottom[color_idx][layer_idx].insert(triangles_by_color_bottom[color_idx][layer_idx].end(), intersection_poly.begin(),
|
||||
intersection_poly.end());
|
||||
for (size_t last_idx = layer_idx + 1; last_idx < std::min(layer_idx + bottom_solid_layers, input_expolygons.size()); ++last_idx) {
|
||||
for (size_t last_idx = layer_idx + 1; last_idx < std::min(layer_idx + bottom_solid_layers, num_layers); ++last_idx) {
|
||||
float offset_value = float(last_idx - layer_idx) * (-1.0f) * extrusion_width;
|
||||
if (offset_ex(bottom_expolygon, offset_value).empty())
|
||||
continue;
|
||||
|
@ -1353,8 +1359,8 @@ static inline std::vector<std::vector<ExPolygons>> mmu_segmentation_top_and_bott
|
|||
BOOST_LOG_TRIVIAL(debug) << "MMU segmentation - segmentation of bottom layer - end";
|
||||
|
||||
std::vector<std::vector<ExPolygons>> triangles_by_color_merged(num_extruders);
|
||||
triangles_by_color_merged.assign(num_extruders, std::vector<ExPolygons>(input_expolygons.size()));
|
||||
for (size_t layer_idx = 0; layer_idx < input_expolygons.size(); ++layer_idx) {
|
||||
triangles_by_color_merged.assign(num_extruders, std::vector<ExPolygons>(num_layers));
|
||||
for (size_t layer_idx = 0; layer_idx < num_layers; ++layer_idx) {
|
||||
throw_on_cancel_callback();
|
||||
for (size_t color_idx = 0; color_idx < triangles_by_color_merged.size(); ++color_idx) {
|
||||
auto &self = triangles_by_color_merged[color_idx][layer_idx];
|
||||
|
@ -1369,6 +1375,169 @@ static inline std::vector<std::vector<ExPolygons>> mmu_segmentation_top_and_bott
|
|||
triangles_by_color_merged[color_idx - 1][layer_idx]);
|
||||
}
|
||||
}
|
||||
#else
|
||||
|
||||
// Maximum number of top / bottom layers accounts for maximum overlap of one thread group into a neighbor thread group.
|
||||
int max_top_layers = 0;
|
||||
int max_bottom_layers = 0;
|
||||
int granularity = 1;
|
||||
for (size_t i = 0; i < print_object.num_printing_regions(); ++ i) {
|
||||
const PrintRegionConfig &config = print_object.printing_region(i).config();
|
||||
max_top_layers = std::max(max_top_layers, config.top_solid_layers.value);
|
||||
max_bottom_layers = std::max(max_bottom_layers, config.bottom_solid_layers.value);
|
||||
granularity = std::max(granularity, std::max(config.top_solid_layers.value, config.bottom_solid_layers.value) - 1);
|
||||
}
|
||||
|
||||
// Project upwards pointing painted triangles over top surfaces,
|
||||
// project downards pointing painted triangles over bottom surfaces.
|
||||
std::vector<std::vector<Polygons>> top_raw(num_extruders), bottom_raw(num_extruders);
|
||||
std::vector<float> zs = zs_from_layers(print_object.layers());
|
||||
Transform3d object_trafo = print_object.trafo();
|
||||
object_trafo.pretranslate(Vec3d(- unscale<double>(print_object.center_offset().x()), - unscale<double>(print_object.center_offset().y()), 0));
|
||||
|
||||
#ifdef MMU_SEGMENTATION_DEBUG_TOP_BOTTOM
|
||||
static int iRun = 0;
|
||||
#endif // NDEBUG
|
||||
|
||||
if (max_top_layers > 0 || max_bottom_layers > 0) {
|
||||
for (const ModelVolume *mv : print_object.model_object()->volumes)
|
||||
if (mv->is_model_part()) {
|
||||
const Transform3d volume_trafo = object_trafo * mv->get_matrix();
|
||||
for (size_t extruder_idx = 0; extruder_idx < num_extruders; ++ extruder_idx) {
|
||||
const indexed_triangle_set painted = mv->mmu_segmentation_facets.get_facets_strict(*mv, EnforcerBlockerType(extruder_idx));
|
||||
#ifdef MMU_SEGMENTATION_DEBUG_TOP_BOTTOM
|
||||
{
|
||||
static int iRun = 0;
|
||||
its_write_obj(painted, debug_out_path("mm-painted-patch-%d-%d.obj", iRun ++, extruder_idx).c_str());
|
||||
}
|
||||
#endif // MMU_SEGMENTATION_DEBUG_TOP_BOTTOM
|
||||
if (! painted.indices.empty()) {
|
||||
std::vector<Polygons> top, bottom;
|
||||
slice_mesh_slabs(painted, zs, volume_trafo, max_top_layers > 0 ? &top : nullptr, max_bottom_layers > 0 ? &bottom : nullptr, throw_on_cancel_callback);
|
||||
auto merge = [](std::vector<Polygons> &&src, std::vector<Polygons> &dst) {
|
||||
auto it_src = find_if(src.begin(), src.end(), [](const Polygons &p){ return ! p.empty(); });
|
||||
if (it_src != src.end()) {
|
||||
if (dst.empty()) {
|
||||
dst = std::move(src);
|
||||
} else {
|
||||
assert(src.size() == dst.size());
|
||||
auto it_dst = dst.begin() + (it_src - src.begin());
|
||||
for (; it_src != src.end(); ++ it_src, ++ it_dst)
|
||||
if (! it_src->empty()) {
|
||||
if (it_dst->empty())
|
||||
*it_dst = std::move(*it_src);
|
||||
else
|
||||
append(*it_dst, std::move(*it_src));
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
merge(std::move(top), top_raw[extruder_idx]);
|
||||
merge(std::move(bottom), bottom_raw[extruder_idx]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef MMU_SEGMENTATION_DEBUG_TOP_BOTTOM
|
||||
{
|
||||
const char* colors[] = { "aqua", "black", "blue", "fuchsia", "gray", "green", "lime", "maroon", "navy", "olive", "purple", "red", "silver", "teal", "yellow" };
|
||||
static int iRun = 0;
|
||||
for (size_t layer_id = 0; layer_id < zs.size(); ++layer_id) {
|
||||
std::vector<std::pair<Slic3r::ExPolygons, SVG::ExPolygonAttributes>> svg;
|
||||
for (size_t extruder_idx = 0; extruder_idx < num_extruders; ++ extruder_idx) {
|
||||
if (! top_raw[extruder_idx].empty() && ! top_raw[extruder_idx][layer_id].empty())
|
||||
if (ExPolygons expoly = union_ex(top_raw[extruder_idx][layer_id]); ! expoly.empty()) {
|
||||
const char *color = colors[extruder_idx];
|
||||
svg.emplace_back(expoly, SVG::ExPolygonAttributes{ format("top%d", extruder_idx), color, color, color });
|
||||
}
|
||||
if (! bottom_raw[extruder_idx].empty() && ! bottom_raw[extruder_idx][layer_id].empty())
|
||||
if (ExPolygons expoly = union_ex(bottom_raw[extruder_idx][layer_id]); ! expoly.empty()) {
|
||||
const char *color = colors[extruder_idx + 8];
|
||||
svg.emplace_back(expoly, SVG::ExPolygonAttributes{ format("bottom%d", extruder_idx), color, color, color });
|
||||
}
|
||||
}
|
||||
SVG::export_expolygons(debug_out_path("mm-segmentation-top-bottom-%d-%d-%lf.svg", iRun, layer_id, zs[layer_id]), svg);
|
||||
}
|
||||
++ iRun;
|
||||
}
|
||||
#endif // MMU_SEGMENTATION_DEBUG_TOP_BOTTOM
|
||||
|
||||
std::vector<std::vector<ExPolygons>> triangles_by_color_bottom(num_extruders);
|
||||
std::vector<std::vector<ExPolygons>> triangles_by_color_top(num_extruders);
|
||||
triangles_by_color_bottom.assign(num_extruders, std::vector<ExPolygons>(num_layers * 2));
|
||||
triangles_by_color_top.assign(num_extruders, std::vector<ExPolygons>(num_layers * 2));
|
||||
|
||||
tbb::parallel_for(tbb::blocked_range<size_t>(0, num_layers, granularity), [&](const tbb::blocked_range<size_t> &range) {
|
||||
size_t group_idx = range.begin() / granularity;
|
||||
size_t layer_idx_offset = (group_idx & 1) * num_layers;
|
||||
for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) {
|
||||
float extrusion_width = scale_(get_extrusion_width(layer_idx));
|
||||
int top_solid_layers = get_top_solid_layers(layer_idx);
|
||||
int bottom_solid_layers = get_bottom_solid_layers(layer_idx);
|
||||
float narrow_island_width = 0.1f * float(extrusion_width);
|
||||
for (size_t color_idx = 0; color_idx < num_extruders; ++ color_idx) {
|
||||
throw_on_cancel_callback();
|
||||
if (std::vector<Polygons> &top = top_raw[color_idx]; ! top.empty() && ! top[layer_idx].empty())
|
||||
if (ExPolygons top_ex = union_ex(top[layer_idx]); ! top_ex.empty()) {
|
||||
// Clean up thin projections. They are not printable anyways.
|
||||
top_ex = offset2_ex(top_ex, - narrow_island_width, + narrow_island_width);
|
||||
if (! top_ex.empty()) {
|
||||
append(triangles_by_color_top[color_idx][layer_idx + layer_idx_offset], top_ex);
|
||||
float offset = 0.f;
|
||||
ExPolygons layer_slices_trimmed = input_expolygons[layer_idx];
|
||||
for (int last_idx = int(layer_idx) - 1; last_idx >= std::max(int(layer_idx - top_solid_layers), int(0)); --last_idx) {
|
||||
offset -= extrusion_width;
|
||||
layer_slices_trimmed = intersection_ex(layer_slices_trimmed, input_expolygons[last_idx]);
|
||||
ExPolygons last = intersection_ex(top_ex, offset_ex(layer_slices_trimmed, offset));
|
||||
if (last.empty())
|
||||
break;
|
||||
append(triangles_by_color_top[color_idx][last_idx + layer_idx_offset], std::move(last));
|
||||
}
|
||||
}
|
||||
}
|
||||
if (std::vector<Polygons> &bottom = bottom_raw[color_idx]; ! bottom.empty() && ! bottom[layer_idx].empty())
|
||||
if (ExPolygons bottom_ex = union_ex(bottom[layer_idx]); ! bottom_ex.empty()) {
|
||||
// Clean up thin projections. They are not printable anyways.
|
||||
bottom_ex = offset2_ex(bottom_ex, - narrow_island_width, + narrow_island_width);
|
||||
if (! bottom_ex.empty()) {
|
||||
append(triangles_by_color_bottom[color_idx][layer_idx + layer_idx_offset], bottom_ex);
|
||||
float offset = 0.f;
|
||||
ExPolygons layer_slices_trimmed = input_expolygons[layer_idx];
|
||||
for (size_t last_idx = layer_idx + 1; last_idx < std::min(layer_idx + bottom_solid_layers, num_layers); ++last_idx) {
|
||||
offset -= extrusion_width;
|
||||
layer_slices_trimmed = intersection_ex(layer_slices_trimmed, input_expolygons[last_idx]);
|
||||
ExPolygons last = intersection_ex(bottom_ex, offset_ex(layer_slices_trimmed, offset));
|
||||
if (last.empty())
|
||||
break;
|
||||
append(triangles_by_color_bottom[color_idx][last_idx + layer_idx_offset], std::move(last));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
std::vector<std::vector<ExPolygons>> triangles_by_color_merged(num_extruders);
|
||||
triangles_by_color_merged.assign(num_extruders, std::vector<ExPolygons>(num_layers));
|
||||
tbb::parallel_for(tbb::blocked_range<size_t>(0, num_layers), [&](const tbb::blocked_range<size_t> &range) {
|
||||
for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) {
|
||||
throw_on_cancel_callback();
|
||||
for (size_t color_idx = 0; color_idx < triangles_by_color_merged.size(); ++color_idx) {
|
||||
auto &self = triangles_by_color_merged[color_idx][layer_idx];
|
||||
append(self, std::move(triangles_by_color_bottom[color_idx][layer_idx]));
|
||||
append(self, std::move(triangles_by_color_bottom[color_idx][layer_idx + num_layers]));
|
||||
append(self, std::move(triangles_by_color_top[color_idx][layer_idx]));
|
||||
append(self, std::move(triangles_by_color_top[color_idx][layer_idx + num_layers]));
|
||||
self = union_ex(self);
|
||||
}
|
||||
// Trim one region by the other if some of the regions overlap.
|
||||
for (size_t color_idx = 1; color_idx < triangles_by_color_merged.size(); ++ color_idx)
|
||||
triangles_by_color_merged[color_idx][layer_idx] = diff_ex(triangles_by_color_merged[color_idx][layer_idx],
|
||||
triangles_by_color_merged[color_idx - 1][layer_idx]);
|
||||
}
|
||||
});
|
||||
#endif
|
||||
|
||||
return triangles_by_color_merged;
|
||||
}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue