mirror of
https://github.com/SoftFever/OrcaSlicer.git
synced 2025-08-06 05:24:01 -06:00
Refactor extrusion logic in a dedicated class
This commit is contained in:
parent
415d1a5170
commit
081f65852d
4 changed files with 158 additions and 110 deletions
|
@ -4,7 +4,6 @@ use Moo;
|
|||
use Math::Clipper ':all';
|
||||
use XXX;
|
||||
|
||||
use constant PI => 4 * atan2(1, 1);
|
||||
use constant X => 0;
|
||||
use constant Y => 1;
|
||||
|
||||
|
@ -151,20 +150,6 @@ sub export_gcode {
|
|||
my $self = shift;
|
||||
my ($file) = @_;
|
||||
|
||||
# calculate speed for gcode commands
|
||||
my $travel_feed_rate = $Slic3r::travel_feed_rate * 60; # mm/min
|
||||
my $print_feed_rate = $Slic3r::print_feed_rate * 60; # mm/min
|
||||
my $retract_speed = $Slic3r::retract_speed * 60; # mm/min
|
||||
|
||||
# calculate number of decimals
|
||||
my $dec = length((1 / $Slic3r::resolution) - 1) + 1;
|
||||
|
||||
# calculate X,Y shift to center print around specified origin
|
||||
my @shift = (
|
||||
$Slic3r::print_center->[X] - ($self->x_length * $Slic3r::resolution / 2),
|
||||
$Slic3r::print_center->[Y] - ($self->y_length * $Slic3r::resolution / 2),
|
||||
);
|
||||
|
||||
# open output gcode file
|
||||
open my $fh, ">", $file
|
||||
or die "Failed to open $file for writing\n";
|
||||
|
@ -182,113 +167,30 @@ sub export_gcode {
|
|||
}
|
||||
|
||||
# make up a subroutine to generate G1 commands
|
||||
my $extrusion_distance = 0;
|
||||
my $last_pos; # on XY plane
|
||||
my $G1 = sub {
|
||||
my ($point, $z, $e, $comment) = @_;
|
||||
printf $fh "G1";
|
||||
my $extruder = Slic3r::Extruder->new(
|
||||
|
||||
if ($point) {
|
||||
printf $fh " X%.${dec}f Y%.${dec}f",
|
||||
($point->x * $Slic3r::resolution) + $shift[X],
|
||||
($point->y * $Slic3r::resolution) + $shift[Y]; #**
|
||||
$last_pos = $point->p;
|
||||
}
|
||||
if ($z) {
|
||||
printf $fh " Z%.${dec}f", $z;
|
||||
}
|
||||
# calculate X,Y shift to center print around specified origin
|
||||
shift_x => $Slic3r::print_center->[X] - ($self->x_length * $Slic3r::resolution / 2),
|
||||
shift_y => $Slic3r::print_center->[Y] - ($self->y_length * $Slic3r::resolution / 2),
|
||||
|
||||
# apply the speed reduction for print moves on bottom layer
|
||||
my $speed_multiplier = defined $z && $z == 0 && $point
|
||||
? $Slic3r::bottom_layer_speed_ratio
|
||||
: 1;
|
||||
|
||||
if ($e) {
|
||||
$extrusion_distance = 0 if $Slic3r::use_relative_e_distances;
|
||||
$extrusion_distance += $e;
|
||||
printf $fh " F%.${dec}f E%.5f",
|
||||
$e < 0
|
||||
? $retract_speed
|
||||
: ($print_feed_rate * $speed_multiplier),
|
||||
$extrusion_distance;
|
||||
} else {
|
||||
printf $fh " F%.${dec}f", ($travel_feed_rate * $speed_multiplier);
|
||||
}
|
||||
printf $fh " ; %s", $comment if $comment;
|
||||
print $fh "\n";
|
||||
};
|
||||
|
||||
my $z;
|
||||
my $retracted = 0;
|
||||
my $Extrude = sub {
|
||||
my ($path, $description) = @_;
|
||||
|
||||
# reset extrusion distance counter
|
||||
if (!$Slic3r::use_relative_e_distances) {
|
||||
$extrusion_distance = 0;
|
||||
print $fh "G92 E0 ; reset extrusion distance\n";
|
||||
}
|
||||
|
||||
# go to first point while compensating retraction
|
||||
$G1->($path->points->[0], $z, 0, "move to first $description point");
|
||||
|
||||
# compensate retraction
|
||||
if ($retracted) {
|
||||
$G1->(undef, undef, ($Slic3r::retract_length + $Slic3r::retract_restart_extra),
|
||||
"compensate retraction");
|
||||
}
|
||||
|
||||
# extrude while going to next points
|
||||
foreach my $line ($path->lines) {
|
||||
# calculate how much filament to drive into the extruder
|
||||
# to get the desired amount of extruded plastic
|
||||
my $e = $line->a->distance_to($line->b) * $Slic3r::resolution
|
||||
* $Slic3r::flow_width
|
||||
* $Slic3r::layer_height
|
||||
/ (($Slic3r::filament_diameter ** 2) * PI)
|
||||
/ $Slic3r::filament_packing_density;
|
||||
|
||||
$G1->($line->b, $z, $e, $description);
|
||||
}
|
||||
|
||||
# retract
|
||||
if ($Slic3r::retract_length > 0) {
|
||||
$G1->(undef, undef, -$Slic3r::retract_length, "retract");
|
||||
$retracted = 1;
|
||||
}
|
||||
};
|
||||
);
|
||||
|
||||
# write gcode commands layer by layer
|
||||
foreach my $layer (@{ $self->layers }) {
|
||||
$z = ($layer->z * $Slic3r::resolution);
|
||||
|
||||
# go to layer
|
||||
# TODO: retraction
|
||||
printf $fh "G1 Z%.${dec}f F%.${dec}f ; move to next layer\n",
|
||||
$z, $travel_feed_rate;
|
||||
printf $fh $extruder->move_z($layer->z * $Slic3r::resolution);
|
||||
|
||||
# extrude skirts
|
||||
$Extrude->($_, 'skirt') for @{ $layer->skirts };
|
||||
printf $fh $extruder->extrude_loop($_, 'skirt') for @{ $layer->skirts };
|
||||
|
||||
# extrude perimeters
|
||||
for my $loop (@{ $layer->perimeters }) {
|
||||
# find the point of the loop that is closest to the current extruder position
|
||||
my $start_at = $last_pos ? $loop->nearest_point_to($last_pos) : $loop->points->[0];
|
||||
|
||||
# split the loop at the starting point and make a path
|
||||
my $extrusion_path = $loop->split_at($start_at);
|
||||
|
||||
# clip the path to avoid the extruder to get exactly on the first point of the loop
|
||||
$extrusion_path->clip_end($Slic3r::flow_width / $Slic3r::resolution);
|
||||
|
||||
# extrude along the path
|
||||
$Extrude->($extrusion_path, 'perimeter')
|
||||
}
|
||||
printf $fh $extruder->extrude_loop($_, 'perimeter') for @{ $layer->perimeters };
|
||||
|
||||
# extrude fills
|
||||
for my $fill (@{ $layer->fills }) {
|
||||
my @paths = $fill->shortest_path($last_pos);
|
||||
$Extrude->($_, 'fill') for @paths;
|
||||
printf $fh $extruder->extrude($_, 'fill')
|
||||
for $fill->shortest_path($extruder->last_pos);
|
||||
}
|
||||
}
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue