mirror of
https://github.com/SoftFever/OrcaSlicer.git
synced 2025-07-16 19:28:14 -06:00
WIP: Moved sources int src/, separated most of the source code from Perl.
The XS was left only for the unit / integration tests, and it links libslic3r only. No wxWidgets are allowed to be used from Perl starting from now.
This commit is contained in:
parent
3ddaccb641
commit
0558b53493
1706 changed files with 7413 additions and 7638 deletions
12
src/admesh/CMakeLists.txt
Normal file
12
src/admesh/CMakeLists.txt
Normal file
|
@ -0,0 +1,12 @@
|
|||
project(admesh)
|
||||
cmake_minimum_required(VERSION 2.6)
|
||||
|
||||
add_library(admesh STATIC
|
||||
connect.cpp
|
||||
normals.cpp
|
||||
shared.cpp
|
||||
stl.h
|
||||
stl_io.cpp
|
||||
stlinit.cpp
|
||||
util.cpp
|
||||
)
|
911
src/admesh/connect.cpp
Normal file
911
src/admesh/connect.cpp
Normal file
|
@ -0,0 +1,911 @@
|
|||
/* ADMesh -- process triangulated solid meshes
|
||||
* Copyright (C) 1995, 1996 Anthony D. Martin <amartin@engr.csulb.edu>
|
||||
* Copyright (C) 2013, 2014 several contributors, see AUTHORS
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation; either version 2 of the License, or
|
||||
* (at your option) any later version.
|
||||
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
|
||||
* You should have received a copy of the GNU General Public License along
|
||||
* with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
*
|
||||
* Questions, comments, suggestions, etc to
|
||||
* https://github.com/admesh/admesh/issues
|
||||
*/
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include <math.h>
|
||||
|
||||
#include <boost/detail/endian.hpp>
|
||||
|
||||
#include "stl.h"
|
||||
|
||||
|
||||
static void stl_match_neighbors_nearby(stl_file *stl,
|
||||
stl_hash_edge *edge_a, stl_hash_edge *edge_b);
|
||||
static void stl_record_neighbors(stl_file *stl,
|
||||
stl_hash_edge *edge_a, stl_hash_edge *edge_b);
|
||||
static void stl_initialize_facet_check_exact(stl_file *stl);
|
||||
static void stl_initialize_facet_check_nearby(stl_file *stl);
|
||||
static void stl_load_edge_exact(stl_file *stl, stl_hash_edge *edge,
|
||||
stl_vertex *a, stl_vertex *b);
|
||||
static int stl_load_edge_nearby(stl_file *stl, stl_hash_edge *edge,
|
||||
stl_vertex *a, stl_vertex *b, float tolerance);
|
||||
static void insert_hash_edge(stl_file *stl, stl_hash_edge edge,
|
||||
void (*match_neighbors)(stl_file *stl,
|
||||
stl_hash_edge *edge_a, stl_hash_edge *edge_b));
|
||||
static int stl_compare_function(stl_hash_edge *edge_a, stl_hash_edge *edge_b);
|
||||
static void stl_free_edges(stl_file *stl);
|
||||
static void stl_remove_facet(stl_file *stl, int facet_number);
|
||||
static void stl_change_vertices(stl_file *stl, int facet_num, int vnot,
|
||||
stl_vertex new_vertex);
|
||||
static void stl_which_vertices_to_change(stl_file *stl, stl_hash_edge *edge_a,
|
||||
stl_hash_edge *edge_b, int *facet1, int *vertex1,
|
||||
int *facet2, int *vertex2,
|
||||
stl_vertex *new_vertex1, stl_vertex *new_vertex2);
|
||||
static void stl_remove_degenerate(stl_file *stl, int facet);
|
||||
extern int stl_check_normal_vector(stl_file *stl,
|
||||
int facet_num, int normal_fix_flag);
|
||||
static void stl_update_connects_remove_1(stl_file *stl, int facet_num);
|
||||
|
||||
|
||||
void
|
||||
stl_check_facets_exact(stl_file *stl) {
|
||||
/* This function builds the neighbors list. No modifications are made
|
||||
* to any of the facets. The edges are said to match only if all six
|
||||
* floats of the first edge matches all six floats of the second edge.
|
||||
*/
|
||||
|
||||
stl_hash_edge edge;
|
||||
stl_facet facet;
|
||||
int i;
|
||||
int j;
|
||||
|
||||
if (stl->error) return;
|
||||
|
||||
stl->stats.connected_edges = 0;
|
||||
stl->stats.connected_facets_1_edge = 0;
|
||||
stl->stats.connected_facets_2_edge = 0;
|
||||
stl->stats.connected_facets_3_edge = 0;
|
||||
|
||||
stl_initialize_facet_check_exact(stl);
|
||||
|
||||
for(i = 0; i < stl->stats.number_of_facets; i++) {
|
||||
facet = stl->facet_start[i];
|
||||
// If any two of the three vertices are found to be exactally the same, call them degenerate and remove the facet.
|
||||
if (facet.vertex[0] == facet.vertex[1] ||
|
||||
facet.vertex[1] == facet.vertex[2] ||
|
||||
facet.vertex[0] == facet.vertex[2]) {
|
||||
stl->stats.degenerate_facets += 1;
|
||||
stl_remove_facet(stl, i);
|
||||
-- i;
|
||||
continue;
|
||||
}
|
||||
for(j = 0; j < 3; j++) {
|
||||
edge.facet_number = i;
|
||||
edge.which_edge = j;
|
||||
stl_load_edge_exact(stl, &edge, &facet.vertex[j], &facet.vertex[(j + 1) % 3]);
|
||||
insert_hash_edge(stl, edge, stl_record_neighbors);
|
||||
}
|
||||
}
|
||||
stl_free_edges(stl);
|
||||
|
||||
#if 0
|
||||
printf("Number of faces: %d, number of manifold edges: %d, number of connected edges: %d, number of unconnected edges: %d\r\n",
|
||||
stl->stats.number_of_facets, stl->stats.number_of_facets * 3,
|
||||
stl->stats.connected_edges, stl->stats.number_of_facets * 3 - stl->stats.connected_edges);
|
||||
#endif
|
||||
}
|
||||
|
||||
static void
|
||||
stl_load_edge_exact(stl_file *stl, stl_hash_edge *edge,
|
||||
stl_vertex *a, stl_vertex *b) {
|
||||
|
||||
if (stl->error) return;
|
||||
|
||||
{
|
||||
stl_vertex diff = (*a - *b).cwiseAbs();
|
||||
float max_diff = std::max(diff(0), std::max(diff(1), diff(2)));
|
||||
stl->stats.shortest_edge = std::min(max_diff, stl->stats.shortest_edge);
|
||||
}
|
||||
|
||||
// Ensure identical vertex ordering of equal edges.
|
||||
// This method is numerically robust.
|
||||
if (stl_vertex_lower(*a, *b)) {
|
||||
} else {
|
||||
std::swap(a, b);
|
||||
edge->which_edge += 3; /* this edge is loaded backwards */
|
||||
}
|
||||
memcpy(&edge->key[0], a->data(), sizeof(stl_vertex));
|
||||
memcpy(&edge->key[sizeof(stl_vertex)], b->data(), sizeof(stl_vertex));
|
||||
// Switch negative zeros to positive zeros, so memcmp will consider them to be equal.
|
||||
for (size_t i = 0; i < 6; ++ i) {
|
||||
unsigned char *p = edge->key + i * 4;
|
||||
#ifdef BOOST_LITTLE_ENDIAN
|
||||
if (p[0] == 0 && p[1] == 0 && p[2] == 0 && p[3] == 0x80)
|
||||
// Negative zero, switch to positive zero.
|
||||
p[3] = 0;
|
||||
#else /* BOOST_LITTLE_ENDIAN */
|
||||
if (p[0] == 0x80 && p[1] == 0 && p[2] == 0 && p[3] == 0)
|
||||
// Negative zero, switch to positive zero.
|
||||
p[0] = 0;
|
||||
#endif /* BOOST_LITTLE_ENDIAN */
|
||||
}
|
||||
}
|
||||
|
||||
static void
|
||||
stl_initialize_facet_check_exact(stl_file *stl) {
|
||||
int i;
|
||||
|
||||
if (stl->error) return;
|
||||
|
||||
stl->stats.malloced = 0;
|
||||
stl->stats.freed = 0;
|
||||
stl->stats.collisions = 0;
|
||||
|
||||
|
||||
stl->M = 81397;
|
||||
|
||||
for(i = 0; i < stl->stats.number_of_facets ; i++) {
|
||||
/* initialize neighbors list to -1 to mark unconnected edges */
|
||||
stl->neighbors_start[i].neighbor[0] = -1;
|
||||
stl->neighbors_start[i].neighbor[1] = -1;
|
||||
stl->neighbors_start[i].neighbor[2] = -1;
|
||||
}
|
||||
|
||||
stl->heads = (stl_hash_edge**)calloc(stl->M, sizeof(*stl->heads));
|
||||
if(stl->heads == NULL) perror("stl_initialize_facet_check_exact");
|
||||
|
||||
stl->tail = (stl_hash_edge*)malloc(sizeof(stl_hash_edge));
|
||||
if(stl->tail == NULL) perror("stl_initialize_facet_check_exact");
|
||||
|
||||
stl->tail->next = stl->tail;
|
||||
|
||||
for(i = 0; i < stl->M; i++) {
|
||||
stl->heads[i] = stl->tail;
|
||||
}
|
||||
}
|
||||
|
||||
static void insert_hash_edge(stl_file *stl, stl_hash_edge edge,
|
||||
void (*match_neighbors)(stl_file *stl,
|
||||
stl_hash_edge *edge_a, stl_hash_edge *edge_b))
|
||||
{
|
||||
if (stl->error) return;
|
||||
|
||||
int chain_number = edge.hash(stl->M);
|
||||
stl_hash_edge *link = stl->heads[chain_number];
|
||||
|
||||
stl_hash_edge *new_edge;
|
||||
stl_hash_edge *temp;
|
||||
if(link == stl->tail) {
|
||||
/* This list doesn't have any edges currently in it. Add this one. */
|
||||
new_edge = (stl_hash_edge*)malloc(sizeof(stl_hash_edge));
|
||||
if(new_edge == NULL) perror("insert_hash_edge");
|
||||
stl->stats.malloced++;
|
||||
*new_edge = edge;
|
||||
new_edge->next = stl->tail;
|
||||
stl->heads[chain_number] = new_edge;
|
||||
return;
|
||||
} else if(!stl_compare_function(&edge, link)) {
|
||||
/* This is a match. Record result in neighbors list. */
|
||||
match_neighbors(stl, &edge, link);
|
||||
/* Delete the matched edge from the list. */
|
||||
stl->heads[chain_number] = link->next;
|
||||
free(link);
|
||||
stl->stats.freed++;
|
||||
return;
|
||||
} else {
|
||||
/* Continue through the rest of the list */
|
||||
for(;;) {
|
||||
if(link->next == stl->tail) {
|
||||
/* This is the last item in the list. Insert a new edge. */
|
||||
new_edge = (stl_hash_edge*)malloc(sizeof(stl_hash_edge));
|
||||
if(new_edge == NULL) perror("insert_hash_edge");
|
||||
stl->stats.malloced++;
|
||||
*new_edge = edge;
|
||||
new_edge->next = stl->tail;
|
||||
link->next = new_edge;
|
||||
stl->stats.collisions++;
|
||||
return;
|
||||
} else if(!stl_compare_function(&edge, link->next)) {
|
||||
/* This is a match. Record result in neighbors list. */
|
||||
match_neighbors(stl, &edge, link->next);
|
||||
|
||||
/* Delete the matched edge from the list. */
|
||||
temp = link->next;
|
||||
link->next = link->next->next;
|
||||
free(temp);
|
||||
stl->stats.freed++;
|
||||
return;
|
||||
} else {
|
||||
/* This is not a match. Go to the next link */
|
||||
link = link->next;
|
||||
stl->stats.collisions++;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Return 1 if the edges are not matched.
|
||||
static inline int stl_compare_function(stl_hash_edge *edge_a, stl_hash_edge *edge_b)
|
||||
{
|
||||
// Don't match edges of the same facet
|
||||
return (edge_a->facet_number == edge_b->facet_number) || (*edge_a != *edge_b);
|
||||
}
|
||||
|
||||
void stl_check_facets_nearby(stl_file *stl, float tolerance)
|
||||
{
|
||||
if (stl->error)
|
||||
return;
|
||||
|
||||
if( (stl->stats.connected_facets_1_edge == stl->stats.number_of_facets)
|
||||
&& (stl->stats.connected_facets_2_edge == stl->stats.number_of_facets)
|
||||
&& (stl->stats.connected_facets_3_edge == stl->stats.number_of_facets)) {
|
||||
/* No need to check any further. All facets are connected */
|
||||
return;
|
||||
}
|
||||
|
||||
stl_initialize_facet_check_nearby(stl);
|
||||
|
||||
for (int i = 0; i < stl->stats.number_of_facets; ++ i) {
|
||||
//FIXME is the copy necessary?
|
||||
stl_facet facet = stl->facet_start[i];
|
||||
for (int j = 0; j < 3; j++) {
|
||||
if(stl->neighbors_start[i].neighbor[j] == -1) {
|
||||
stl_hash_edge edge;
|
||||
edge.facet_number = i;
|
||||
edge.which_edge = j;
|
||||
if(stl_load_edge_nearby(stl, &edge, &facet.vertex[j],
|
||||
&facet.vertex[(j + 1) % 3],
|
||||
tolerance)) {
|
||||
/* only insert edges that have different keys */
|
||||
insert_hash_edge(stl, edge, stl_match_neighbors_nearby);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
stl_free_edges(stl);
|
||||
}
|
||||
|
||||
static int stl_load_edge_nearby(stl_file *stl, stl_hash_edge *edge, stl_vertex *a, stl_vertex *b, float tolerance)
|
||||
{
|
||||
// Index of a grid cell spaced by tolerance.
|
||||
typedef Eigen::Matrix<int32_t, 3, 1, Eigen::DontAlign> Vec3i;
|
||||
Vec3i vertex1 = (*a / tolerance).cast<int32_t>();
|
||||
Vec3i vertex2 = (*b / tolerance).cast<int32_t>();
|
||||
static_assert(sizeof(Vec3i) == 12, "size of Vec3i incorrect");
|
||||
|
||||
if (vertex1 == vertex2)
|
||||
// Both vertices hash to the same value
|
||||
return 0;
|
||||
|
||||
// Ensure identical vertex ordering of edges, which vertices land into equal grid cells.
|
||||
// This method is numerically robust.
|
||||
if ((vertex1[0] != vertex2[0]) ?
|
||||
(vertex1[0] < vertex2[0]) :
|
||||
((vertex1[1] != vertex2[1]) ?
|
||||
(vertex1[1] < vertex2[1]) :
|
||||
(vertex1[2] < vertex2[2]))) {
|
||||
memcpy(&edge->key[0], vertex1.data(), sizeof(stl_vertex));
|
||||
memcpy(&edge->key[sizeof(stl_vertex)], vertex2.data(), sizeof(stl_vertex));
|
||||
} else {
|
||||
memcpy(&edge->key[0], vertex2.data(), sizeof(stl_vertex));
|
||||
memcpy(&edge->key[sizeof(stl_vertex)], vertex1.data(), sizeof(stl_vertex));
|
||||
edge->which_edge += 3; /* this edge is loaded backwards */
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
|
||||
static void stl_free_edges(stl_file *stl)
|
||||
{
|
||||
if (stl->error)
|
||||
return;
|
||||
|
||||
if(stl->stats.malloced != stl->stats.freed) {
|
||||
for (int i = 0; i < stl->M; i++) {
|
||||
for (stl_hash_edge *temp = stl->heads[i]; stl->heads[i] != stl->tail; temp = stl->heads[i]) {
|
||||
stl->heads[i] = stl->heads[i]->next;
|
||||
free(temp);
|
||||
++ stl->stats.freed;
|
||||
}
|
||||
}
|
||||
}
|
||||
free(stl->heads);
|
||||
free(stl->tail);
|
||||
}
|
||||
|
||||
static void stl_initialize_facet_check_nearby(stl_file *stl)
|
||||
{
|
||||
int i;
|
||||
|
||||
if (stl->error) return;
|
||||
|
||||
stl->stats.malloced = 0;
|
||||
stl->stats.freed = 0;
|
||||
stl->stats.collisions = 0;
|
||||
|
||||
/* tolerance = STL_MAX(stl->stats.shortest_edge, tolerance);*/
|
||||
/* tolerance = STL_MAX((stl->stats.bounding_diameter / 500000.0), tolerance);*/
|
||||
/* tolerance *= 0.5;*/
|
||||
|
||||
stl->M = 81397;
|
||||
|
||||
stl->heads = (stl_hash_edge**)calloc(stl->M, sizeof(*stl->heads));
|
||||
if(stl->heads == NULL) perror("stl_initialize_facet_check_nearby");
|
||||
|
||||
stl->tail = (stl_hash_edge*)malloc(sizeof(stl_hash_edge));
|
||||
if(stl->tail == NULL) perror("stl_initialize_facet_check_nearby");
|
||||
|
||||
stl->tail->next = stl->tail;
|
||||
|
||||
for(i = 0; i < stl->M; i++) {
|
||||
stl->heads[i] = stl->tail;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
static void
|
||||
stl_record_neighbors(stl_file *stl,
|
||||
stl_hash_edge *edge_a, stl_hash_edge *edge_b) {
|
||||
int i;
|
||||
int j;
|
||||
|
||||
if (stl->error) return;
|
||||
|
||||
/* Facet a's neighbor is facet b */
|
||||
stl->neighbors_start[edge_a->facet_number].neighbor[edge_a->which_edge % 3] =
|
||||
edge_b->facet_number; /* sets the .neighbor part */
|
||||
|
||||
stl->neighbors_start[edge_a->facet_number].
|
||||
which_vertex_not[edge_a->which_edge % 3] =
|
||||
(edge_b->which_edge + 2) % 3; /* sets the .which_vertex_not part */
|
||||
|
||||
/* Facet b's neighbor is facet a */
|
||||
stl->neighbors_start[edge_b->facet_number].neighbor[edge_b->which_edge % 3] =
|
||||
edge_a->facet_number; /* sets the .neighbor part */
|
||||
|
||||
stl->neighbors_start[edge_b->facet_number].
|
||||
which_vertex_not[edge_b->which_edge % 3] =
|
||||
(edge_a->which_edge + 2) % 3; /* sets the .which_vertex_not part */
|
||||
|
||||
if( ((edge_a->which_edge < 3) && (edge_b->which_edge < 3))
|
||||
|| ((edge_a->which_edge > 2) && (edge_b->which_edge > 2))) {
|
||||
/* these facets are oriented in opposite directions. */
|
||||
/* their normals are probably messed up. */
|
||||
stl->neighbors_start[edge_a->facet_number].
|
||||
which_vertex_not[edge_a->which_edge % 3] += 3;
|
||||
stl->neighbors_start[edge_b->facet_number].
|
||||
which_vertex_not[edge_b->which_edge % 3] += 3;
|
||||
}
|
||||
|
||||
|
||||
/* Count successful connects */
|
||||
/* Total connects */
|
||||
stl->stats.connected_edges += 2;
|
||||
/* Count individual connects */
|
||||
i = ((stl->neighbors_start[edge_a->facet_number].neighbor[0] == -1) +
|
||||
(stl->neighbors_start[edge_a->facet_number].neighbor[1] == -1) +
|
||||
(stl->neighbors_start[edge_a->facet_number].neighbor[2] == -1));
|
||||
j = ((stl->neighbors_start[edge_b->facet_number].neighbor[0] == -1) +
|
||||
(stl->neighbors_start[edge_b->facet_number].neighbor[1] == -1) +
|
||||
(stl->neighbors_start[edge_b->facet_number].neighbor[2] == -1));
|
||||
if(i == 2) {
|
||||
stl->stats.connected_facets_1_edge +=1;
|
||||
} else if(i == 1) {
|
||||
stl->stats.connected_facets_2_edge +=1;
|
||||
} else {
|
||||
stl->stats.connected_facets_3_edge +=1;
|
||||
}
|
||||
if(j == 2) {
|
||||
stl->stats.connected_facets_1_edge +=1;
|
||||
} else if(j == 1) {
|
||||
stl->stats.connected_facets_2_edge +=1;
|
||||
} else {
|
||||
stl->stats.connected_facets_3_edge +=1;
|
||||
}
|
||||
}
|
||||
|
||||
static void stl_match_neighbors_nearby(stl_file *stl, stl_hash_edge *edge_a, stl_hash_edge *edge_b)
|
||||
{
|
||||
int facet1;
|
||||
int facet2;
|
||||
int vertex1;
|
||||
int vertex2;
|
||||
int vnot1;
|
||||
int vnot2;
|
||||
stl_vertex new_vertex1;
|
||||
stl_vertex new_vertex2;
|
||||
|
||||
if (stl->error) return;
|
||||
|
||||
stl_record_neighbors(stl, edge_a, edge_b);
|
||||
stl_which_vertices_to_change(stl, edge_a, edge_b, &facet1, &vertex1,
|
||||
&facet2, &vertex2, &new_vertex1, &new_vertex2);
|
||||
if(facet1 != -1) {
|
||||
if(facet1 == edge_a->facet_number) {
|
||||
vnot1 = (edge_a->which_edge + 2) % 3;
|
||||
} else {
|
||||
vnot1 = (edge_b->which_edge + 2) % 3;
|
||||
}
|
||||
if(((vnot1 + 2) % 3) == vertex1) {
|
||||
vnot1 += 3;
|
||||
}
|
||||
stl_change_vertices(stl, facet1, vnot1, new_vertex1);
|
||||
}
|
||||
if(facet2 != -1) {
|
||||
if(facet2 == edge_a->facet_number) {
|
||||
vnot2 = (edge_a->which_edge + 2) % 3;
|
||||
} else {
|
||||
vnot2 = (edge_b->which_edge + 2) % 3;
|
||||
}
|
||||
if(((vnot2 + 2) % 3) == vertex2) {
|
||||
vnot2 += 3;
|
||||
}
|
||||
stl_change_vertices(stl, facet2, vnot2, new_vertex2);
|
||||
}
|
||||
stl->stats.edges_fixed += 2;
|
||||
}
|
||||
|
||||
|
||||
static void stl_change_vertices(stl_file *stl, int facet_num, int vnot, stl_vertex new_vertex) {
|
||||
int first_facet;
|
||||
int direction;
|
||||
int next_edge;
|
||||
int pivot_vertex;
|
||||
|
||||
if (stl->error) return;
|
||||
|
||||
first_facet = facet_num;
|
||||
direction = 0;
|
||||
|
||||
for(;;) {
|
||||
if(vnot > 2) {
|
||||
if(direction == 0) {
|
||||
pivot_vertex = (vnot + 2) % 3;
|
||||
next_edge = pivot_vertex;
|
||||
direction = 1;
|
||||
} else {
|
||||
pivot_vertex = (vnot + 1) % 3;
|
||||
next_edge = vnot % 3;
|
||||
direction = 0;
|
||||
}
|
||||
} else {
|
||||
if(direction == 0) {
|
||||
pivot_vertex = (vnot + 1) % 3;
|
||||
next_edge = vnot;
|
||||
} else {
|
||||
pivot_vertex = (vnot + 2) % 3;
|
||||
next_edge = pivot_vertex;
|
||||
}
|
||||
}
|
||||
#if 0
|
||||
if (stl->facet_start[facet_num].vertex[pivot_vertex](0) == new_vertex(0) &&
|
||||
stl->facet_start[facet_num].vertex[pivot_vertex](1) == new_vertex(1) &&
|
||||
stl->facet_start[facet_num].vertex[pivot_vertex](2) == new_vertex(2))
|
||||
printf("Changing vertex %f,%f,%f: Same !!!\r\n",
|
||||
new_vertex(0), new_vertex(1), new_vertex(2));
|
||||
else {
|
||||
if (stl->facet_start[facet_num].vertex[pivot_vertex](0) != new_vertex(0))
|
||||
printf("Changing coordinate x, vertex %e (0x%08x) to %e(0x%08x)\r\n",
|
||||
stl->facet_start[facet_num].vertex[pivot_vertex](0),
|
||||
*reinterpret_cast<const int*>(&stl->facet_start[facet_num].vertex[pivot_vertex](0)),
|
||||
new_vertex(0),
|
||||
*reinterpret_cast<const int*>(&new_vertex(0)));
|
||||
if (stl->facet_start[facet_num].vertex[pivot_vertex](1) != new_vertex(1))
|
||||
printf("Changing coordinate x, vertex %e (0x%08x) to %e(0x%08x)\r\n",
|
||||
stl->facet_start[facet_num].vertex[pivot_vertex](1),
|
||||
*reinterpret_cast<const int*>(&stl->facet_start[facet_num].vertex[pivot_vertex](1)),
|
||||
new_vertex(1),
|
||||
*reinterpret_cast<const int*>(&new_vertex(1)));
|
||||
if (stl->facet_start[facet_num].vertex[pivot_vertex](2) != new_vertex(2))
|
||||
printf("Changing coordinate x, vertex %e (0x%08x) to %e(0x%08x)\r\n",
|
||||
stl->facet_start[facet_num].vertex[pivot_vertex](2),
|
||||
*reinterpret_cast<const int*>(&stl->facet_start[facet_num].vertex[pivot_vertex](2)),
|
||||
new_vertex(2),
|
||||
*reinterpret_cast<const int*>(&new_vertex(2)));
|
||||
}
|
||||
#endif
|
||||
stl->facet_start[facet_num].vertex[pivot_vertex] = new_vertex;
|
||||
vnot = stl->neighbors_start[facet_num].which_vertex_not[next_edge];
|
||||
facet_num = stl->neighbors_start[facet_num].neighbor[next_edge];
|
||||
|
||||
if(facet_num == -1) {
|
||||
break;
|
||||
}
|
||||
|
||||
if(facet_num == first_facet) {
|
||||
/* back to the beginning */
|
||||
printf("\
|
||||
Back to the first facet changing vertices: probably a mobius part.\n\
|
||||
Try using a smaller tolerance or don't do a nearby check\n");
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void
|
||||
stl_which_vertices_to_change(stl_file *stl, stl_hash_edge *edge_a,
|
||||
stl_hash_edge *edge_b, int *facet1, int *vertex1,
|
||||
int *facet2, int *vertex2,
|
||||
stl_vertex *new_vertex1, stl_vertex *new_vertex2) {
|
||||
int v1a; /* pair 1, facet a */
|
||||
int v1b; /* pair 1, facet b */
|
||||
int v2a; /* pair 2, facet a */
|
||||
int v2b; /* pair 2, facet b */
|
||||
|
||||
/* Find first pair */
|
||||
if(edge_a->which_edge < 3) {
|
||||
v1a = edge_a->which_edge;
|
||||
v2a = (edge_a->which_edge + 1) % 3;
|
||||
} else {
|
||||
v2a = edge_a->which_edge % 3;
|
||||
v1a = (edge_a->which_edge + 1) % 3;
|
||||
}
|
||||
if(edge_b->which_edge < 3) {
|
||||
v1b = edge_b->which_edge;
|
||||
v2b = (edge_b->which_edge + 1) % 3;
|
||||
} else {
|
||||
v2b = edge_b->which_edge % 3;
|
||||
v1b = (edge_b->which_edge + 1) % 3;
|
||||
}
|
||||
|
||||
// Of the first pair, which vertex, if any, should be changed
|
||||
if(stl->facet_start[edge_a->facet_number].vertex[v1a] ==
|
||||
stl->facet_start[edge_b->facet_number].vertex[v1b]) {
|
||||
// These facets are already equal. No need to change.
|
||||
*facet1 = -1;
|
||||
} else {
|
||||
if( (stl->neighbors_start[edge_a->facet_number].neighbor[v1a] == -1)
|
||||
&& (stl->neighbors_start[edge_a->facet_number].
|
||||
neighbor[(v1a + 2) % 3] == -1)) {
|
||||
/* This vertex has no neighbors. This is a good one to change */
|
||||
*facet1 = edge_a->facet_number;
|
||||
*vertex1 = v1a;
|
||||
*new_vertex1 = stl->facet_start[edge_b->facet_number].vertex[v1b];
|
||||
} else {
|
||||
*facet1 = edge_b->facet_number;
|
||||
*vertex1 = v1b;
|
||||
*new_vertex1 = stl->facet_start[edge_a->facet_number].vertex[v1a];
|
||||
}
|
||||
}
|
||||
|
||||
/* Of the second pair, which vertex, if any, should be changed */
|
||||
if(stl->facet_start[edge_a->facet_number].vertex[v2a] ==
|
||||
stl->facet_start[edge_b->facet_number].vertex[v2b]) {
|
||||
// These facets are already equal. No need to change.
|
||||
*facet2 = -1;
|
||||
} else {
|
||||
if( (stl->neighbors_start[edge_a->facet_number].neighbor[v2a] == -1)
|
||||
&& (stl->neighbors_start[edge_a->facet_number].
|
||||
neighbor[(v2a + 2) % 3] == -1)) {
|
||||
/* This vertex has no neighbors. This is a good one to change */
|
||||
*facet2 = edge_a->facet_number;
|
||||
*vertex2 = v2a;
|
||||
*new_vertex2 = stl->facet_start[edge_b->facet_number].vertex[v2b];
|
||||
} else {
|
||||
*facet2 = edge_b->facet_number;
|
||||
*vertex2 = v2b;
|
||||
*new_vertex2 = stl->facet_start[edge_a->facet_number].vertex[v2a];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void
|
||||
stl_remove_facet(stl_file *stl, int facet_number) {
|
||||
int neighbor[3];
|
||||
int vnot[3];
|
||||
int i;
|
||||
int j;
|
||||
|
||||
if (stl->error) return;
|
||||
|
||||
stl->stats.facets_removed += 1;
|
||||
/* Update list of connected edges */
|
||||
j = ((stl->neighbors_start[facet_number].neighbor[0] == -1) +
|
||||
(stl->neighbors_start[facet_number].neighbor[1] == -1) +
|
||||
(stl->neighbors_start[facet_number].neighbor[2] == -1));
|
||||
if(j == 2) {
|
||||
stl->stats.connected_facets_1_edge -= 1;
|
||||
} else if(j == 1) {
|
||||
stl->stats.connected_facets_2_edge -= 1;
|
||||
stl->stats.connected_facets_1_edge -= 1;
|
||||
} else if(j == 0) {
|
||||
stl->stats.connected_facets_3_edge -= 1;
|
||||
stl->stats.connected_facets_2_edge -= 1;
|
||||
stl->stats.connected_facets_1_edge -= 1;
|
||||
}
|
||||
|
||||
stl->facet_start[facet_number] =
|
||||
stl->facet_start[stl->stats.number_of_facets - 1];
|
||||
/* I could reallocate at this point, but it is not really necessary. */
|
||||
stl->neighbors_start[facet_number] =
|
||||
stl->neighbors_start[stl->stats.number_of_facets - 1];
|
||||
stl->stats.number_of_facets -= 1;
|
||||
|
||||
for(i = 0; i < 3; i++) {
|
||||
neighbor[i] = stl->neighbors_start[facet_number].neighbor[i];
|
||||
vnot[i] = stl->neighbors_start[facet_number].which_vertex_not[i];
|
||||
}
|
||||
|
||||
for(i = 0; i < 3; i++) {
|
||||
if(neighbor[i] != -1) {
|
||||
if(stl->neighbors_start[neighbor[i]].neighbor[(vnot[i] + 1)% 3] !=
|
||||
stl->stats.number_of_facets) {
|
||||
printf("\
|
||||
in stl_remove_facet: neighbor = %d numfacets = %d this is wrong\n",
|
||||
stl->neighbors_start[neighbor[i]].neighbor[(vnot[i] + 1)% 3],
|
||||
stl->stats.number_of_facets);
|
||||
return;
|
||||
}
|
||||
stl->neighbors_start[neighbor[i]].neighbor[(vnot[i] + 1)% 3]
|
||||
= facet_number;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void stl_remove_unconnected_facets(stl_file *stl)
|
||||
{
|
||||
/* A couple of things need to be done here. One is to remove any */
|
||||
/* completely unconnected facets (0 edges connected) since these are */
|
||||
/* useless and could be completely wrong. The second thing that needs to */
|
||||
/* be done is to remove any degenerate facets that were created during */
|
||||
/* stl_check_facets_nearby(). */
|
||||
if (stl->error)
|
||||
return;
|
||||
|
||||
// remove degenerate facets
|
||||
for (int i = 0; i < stl->stats.number_of_facets; ++ i) {
|
||||
if(stl->facet_start[i].vertex[0] == stl->facet_start[i].vertex[1] ||
|
||||
stl->facet_start[i].vertex[0] == stl->facet_start[i].vertex[2] ||
|
||||
stl->facet_start[i].vertex[1] == stl->facet_start[i].vertex[2]) {
|
||||
stl_remove_degenerate(stl, i);
|
||||
i--;
|
||||
}
|
||||
}
|
||||
|
||||
if(stl->stats.connected_facets_1_edge < stl->stats.number_of_facets) {
|
||||
// remove completely unconnected facets
|
||||
for (int i = 0; i < stl->stats.number_of_facets; i++) {
|
||||
if (stl->neighbors_start[i].neighbor[0] == -1 &&
|
||||
stl->neighbors_start[i].neighbor[1] == -1 &&
|
||||
stl->neighbors_start[i].neighbor[2] == -1) {
|
||||
// This facet is completely unconnected. Remove it.
|
||||
stl_remove_facet(stl, i);
|
||||
-- i;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void
|
||||
stl_remove_degenerate(stl_file *stl, int facet) {
|
||||
int edge1;
|
||||
int edge2;
|
||||
int edge3;
|
||||
int neighbor1;
|
||||
int neighbor2;
|
||||
int neighbor3;
|
||||
int vnot1;
|
||||
int vnot2;
|
||||
int vnot3;
|
||||
|
||||
if (stl->error) return;
|
||||
|
||||
if (stl->facet_start[facet].vertex[0] == stl->facet_start[facet].vertex[1] &&
|
||||
stl->facet_start[facet].vertex[1] == stl->facet_start[facet].vertex[2]) {
|
||||
/* all 3 vertices are equal. Just remove the facet. I don't think*/
|
||||
/* this is really possible, but just in case... */
|
||||
printf("removing a facet in stl_remove_degenerate\n");
|
||||
stl_remove_facet(stl, facet);
|
||||
return;
|
||||
}
|
||||
|
||||
if (stl->facet_start[facet].vertex[0] == stl->facet_start[facet].vertex[1]) {
|
||||
edge1 = 1;
|
||||
edge2 = 2;
|
||||
edge3 = 0;
|
||||
} else if (stl->facet_start[facet].vertex[1] == stl->facet_start[facet].vertex[2]) {
|
||||
edge1 = 0;
|
||||
edge2 = 2;
|
||||
edge3 = 1;
|
||||
} else if (stl->facet_start[facet].vertex[2] == stl->facet_start[facet].vertex[0]) {
|
||||
edge1 = 0;
|
||||
edge2 = 1;
|
||||
edge3 = 2;
|
||||
} else {
|
||||
/* No degenerate. Function shouldn't have been called. */
|
||||
return;
|
||||
}
|
||||
neighbor1 = stl->neighbors_start[facet].neighbor[edge1];
|
||||
neighbor2 = stl->neighbors_start[facet].neighbor[edge2];
|
||||
|
||||
if(neighbor1 == -1) {
|
||||
stl_update_connects_remove_1(stl, neighbor2);
|
||||
}
|
||||
if(neighbor2 == -1) {
|
||||
stl_update_connects_remove_1(stl, neighbor1);
|
||||
}
|
||||
|
||||
|
||||
neighbor3 = stl->neighbors_start[facet].neighbor[edge3];
|
||||
vnot1 = stl->neighbors_start[facet].which_vertex_not[edge1];
|
||||
vnot2 = stl->neighbors_start[facet].which_vertex_not[edge2];
|
||||
vnot3 = stl->neighbors_start[facet].which_vertex_not[edge3];
|
||||
|
||||
if(neighbor1 >= 0){
|
||||
stl->neighbors_start[neighbor1].neighbor[(vnot1 + 1) % 3] = neighbor2;
|
||||
stl->neighbors_start[neighbor1].which_vertex_not[(vnot1 + 1) % 3] = vnot2;
|
||||
}
|
||||
if(neighbor2 >= 0){
|
||||
stl->neighbors_start[neighbor2].neighbor[(vnot2 + 1) % 3] = neighbor1;
|
||||
stl->neighbors_start[neighbor2].which_vertex_not[(vnot2 + 1) % 3] = vnot1;
|
||||
}
|
||||
|
||||
stl_remove_facet(stl, facet);
|
||||
|
||||
if(neighbor3 >= 0) {
|
||||
stl_update_connects_remove_1(stl, neighbor3);
|
||||
stl->neighbors_start[neighbor3].neighbor[(vnot3 + 1) % 3] = -1;
|
||||
}
|
||||
}
|
||||
|
||||
void
|
||||
stl_update_connects_remove_1(stl_file *stl, int facet_num) {
|
||||
int j;
|
||||
|
||||
if (stl->error) return;
|
||||
/* Update list of connected edges */
|
||||
j = ((stl->neighbors_start[facet_num].neighbor[0] == -1) +
|
||||
(stl->neighbors_start[facet_num].neighbor[1] == -1) +
|
||||
(stl->neighbors_start[facet_num].neighbor[2] == -1));
|
||||
if(j == 0) { /* Facet has 3 neighbors */
|
||||
stl->stats.connected_facets_3_edge -= 1;
|
||||
} else if(j == 1) { /* Facet has 2 neighbors */
|
||||
stl->stats.connected_facets_2_edge -= 1;
|
||||
} else if(j == 2) { /* Facet has 1 neighbor */
|
||||
stl->stats.connected_facets_1_edge -= 1;
|
||||
}
|
||||
}
|
||||
|
||||
void
|
||||
stl_fill_holes(stl_file *stl) {
|
||||
stl_facet facet;
|
||||
stl_facet new_facet;
|
||||
int neighbors_initial[3];
|
||||
stl_hash_edge edge;
|
||||
int first_facet;
|
||||
int direction;
|
||||
int facet_num;
|
||||
int vnot;
|
||||
int next_edge;
|
||||
int pivot_vertex;
|
||||
int next_facet;
|
||||
int i;
|
||||
int j;
|
||||
int k;
|
||||
|
||||
if (stl->error) return;
|
||||
|
||||
/* Insert all unconnected edges into hash list */
|
||||
stl_initialize_facet_check_nearby(stl);
|
||||
for(i = 0; i < stl->stats.number_of_facets; i++) {
|
||||
facet = stl->facet_start[i];
|
||||
for(j = 0; j < 3; j++) {
|
||||
if(stl->neighbors_start[i].neighbor[j] != -1) continue;
|
||||
edge.facet_number = i;
|
||||
edge.which_edge = j;
|
||||
stl_load_edge_exact(stl, &edge, &facet.vertex[j],
|
||||
&facet.vertex[(j + 1) % 3]);
|
||||
|
||||
insert_hash_edge(stl, edge, stl_record_neighbors);
|
||||
}
|
||||
}
|
||||
|
||||
for(i = 0; i < stl->stats.number_of_facets; i++) {
|
||||
facet = stl->facet_start[i];
|
||||
neighbors_initial[0] = stl->neighbors_start[i].neighbor[0];
|
||||
neighbors_initial[1] = stl->neighbors_start[i].neighbor[1];
|
||||
neighbors_initial[2] = stl->neighbors_start[i].neighbor[2];
|
||||
first_facet = i;
|
||||
for(j = 0; j < 3; j++) {
|
||||
if(stl->neighbors_start[i].neighbor[j] != -1) continue;
|
||||
|
||||
new_facet.vertex[0] = facet.vertex[j];
|
||||
new_facet.vertex[1] = facet.vertex[(j + 1) % 3];
|
||||
if(neighbors_initial[(j + 2) % 3] == -1) {
|
||||
direction = 1;
|
||||
} else {
|
||||
direction = 0;
|
||||
}
|
||||
|
||||
facet_num = i;
|
||||
vnot = (j + 2) % 3;
|
||||
|
||||
for(;;) {
|
||||
if(vnot > 2) {
|
||||
if(direction == 0) {
|
||||
pivot_vertex = (vnot + 2) % 3;
|
||||
next_edge = pivot_vertex;
|
||||
direction = 1;
|
||||
} else {
|
||||
pivot_vertex = (vnot + 1) % 3;
|
||||
next_edge = vnot % 3;
|
||||
direction = 0;
|
||||
}
|
||||
} else {
|
||||
if(direction == 0) {
|
||||
pivot_vertex = (vnot + 1) % 3;
|
||||
next_edge = vnot;
|
||||
} else {
|
||||
pivot_vertex = (vnot + 2) % 3;
|
||||
next_edge = pivot_vertex;
|
||||
}
|
||||
}
|
||||
next_facet = stl->neighbors_start[facet_num].neighbor[next_edge];
|
||||
|
||||
if(next_facet == -1) {
|
||||
new_facet.vertex[2] = stl->facet_start[facet_num].
|
||||
vertex[vnot % 3];
|
||||
stl_add_facet(stl, &new_facet);
|
||||
for(k = 0; k < 3; k++) {
|
||||
edge.facet_number = stl->stats.number_of_facets - 1;
|
||||
edge.which_edge = k;
|
||||
stl_load_edge_exact(stl, &edge, &new_facet.vertex[k],
|
||||
&new_facet.vertex[(k + 1) % 3]);
|
||||
|
||||
insert_hash_edge(stl, edge, stl_record_neighbors);
|
||||
}
|
||||
break;
|
||||
} else {
|
||||
vnot = stl->neighbors_start[facet_num].
|
||||
which_vertex_not[next_edge];
|
||||
facet_num = next_facet;
|
||||
}
|
||||
|
||||
if(facet_num == first_facet) {
|
||||
/* back to the beginning */
|
||||
printf("\
|
||||
Back to the first facet filling holes: probably a mobius part.\n\
|
||||
Try using a smaller tolerance or don't do a nearby check\n");
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void
|
||||
stl_add_facet(stl_file *stl, stl_facet *new_facet) {
|
||||
if (stl->error) return;
|
||||
|
||||
stl->stats.facets_added += 1;
|
||||
if(stl->stats.facets_malloced < stl->stats.number_of_facets + 1) {
|
||||
stl->facet_start = (stl_facet*)realloc(stl->facet_start,
|
||||
(sizeof(stl_facet) * (stl->stats.facets_malloced + 256)));
|
||||
if(stl->facet_start == NULL) perror("stl_add_facet");
|
||||
stl->neighbors_start = (stl_neighbors*)realloc(stl->neighbors_start,
|
||||
(sizeof(stl_neighbors) * (stl->stats.facets_malloced + 256)));
|
||||
if(stl->neighbors_start == NULL) perror("stl_add_facet");
|
||||
stl->stats.facets_malloced += 256;
|
||||
}
|
||||
stl->facet_start[stl->stats.number_of_facets] = *new_facet;
|
||||
|
||||
/* note that the normal vector is not set here, just initialized to 0 */
|
||||
stl->facet_start[stl->stats.number_of_facets].normal = stl_normal::Zero();
|
||||
|
||||
stl->neighbors_start[stl->stats.number_of_facets].neighbor[0] = -1;
|
||||
stl->neighbors_start[stl->stats.number_of_facets].neighbor[1] = -1;
|
||||
stl->neighbors_start[stl->stats.number_of_facets].neighbor[2] = -1;
|
||||
stl->stats.number_of_facets += 1;
|
||||
}
|
292
src/admesh/normals.cpp
Normal file
292
src/admesh/normals.cpp
Normal file
|
@ -0,0 +1,292 @@
|
|||
/* ADMesh -- process triangulated solid meshes
|
||||
* Copyright (C) 1995, 1996 Anthony D. Martin <amartin@engr.csulb.edu>
|
||||
* Copyright (C) 2013, 2014 several contributors, see AUTHORS
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation; either version 2 of the License, or
|
||||
* (at your option) any later version.
|
||||
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
|
||||
* You should have received a copy of the GNU General Public License along
|
||||
* with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
*
|
||||
* Questions, comments, suggestions, etc to
|
||||
* https://github.com/admesh/admesh/issues
|
||||
*/
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include <math.h>
|
||||
|
||||
#include "stl.h"
|
||||
|
||||
static int stl_check_normal_vector(stl_file *stl, int facet_num, int normal_fix_flag);
|
||||
|
||||
static void
|
||||
stl_reverse_facet(stl_file *stl, int facet_num) {
|
||||
stl_vertex tmp_vertex;
|
||||
/* int tmp_neighbor;*/
|
||||
int neighbor[3];
|
||||
int vnot[3];
|
||||
|
||||
stl->stats.facets_reversed += 1;
|
||||
|
||||
neighbor[0] = stl->neighbors_start[facet_num].neighbor[0];
|
||||
neighbor[1] = stl->neighbors_start[facet_num].neighbor[1];
|
||||
neighbor[2] = stl->neighbors_start[facet_num].neighbor[2];
|
||||
vnot[0] = stl->neighbors_start[facet_num].which_vertex_not[0];
|
||||
vnot[1] = stl->neighbors_start[facet_num].which_vertex_not[1];
|
||||
vnot[2] = stl->neighbors_start[facet_num].which_vertex_not[2];
|
||||
|
||||
/* reverse the facet */
|
||||
tmp_vertex = stl->facet_start[facet_num].vertex[0];
|
||||
stl->facet_start[facet_num].vertex[0] =
|
||||
stl->facet_start[facet_num].vertex[1];
|
||||
stl->facet_start[facet_num].vertex[1] = tmp_vertex;
|
||||
|
||||
/* fix the vnots of the neighboring facets */
|
||||
if(neighbor[0] != -1)
|
||||
stl->neighbors_start[neighbor[0]].which_vertex_not[(vnot[0] + 1) % 3] =
|
||||
(stl->neighbors_start[neighbor[0]].
|
||||
which_vertex_not[(vnot[0] + 1) % 3] + 3) % 6;
|
||||
if(neighbor[1] != -1)
|
||||
stl->neighbors_start[neighbor[1]].which_vertex_not[(vnot[1] + 1) % 3] =
|
||||
(stl->neighbors_start[neighbor[1]].
|
||||
which_vertex_not[(vnot[1] + 1) % 3] + 4) % 6;
|
||||
if(neighbor[2] != -1)
|
||||
stl->neighbors_start[neighbor[2]].which_vertex_not[(vnot[2] + 1) % 3] =
|
||||
(stl->neighbors_start[neighbor[2]].
|
||||
which_vertex_not[(vnot[2] + 1) % 3] + 2) % 6;
|
||||
|
||||
/* swap the neighbors of the facet that is being reversed */
|
||||
stl->neighbors_start[facet_num].neighbor[1] = neighbor[2];
|
||||
stl->neighbors_start[facet_num].neighbor[2] = neighbor[1];
|
||||
|
||||
/* swap the vnots of the facet that is being reversed */
|
||||
stl->neighbors_start[facet_num].which_vertex_not[1] = vnot[2];
|
||||
stl->neighbors_start[facet_num].which_vertex_not[2] = vnot[1];
|
||||
|
||||
/* reverse the values of the vnots of the facet that is being reversed */
|
||||
stl->neighbors_start[facet_num].which_vertex_not[0] =
|
||||
(stl->neighbors_start[facet_num].which_vertex_not[0] + 3) % 6;
|
||||
stl->neighbors_start[facet_num].which_vertex_not[1] =
|
||||
(stl->neighbors_start[facet_num].which_vertex_not[1] + 3) % 6;
|
||||
stl->neighbors_start[facet_num].which_vertex_not[2] =
|
||||
(stl->neighbors_start[facet_num].which_vertex_not[2] + 3) % 6;
|
||||
}
|
||||
|
||||
void
|
||||
stl_fix_normal_directions(stl_file *stl) {
|
||||
char *norm_sw;
|
||||
/* int edge_num;*/
|
||||
/* int vnot;*/
|
||||
int checked = 0;
|
||||
int facet_num;
|
||||
/* int next_facet;*/
|
||||
int i;
|
||||
int j;
|
||||
struct stl_normal {
|
||||
int facet_num;
|
||||
struct stl_normal *next;
|
||||
};
|
||||
struct stl_normal *head;
|
||||
struct stl_normal *tail;
|
||||
struct stl_normal *newn;
|
||||
struct stl_normal *temp;
|
||||
|
||||
int* reversed_ids;
|
||||
int reversed_count = 0;
|
||||
int id;
|
||||
int force_exit = 0;
|
||||
|
||||
if (stl->error) return;
|
||||
|
||||
/* Initialize linked list. */
|
||||
head = (struct stl_normal*)malloc(sizeof(struct stl_normal));
|
||||
if(head == NULL) perror("stl_fix_normal_directions");
|
||||
tail = (struct stl_normal*)malloc(sizeof(struct stl_normal));
|
||||
if(tail == NULL) perror("stl_fix_normal_directions");
|
||||
head->next = tail;
|
||||
tail->next = tail;
|
||||
|
||||
/* Initialize list that keeps track of already fixed facets. */
|
||||
norm_sw = (char*)calloc(stl->stats.number_of_facets, sizeof(char));
|
||||
if(norm_sw == NULL) perror("stl_fix_normal_directions");
|
||||
|
||||
/* Initialize list that keeps track of reversed facets. */
|
||||
reversed_ids = (int*)calloc(stl->stats.number_of_facets, sizeof(int));
|
||||
if (reversed_ids == NULL) perror("stl_fix_normal_directions reversed_ids");
|
||||
|
||||
facet_num = 0;
|
||||
/* If normal vector is not within tolerance and backwards:
|
||||
Arbitrarily starts at face 0. If this one is wrong, we're screwed. Thankfully, the chances
|
||||
of it being wrong randomly are low if most of the triangles are right: */
|
||||
if (stl_check_normal_vector(stl, 0, 0) == 2) {
|
||||
stl_reverse_facet(stl, 0);
|
||||
reversed_ids[reversed_count++] = 0;
|
||||
}
|
||||
|
||||
/* Say that we've fixed this facet: */
|
||||
norm_sw[facet_num] = 1;
|
||||
checked++;
|
||||
|
||||
for(;;) {
|
||||
/* Add neighbors_to_list.
|
||||
Add unconnected neighbors to the list:a */
|
||||
for(j = 0; j < 3; j++) {
|
||||
/* Reverse the neighboring facets if necessary. */
|
||||
if(stl->neighbors_start[facet_num].which_vertex_not[j] > 2) {
|
||||
/* If the facet has a neighbor that is -1, it means that edge isn't shared by another facet */
|
||||
if(stl->neighbors_start[facet_num].neighbor[j] != -1) {
|
||||
if (norm_sw[stl->neighbors_start[facet_num].neighbor[j]] == 1) {
|
||||
/* trying to modify a facet already marked as fixed, revert all changes made until now and exit (fixes: #716, #574, #413, #269, #262, #259, #230, #228, #206) */
|
||||
for (id = reversed_count - 1; id >= 0; --id) {
|
||||
stl_reverse_facet(stl, reversed_ids[id]);
|
||||
}
|
||||
force_exit = 1;
|
||||
break;
|
||||
} else {
|
||||
stl_reverse_facet(stl, stl->neighbors_start[facet_num].neighbor[j]);
|
||||
reversed_ids[reversed_count++] = stl->neighbors_start[facet_num].neighbor[j];
|
||||
}
|
||||
}
|
||||
}
|
||||
/* If this edge of the facet is connected: */
|
||||
if(stl->neighbors_start[facet_num].neighbor[j] != -1) {
|
||||
/* If we haven't fixed this facet yet, add it to the list: */
|
||||
if(norm_sw[stl->neighbors_start[facet_num].neighbor[j]] != 1) {
|
||||
/* Add node to beginning of list. */
|
||||
newn = (struct stl_normal*)malloc(sizeof(struct stl_normal));
|
||||
if(newn == NULL) perror("stl_fix_normal_directions");
|
||||
newn->facet_num = stl->neighbors_start[facet_num].neighbor[j];
|
||||
newn->next = head->next;
|
||||
head->next = newn;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* an error occourred, quit the for loop and exit */
|
||||
if (force_exit) break;
|
||||
|
||||
/* Get next facet to fix from top of list. */
|
||||
if(head->next != tail) {
|
||||
facet_num = head->next->facet_num;
|
||||
if(norm_sw[facet_num] != 1) { /* If facet is in list mutiple times */
|
||||
norm_sw[facet_num] = 1; /* Record this one as being fixed. */
|
||||
checked++;
|
||||
}
|
||||
temp = head->next; /* Delete this facet from the list. */
|
||||
head->next = head->next->next;
|
||||
free(temp);
|
||||
} else { /* if we ran out of facets to fix: */
|
||||
/* All of the facets in this part have been fixed. */
|
||||
stl->stats.number_of_parts += 1;
|
||||
if(checked >= stl->stats.number_of_facets) {
|
||||
/* All of the facets have been checked. Bail out. */
|
||||
break;
|
||||
} else {
|
||||
/* There is another part here. Find it and continue. */
|
||||
for(i = 0; i < stl->stats.number_of_facets; i++) {
|
||||
if(norm_sw[i] == 0) {
|
||||
/* This is the first facet of the next part. */
|
||||
facet_num = i;
|
||||
if(stl_check_normal_vector(stl, i, 0) == 2) {
|
||||
stl_reverse_facet(stl, i);
|
||||
reversed_ids[reversed_count++] = i;
|
||||
}
|
||||
|
||||
norm_sw[facet_num] = 1;
|
||||
checked++;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
free(head);
|
||||
free(tail);
|
||||
free(reversed_ids);
|
||||
free(norm_sw);
|
||||
}
|
||||
|
||||
static int stl_check_normal_vector(stl_file *stl, int facet_num, int normal_fix_flag) {
|
||||
/* Returns 0 if the normal is within tolerance */
|
||||
/* Returns 1 if the normal is not within tolerance, but direction is OK */
|
||||
/* Returns 2 if the normal is not within tolerance and backwards */
|
||||
/* Returns 4 if the status is unknown. */
|
||||
|
||||
stl_facet *facet;
|
||||
|
||||
facet = &stl->facet_start[facet_num];
|
||||
|
||||
stl_normal normal;
|
||||
stl_calculate_normal(normal, facet);
|
||||
stl_normalize_vector(normal);
|
||||
stl_normal normal_dif = (normal - facet->normal).cwiseAbs();
|
||||
|
||||
const float eps = 0.001f;
|
||||
if (normal_dif(0) < eps && normal_dif(1) < eps && normal_dif(2) < eps) {
|
||||
/* It is not really necessary to change the values here */
|
||||
/* but just for consistency, I will. */
|
||||
facet->normal = normal;
|
||||
return 0;
|
||||
}
|
||||
|
||||
stl_normal test_norm = facet->normal;
|
||||
stl_normalize_vector(test_norm);
|
||||
normal_dif = (normal - test_norm).cwiseAbs();
|
||||
if (normal_dif(0) < eps && normal_dif(1) < eps && normal_dif(2) < eps) {
|
||||
if(normal_fix_flag) {
|
||||
facet->normal = normal;
|
||||
stl->stats.normals_fixed += 1;
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
|
||||
test_norm *= -1.f;
|
||||
normal_dif = (normal - test_norm).cwiseAbs();
|
||||
if (normal_dif(0) < eps && normal_dif(1) < eps && normal_dif(2) < eps) {
|
||||
// Facet is backwards.
|
||||
if(normal_fix_flag) {
|
||||
facet->normal = normal;
|
||||
stl->stats.normals_fixed += 1;
|
||||
}
|
||||
return 2;
|
||||
}
|
||||
if(normal_fix_flag) {
|
||||
facet->normal = normal;
|
||||
stl->stats.normals_fixed += 1;
|
||||
}
|
||||
return 4;
|
||||
}
|
||||
|
||||
void stl_fix_normal_values(stl_file *stl) {
|
||||
int i;
|
||||
|
||||
if (stl->error) return;
|
||||
|
||||
for(i = 0; i < stl->stats.number_of_facets; i++) {
|
||||
stl_check_normal_vector(stl, i, 1);
|
||||
}
|
||||
}
|
||||
|
||||
void stl_reverse_all_facets(stl_file *stl)
|
||||
{
|
||||
if (stl->error)
|
||||
return;
|
||||
|
||||
stl_normal normal;
|
||||
for(int i = 0; i < stl->stats.number_of_facets; i++) {
|
||||
stl_reverse_facet(stl, i);
|
||||
stl_calculate_normal(normal, &stl->facet_start[i]);
|
||||
stl_normalize_vector(normal);
|
||||
stl->facet_start[i].normal = normal;
|
||||
}
|
||||
}
|
264
src/admesh/shared.cpp
Normal file
264
src/admesh/shared.cpp
Normal file
|
@ -0,0 +1,264 @@
|
|||
/* ADMesh -- process triangulated solid meshes
|
||||
* Copyright (C) 1995, 1996 Anthony D. Martin <amartin@engr.csulb.edu>
|
||||
* Copyright (C) 2013, 2014 several contributors, see AUTHORS
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation; either version 2 of the License, or
|
||||
* (at your option) any later version.
|
||||
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
|
||||
* You should have received a copy of the GNU General Public License along
|
||||
* with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
*
|
||||
* Questions, comments, suggestions, etc to
|
||||
* https://github.com/admesh/admesh/issues
|
||||
*/
|
||||
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
|
||||
#include <boost/nowide/cstdio.hpp>
|
||||
|
||||
#include "stl.h"
|
||||
|
||||
void
|
||||
stl_invalidate_shared_vertices(stl_file *stl) {
|
||||
if (stl->error) return;
|
||||
|
||||
if (stl->v_indices != NULL) {
|
||||
free(stl->v_indices);
|
||||
stl->v_indices = NULL;
|
||||
}
|
||||
if (stl->v_shared != NULL) {
|
||||
free(stl->v_shared);
|
||||
stl->v_shared = NULL;
|
||||
}
|
||||
}
|
||||
|
||||
void
|
||||
stl_generate_shared_vertices(stl_file *stl) {
|
||||
int i;
|
||||
int j;
|
||||
int first_facet;
|
||||
int direction;
|
||||
int facet_num;
|
||||
int vnot;
|
||||
int next_edge;
|
||||
int pivot_vertex;
|
||||
int next_facet;
|
||||
int reversed;
|
||||
|
||||
if (stl->error) return;
|
||||
|
||||
/* make sure this function is idempotent and does not leak memory */
|
||||
stl_invalidate_shared_vertices(stl);
|
||||
|
||||
stl->v_indices = (v_indices_struct*)
|
||||
calloc(stl->stats.number_of_facets, sizeof(v_indices_struct));
|
||||
if(stl->v_indices == NULL) perror("stl_generate_shared_vertices");
|
||||
stl->v_shared = (stl_vertex*)
|
||||
calloc((stl->stats.number_of_facets / 2), sizeof(stl_vertex));
|
||||
if(stl->v_shared == NULL) perror("stl_generate_shared_vertices");
|
||||
stl->stats.shared_malloced = stl->stats.number_of_facets / 2;
|
||||
stl->stats.shared_vertices = 0;
|
||||
|
||||
for(i = 0; i < stl->stats.number_of_facets; i++) {
|
||||
stl->v_indices[i].vertex[0] = -1;
|
||||
stl->v_indices[i].vertex[1] = -1;
|
||||
stl->v_indices[i].vertex[2] = -1;
|
||||
}
|
||||
|
||||
|
||||
for(i = 0; i < stl->stats.number_of_facets; i++) {
|
||||
first_facet = i;
|
||||
for(j = 0; j < 3; j++) {
|
||||
if(stl->v_indices[i].vertex[j] != -1) {
|
||||
continue;
|
||||
}
|
||||
if(stl->stats.shared_vertices == stl->stats.shared_malloced) {
|
||||
stl->stats.shared_malloced += 1024;
|
||||
stl->v_shared = (stl_vertex*)realloc(stl->v_shared,
|
||||
stl->stats.shared_malloced * sizeof(stl_vertex));
|
||||
if(stl->v_shared == NULL) perror("stl_generate_shared_vertices");
|
||||
}
|
||||
|
||||
stl->v_shared[stl->stats.shared_vertices] =
|
||||
stl->facet_start[i].vertex[j];
|
||||
|
||||
direction = 0;
|
||||
reversed = 0;
|
||||
facet_num = i;
|
||||
vnot = (j + 2) % 3;
|
||||
|
||||
for(;;) {
|
||||
if(vnot > 2) {
|
||||
if(direction == 0) {
|
||||
pivot_vertex = (vnot + 2) % 3;
|
||||
next_edge = pivot_vertex;
|
||||
direction = 1;
|
||||
} else {
|
||||
pivot_vertex = (vnot + 1) % 3;
|
||||
next_edge = vnot % 3;
|
||||
direction = 0;
|
||||
}
|
||||
} else {
|
||||
if(direction == 0) {
|
||||
pivot_vertex = (vnot + 1) % 3;
|
||||
next_edge = vnot;
|
||||
} else {
|
||||
pivot_vertex = (vnot + 2) % 3;
|
||||
next_edge = pivot_vertex;
|
||||
}
|
||||
}
|
||||
stl->v_indices[facet_num].vertex[pivot_vertex] =
|
||||
stl->stats.shared_vertices;
|
||||
|
||||
next_facet = stl->neighbors_start[facet_num].neighbor[next_edge];
|
||||
if(next_facet == -1) {
|
||||
if(reversed) {
|
||||
break;
|
||||
} else {
|
||||
direction = 1;
|
||||
vnot = (j + 1) % 3;
|
||||
reversed = 1;
|
||||
facet_num = first_facet;
|
||||
}
|
||||
} else if(next_facet != first_facet) {
|
||||
vnot = stl->neighbors_start[facet_num].
|
||||
which_vertex_not[next_edge];
|
||||
facet_num = next_facet;
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
stl->stats.shared_vertices += 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void
|
||||
stl_write_off(stl_file *stl, char *file) {
|
||||
int i;
|
||||
FILE *fp;
|
||||
char *error_msg;
|
||||
|
||||
if (stl->error) return;
|
||||
|
||||
/* Open the file */
|
||||
fp = boost::nowide::fopen(file, "w");
|
||||
if(fp == NULL) {
|
||||
error_msg = (char*)
|
||||
malloc(81 + strlen(file)); /* Allow 80 chars+file size for message */
|
||||
sprintf(error_msg, "stl_write_ascii: Couldn't open %s for writing",
|
||||
file);
|
||||
perror(error_msg);
|
||||
free(error_msg);
|
||||
stl->error = 1;
|
||||
return;
|
||||
}
|
||||
|
||||
fprintf(fp, "OFF\n");
|
||||
fprintf(fp, "%d %d 0\n",
|
||||
stl->stats.shared_vertices, stl->stats.number_of_facets);
|
||||
|
||||
for(i = 0; i < stl->stats.shared_vertices; i++) {
|
||||
fprintf(fp, "\t%f %f %f\n",
|
||||
stl->v_shared[i](0), stl->v_shared[i](1), stl->v_shared[i](2));
|
||||
}
|
||||
for(i = 0; i < stl->stats.number_of_facets; i++) {
|
||||
fprintf(fp, "\t3 %d %d %d\n", stl->v_indices[i].vertex[0],
|
||||
stl->v_indices[i].vertex[1], stl->v_indices[i].vertex[2]);
|
||||
}
|
||||
fclose(fp);
|
||||
}
|
||||
|
||||
void
|
||||
stl_write_vrml(stl_file *stl, char *file) {
|
||||
int i;
|
||||
FILE *fp;
|
||||
char *error_msg;
|
||||
|
||||
if (stl->error) return;
|
||||
|
||||
/* Open the file */
|
||||
fp = boost::nowide::fopen(file, "w");
|
||||
if(fp == NULL) {
|
||||
error_msg = (char*)
|
||||
malloc(81 + strlen(file)); /* Allow 80 chars+file size for message */
|
||||
sprintf(error_msg, "stl_write_ascii: Couldn't open %s for writing",
|
||||
file);
|
||||
perror(error_msg);
|
||||
free(error_msg);
|
||||
stl->error = 1;
|
||||
return;
|
||||
}
|
||||
|
||||
fprintf(fp, "#VRML V1.0 ascii\n\n");
|
||||
fprintf(fp, "Separator {\n");
|
||||
fprintf(fp, "\tDEF STLShape ShapeHints {\n");
|
||||
fprintf(fp, "\t\tvertexOrdering COUNTERCLOCKWISE\n");
|
||||
fprintf(fp, "\t\tfaceType CONVEX\n");
|
||||
fprintf(fp, "\t\tshapeType SOLID\n");
|
||||
fprintf(fp, "\t\tcreaseAngle 0.0\n");
|
||||
fprintf(fp, "\t}\n");
|
||||
fprintf(fp, "\tDEF STLModel Separator {\n");
|
||||
fprintf(fp, "\t\tDEF STLColor Material {\n");
|
||||
fprintf(fp, "\t\t\temissiveColor 0.700000 0.700000 0.000000\n");
|
||||
fprintf(fp, "\t\t}\n");
|
||||
fprintf(fp, "\t\tDEF STLVertices Coordinate3 {\n");
|
||||
fprintf(fp, "\t\t\tpoint [\n");
|
||||
|
||||
for(i = 0; i < (stl->stats.shared_vertices - 1); i++) {
|
||||
fprintf(fp, "\t\t\t\t%f %f %f,\n",
|
||||
stl->v_shared[i](0), stl->v_shared[i](1), stl->v_shared[i](2));
|
||||
}
|
||||
fprintf(fp, "\t\t\t\t%f %f %f]\n",
|
||||
stl->v_shared[i](0), stl->v_shared[i](1), stl->v_shared[i](2));
|
||||
fprintf(fp, "\t\t}\n");
|
||||
fprintf(fp, "\t\tDEF STLTriangles IndexedFaceSet {\n");
|
||||
fprintf(fp, "\t\t\tcoordIndex [\n");
|
||||
|
||||
for(i = 0; i < (stl->stats.number_of_facets - 1); i++) {
|
||||
fprintf(fp, "\t\t\t\t%d, %d, %d, -1,\n", stl->v_indices[i].vertex[0],
|
||||
stl->v_indices[i].vertex[1], stl->v_indices[i].vertex[2]);
|
||||
}
|
||||
fprintf(fp, "\t\t\t\t%d, %d, %d, -1]\n", stl->v_indices[i].vertex[0],
|
||||
stl->v_indices[i].vertex[1], stl->v_indices[i].vertex[2]);
|
||||
fprintf(fp, "\t\t}\n");
|
||||
fprintf(fp, "\t}\n");
|
||||
fprintf(fp, "}\n");
|
||||
fclose(fp);
|
||||
}
|
||||
|
||||
void stl_write_obj (stl_file *stl, char *file) {
|
||||
int i;
|
||||
FILE* fp;
|
||||
|
||||
if (stl->error) return;
|
||||
|
||||
/* Open the file */
|
||||
fp = boost::nowide::fopen(file, "w");
|
||||
if (fp == NULL) {
|
||||
char* error_msg = (char*)malloc(81 + strlen(file)); /* Allow 80 chars+file size for message */
|
||||
sprintf(error_msg, "stl_write_ascii: Couldn't open %s for writing", file);
|
||||
perror(error_msg);
|
||||
free(error_msg);
|
||||
stl->error = 1;
|
||||
return;
|
||||
}
|
||||
|
||||
for (i = 0; i < stl->stats.shared_vertices; i++) {
|
||||
fprintf(fp, "v %f %f %f\n", stl->v_shared[i](0), stl->v_shared[i](1), stl->v_shared[i](2));
|
||||
}
|
||||
for (i = 0; i < stl->stats.number_of_facets; i++) {
|
||||
fprintf(fp, "f %d %d %d\n", stl->v_indices[i].vertex[0]+1, stl->v_indices[i].vertex[1]+1, stl->v_indices[i].vertex[2]+1);
|
||||
}
|
||||
|
||||
fclose(fp);
|
||||
}
|
215
src/admesh/stl.h
Normal file
215
src/admesh/stl.h
Normal file
|
@ -0,0 +1,215 @@
|
|||
/* ADMesh -- process triangulated solid meshes
|
||||
* Copyright (C) 1995, 1996 Anthony D. Martin <amartin@engr.csulb.edu>
|
||||
* Copyright (C) 2013, 2014 several contributors, see AUTHORS
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation; either version 2 of the License, or
|
||||
* (at your option) any later version.
|
||||
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
|
||||
* You should have received a copy of the GNU General Public License along
|
||||
* with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
*
|
||||
* Questions, comments, suggestions, etc to
|
||||
* https://github.com/admesh/admesh/issues
|
||||
*/
|
||||
|
||||
#ifndef __admesh_stl__
|
||||
#define __admesh_stl__
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdint.h>
|
||||
#include <stddef.h>
|
||||
|
||||
#include <Eigen/Geometry>
|
||||
|
||||
// Size of the binary STL header, free form.
|
||||
#define LABEL_SIZE 80
|
||||
// Binary STL, length of the "number of faces" counter.
|
||||
#define NUM_FACET_SIZE 4
|
||||
// Binary STL, sizeof header + number of faces.
|
||||
#define HEADER_SIZE 84
|
||||
#define STL_MIN_FILE_SIZE 284
|
||||
#define ASCII_LINES_PER_FACET 7
|
||||
|
||||
typedef Eigen::Matrix<float, 3, 1, Eigen::DontAlign> stl_vertex;
|
||||
typedef Eigen::Matrix<float, 3, 1, Eigen::DontAlign> stl_normal;
|
||||
static_assert(sizeof(stl_vertex) == 12, "size of stl_vertex incorrect");
|
||||
static_assert(sizeof(stl_normal) == 12, "size of stl_normal incorrect");
|
||||
|
||||
typedef struct {
|
||||
stl_normal normal;
|
||||
stl_vertex vertex[3];
|
||||
char extra[2];
|
||||
} stl_facet;
|
||||
#define SIZEOF_STL_FACET 50
|
||||
|
||||
static_assert(offsetof(stl_facet, normal) == 0, "stl_facet.normal has correct offset");
|
||||
static_assert(offsetof(stl_facet, vertex) == 12, "stl_facet.vertex has correct offset");
|
||||
static_assert(offsetof(stl_facet, extra ) == 48, "stl_facet.extra has correct offset");
|
||||
static_assert(sizeof(stl_facet) >= SIZEOF_STL_FACET, "size of stl_facet incorrect");
|
||||
|
||||
typedef enum {binary, ascii, inmemory} stl_type;
|
||||
|
||||
typedef struct {
|
||||
stl_vertex p1;
|
||||
stl_vertex p2;
|
||||
int facet_number;
|
||||
} stl_edge;
|
||||
|
||||
typedef struct stl_hash_edge {
|
||||
// Key of a hash edge: sorted vertices of the edge.
|
||||
unsigned char key[2 * sizeof(stl_vertex)];
|
||||
// Compare two keys.
|
||||
bool operator==(const stl_hash_edge &rhs) { return memcmp(key, rhs.key, sizeof(key)) == 0; }
|
||||
bool operator!=(const stl_hash_edge &rhs) { return ! (*this == rhs); }
|
||||
int hash(int M) const { return ((key[0] / 23 + key[1] / 19 + key[2] / 17 + key[3] /13 + key[4] / 11 + key[5] / 7 ) % M); }
|
||||
// Index of a facet owning this edge.
|
||||
int facet_number;
|
||||
// Index of this edge inside the facet with an index of facet_number.
|
||||
// If this edge is stored backwards, which_edge is increased by 3.
|
||||
int which_edge;
|
||||
struct stl_hash_edge *next;
|
||||
} stl_hash_edge;
|
||||
|
||||
typedef struct {
|
||||
// Index of a neighbor facet.
|
||||
int neighbor[3];
|
||||
// Index of an opposite vertex at the neighbor face.
|
||||
char which_vertex_not[3];
|
||||
} stl_neighbors;
|
||||
|
||||
typedef struct {
|
||||
int vertex[3];
|
||||
} v_indices_struct;
|
||||
|
||||
typedef struct {
|
||||
char header[81];
|
||||
stl_type type;
|
||||
uint32_t number_of_facets;
|
||||
stl_vertex max;
|
||||
stl_vertex min;
|
||||
stl_vertex size;
|
||||
float bounding_diameter;
|
||||
float shortest_edge;
|
||||
float volume;
|
||||
unsigned number_of_blocks;
|
||||
int connected_edges;
|
||||
int connected_facets_1_edge;
|
||||
int connected_facets_2_edge;
|
||||
int connected_facets_3_edge;
|
||||
int facets_w_1_bad_edge;
|
||||
int facets_w_2_bad_edge;
|
||||
int facets_w_3_bad_edge;
|
||||
int original_num_facets;
|
||||
int edges_fixed;
|
||||
int degenerate_facets;
|
||||
int facets_removed;
|
||||
int facets_added;
|
||||
int facets_reversed;
|
||||
int backwards_edges;
|
||||
int normals_fixed;
|
||||
int number_of_parts;
|
||||
int malloced;
|
||||
int freed;
|
||||
int facets_malloced;
|
||||
int collisions;
|
||||
int shared_vertices;
|
||||
int shared_malloced;
|
||||
} stl_stats;
|
||||
|
||||
typedef struct {
|
||||
FILE *fp;
|
||||
stl_facet *facet_start;
|
||||
stl_edge *edge_start;
|
||||
stl_hash_edge **heads;
|
||||
stl_hash_edge *tail;
|
||||
int M;
|
||||
stl_neighbors *neighbors_start;
|
||||
v_indices_struct *v_indices;
|
||||
stl_vertex *v_shared;
|
||||
stl_stats stats;
|
||||
char error;
|
||||
} stl_file;
|
||||
|
||||
|
||||
extern void stl_open(stl_file *stl, const char *file);
|
||||
extern void stl_close(stl_file *stl);
|
||||
extern void stl_stats_out(stl_file *stl, FILE *file, char *input_file);
|
||||
extern void stl_print_edges(stl_file *stl, FILE *file);
|
||||
extern void stl_print_neighbors(stl_file *stl, char *file);
|
||||
extern void stl_put_little_int(FILE *fp, int value_in);
|
||||
extern void stl_put_little_float(FILE *fp, float value_in);
|
||||
extern void stl_write_ascii(stl_file *stl, const char *file, const char *label);
|
||||
extern void stl_write_binary(stl_file *stl, const char *file, const char *label);
|
||||
extern void stl_write_binary_block(stl_file *stl, FILE *fp);
|
||||
extern void stl_check_facets_exact(stl_file *stl);
|
||||
extern void stl_check_facets_nearby(stl_file *stl, float tolerance);
|
||||
extern void stl_remove_unconnected_facets(stl_file *stl);
|
||||
extern void stl_write_vertex(stl_file *stl, int facet, int vertex);
|
||||
extern void stl_write_facet(stl_file *stl, char *label, int facet);
|
||||
extern void stl_write_edge(stl_file *stl, char *label, stl_hash_edge edge);
|
||||
extern void stl_write_neighbor(stl_file *stl, int facet);
|
||||
extern void stl_write_quad_object(stl_file *stl, char *file);
|
||||
extern void stl_verify_neighbors(stl_file *stl);
|
||||
extern void stl_fill_holes(stl_file *stl);
|
||||
extern void stl_fix_normal_directions(stl_file *stl);
|
||||
extern void stl_fix_normal_values(stl_file *stl);
|
||||
extern void stl_reverse_all_facets(stl_file *stl);
|
||||
extern void stl_translate(stl_file *stl, float x, float y, float z);
|
||||
extern void stl_translate_relative(stl_file *stl, float x, float y, float z);
|
||||
extern void stl_scale_versor(stl_file *stl, const stl_vertex &versor);
|
||||
inline void stl_scale(stl_file *stl, float factor) { stl_scale_versor(stl, stl_vertex(factor, factor, factor)); }
|
||||
extern void stl_rotate_x(stl_file *stl, float angle);
|
||||
extern void stl_rotate_y(stl_file *stl, float angle);
|
||||
extern void stl_rotate_z(stl_file *stl, float angle);
|
||||
extern void stl_mirror_xy(stl_file *stl);
|
||||
extern void stl_mirror_yz(stl_file *stl);
|
||||
extern void stl_mirror_xz(stl_file *stl);
|
||||
extern void stl_transform(stl_file *stl, float *trafo3x4);
|
||||
extern void stl_transform(stl_file *stl, const Eigen::Transform<float, 3, Eigen::Affine, Eigen::DontAlign>& t);
|
||||
extern void stl_open_merge(stl_file *stl, char *file);
|
||||
extern void stl_invalidate_shared_vertices(stl_file *stl);
|
||||
extern void stl_generate_shared_vertices(stl_file *stl);
|
||||
extern void stl_write_obj(stl_file *stl, char *file);
|
||||
extern void stl_write_off(stl_file *stl, char *file);
|
||||
extern void stl_write_dxf(stl_file *stl, char *file, char *label);
|
||||
extern void stl_write_vrml(stl_file *stl, char *file);
|
||||
inline void stl_calculate_normal(stl_normal &normal, stl_facet *facet) {
|
||||
normal = (facet->vertex[1] - facet->vertex[0]).cross(facet->vertex[2] - facet->vertex[0]);
|
||||
}
|
||||
inline void stl_normalize_vector(stl_normal &normal) {
|
||||
double length = normal.cast<double>().norm();
|
||||
if (length < 0.000000000001)
|
||||
normal = stl_normal::Zero();
|
||||
else
|
||||
normal *= (1.0 / length);
|
||||
}
|
||||
inline bool stl_vertex_lower(const stl_vertex &a, const stl_vertex &b) {
|
||||
return (a(0) != b(0)) ? (a(0) < b(0)) :
|
||||
((a(1) != b(1)) ? (a(1) < b(1)) : (a(2) < b(2)));
|
||||
}
|
||||
extern void stl_calculate_volume(stl_file *stl);
|
||||
|
||||
extern void stl_repair(stl_file *stl, int fixall_flag, int exact_flag, int tolerance_flag, float tolerance, int increment_flag, float increment, int nearby_flag, int iterations, int remove_unconnected_flag, int fill_holes_flag, int normal_directions_flag, int normal_values_flag, int reverse_all_flag, int verbose_flag);
|
||||
|
||||
extern void stl_initialize(stl_file *stl);
|
||||
extern void stl_count_facets(stl_file *stl, const char *file);
|
||||
extern void stl_allocate(stl_file *stl);
|
||||
extern void stl_read(stl_file *stl, int first_facet, bool first);
|
||||
extern void stl_facet_stats(stl_file *stl, stl_facet facet, bool &first);
|
||||
extern void stl_reallocate(stl_file *stl);
|
||||
extern void stl_add_facet(stl_file *stl, stl_facet *new_facet);
|
||||
extern void stl_get_size(stl_file *stl);
|
||||
|
||||
extern void stl_clear_error(stl_file *stl);
|
||||
extern int stl_get_error(stl_file *stl);
|
||||
extern void stl_exit_on_error(stl_file *stl);
|
||||
|
||||
#endif
|
433
src/admesh/stl_io.cpp
Normal file
433
src/admesh/stl_io.cpp
Normal file
|
@ -0,0 +1,433 @@
|
|||
/* ADMesh -- process triangulated solid meshes
|
||||
* Copyright (C) 1995, 1996 Anthony D. Martin <amartin@engr.csulb.edu>
|
||||
* Copyright (C) 2013, 2014 several contributors, see AUTHORS
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation; either version 2 of the License, or
|
||||
* (at your option) any later version.
|
||||
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
|
||||
* You should have received a copy of the GNU General Public License along
|
||||
* with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
*
|
||||
* Questions, comments, suggestions, etc to
|
||||
* https://github.com/admesh/admesh/issues
|
||||
*/
|
||||
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include "stl.h"
|
||||
|
||||
#include <boost/nowide/cstdio.hpp>
|
||||
#include <boost/detail/endian.hpp>
|
||||
|
||||
#if !defined(SEEK_SET)
|
||||
#define SEEK_SET 0
|
||||
#define SEEK_CUR 1
|
||||
#define SEEK_END 2
|
||||
#endif
|
||||
|
||||
void
|
||||
stl_print_edges(stl_file *stl, FILE *file) {
|
||||
int i;
|
||||
int edges_allocated;
|
||||
|
||||
if (stl->error) return;
|
||||
|
||||
edges_allocated = stl->stats.number_of_facets * 3;
|
||||
for(i = 0; i < edges_allocated; i++) {
|
||||
fprintf(file, "%d, %f, %f, %f, %f, %f, %f\n",
|
||||
stl->edge_start[i].facet_number,
|
||||
stl->edge_start[i].p1(0), stl->edge_start[i].p1(1),
|
||||
stl->edge_start[i].p1(2), stl->edge_start[i].p2(0),
|
||||
stl->edge_start[i].p2(1), stl->edge_start[i].p2(2));
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void
|
||||
stl_stats_out(stl_file *stl, FILE *file, char *input_file) {
|
||||
if (stl->error) return;
|
||||
|
||||
/* this is here for Slic3r, without our config.h
|
||||
it won't use this part of the code anyway */
|
||||
#ifndef VERSION
|
||||
#define VERSION "unknown"
|
||||
#endif
|
||||
fprintf(file, "\n\
|
||||
================= Results produced by ADMesh version " VERSION " ================\n");
|
||||
fprintf(file, "\
|
||||
Input file : %s\n", input_file);
|
||||
if(stl->stats.type == binary) {
|
||||
fprintf(file, "\
|
||||
File type : Binary STL file\n");
|
||||
} else {
|
||||
fprintf(file, "\
|
||||
File type : ASCII STL file\n");
|
||||
}
|
||||
fprintf(file, "\
|
||||
Header : %s\n", stl->stats.header);
|
||||
fprintf(file, "============== Size ==============\n");
|
||||
fprintf(file, "Min X = % f, Max X = % f\n",
|
||||
stl->stats.min(0), stl->stats.max(0));
|
||||
fprintf(file, "Min Y = % f, Max Y = % f\n",
|
||||
stl->stats.min(1), stl->stats.max(1));
|
||||
fprintf(file, "Min Z = % f, Max Z = % f\n",
|
||||
stl->stats.min(2), stl->stats.max(2));
|
||||
|
||||
fprintf(file, "\
|
||||
========= Facet Status ========== Original ============ Final ====\n");
|
||||
fprintf(file, "\
|
||||
Number of facets : %5d %5d\n",
|
||||
stl->stats.original_num_facets, stl->stats.number_of_facets);
|
||||
fprintf(file, "\
|
||||
Facets with 1 disconnected edge : %5d %5d\n",
|
||||
stl->stats.facets_w_1_bad_edge, stl->stats.connected_facets_2_edge -
|
||||
stl->stats.connected_facets_3_edge);
|
||||
fprintf(file, "\
|
||||
Facets with 2 disconnected edges : %5d %5d\n",
|
||||
stl->stats.facets_w_2_bad_edge, stl->stats.connected_facets_1_edge -
|
||||
stl->stats.connected_facets_2_edge);
|
||||
fprintf(file, "\
|
||||
Facets with 3 disconnected edges : %5d %5d\n",
|
||||
stl->stats.facets_w_3_bad_edge, stl->stats.number_of_facets -
|
||||
stl->stats.connected_facets_1_edge);
|
||||
fprintf(file, "\
|
||||
Total disconnected facets : %5d %5d\n",
|
||||
stl->stats.facets_w_1_bad_edge + stl->stats.facets_w_2_bad_edge +
|
||||
stl->stats.facets_w_3_bad_edge, stl->stats.number_of_facets -
|
||||
stl->stats.connected_facets_3_edge);
|
||||
|
||||
fprintf(file,
|
||||
"=== Processing Statistics === ===== Other Statistics =====\n");
|
||||
fprintf(file, "\
|
||||
Number of parts : %5d Volume : % f\n",
|
||||
stl->stats.number_of_parts, stl->stats.volume);
|
||||
fprintf(file, "\
|
||||
Degenerate facets : %5d\n", stl->stats.degenerate_facets);
|
||||
fprintf(file, "\
|
||||
Edges fixed : %5d\n", stl->stats.edges_fixed);
|
||||
fprintf(file, "\
|
||||
Facets removed : %5d\n", stl->stats.facets_removed);
|
||||
fprintf(file, "\
|
||||
Facets added : %5d\n", stl->stats.facets_added);
|
||||
fprintf(file, "\
|
||||
Facets reversed : %5d\n", stl->stats.facets_reversed);
|
||||
fprintf(file, "\
|
||||
Backwards edges : %5d\n", stl->stats.backwards_edges);
|
||||
fprintf(file, "\
|
||||
Normals fixed : %5d\n", stl->stats.normals_fixed);
|
||||
}
|
||||
|
||||
void
|
||||
stl_write_ascii(stl_file *stl, const char *file, const char *label) {
|
||||
int i;
|
||||
char *error_msg;
|
||||
|
||||
if (stl->error) return;
|
||||
|
||||
/* Open the file */
|
||||
FILE *fp = boost::nowide::fopen(file, "w");
|
||||
if(fp == NULL) {
|
||||
error_msg = (char*)
|
||||
malloc(81 + strlen(file)); /* Allow 80 chars+file size for message */
|
||||
sprintf(error_msg, "stl_write_ascii: Couldn't open %s for writing",
|
||||
file);
|
||||
perror(error_msg);
|
||||
free(error_msg);
|
||||
stl->error = 1;
|
||||
return;
|
||||
}
|
||||
|
||||
fprintf(fp, "solid %s\n", label);
|
||||
|
||||
for(i = 0; i < stl->stats.number_of_facets; i++) {
|
||||
fprintf(fp, " facet normal % .8E % .8E % .8E\n",
|
||||
stl->facet_start[i].normal(0), stl->facet_start[i].normal(1),
|
||||
stl->facet_start[i].normal(2));
|
||||
fprintf(fp, " outer loop\n");
|
||||
fprintf(fp, " vertex % .8E % .8E % .8E\n",
|
||||
stl->facet_start[i].vertex[0](0), stl->facet_start[i].vertex[0](1),
|
||||
stl->facet_start[i].vertex[0](2));
|
||||
fprintf(fp, " vertex % .8E % .8E % .8E\n",
|
||||
stl->facet_start[i].vertex[1](0), stl->facet_start[i].vertex[1](1),
|
||||
stl->facet_start[i].vertex[1](2));
|
||||
fprintf(fp, " vertex % .8E % .8E % .8E\n",
|
||||
stl->facet_start[i].vertex[2](0), stl->facet_start[i].vertex[2](1),
|
||||
stl->facet_start[i].vertex[2](2));
|
||||
fprintf(fp, " endloop\n");
|
||||
fprintf(fp, " endfacet\n");
|
||||
}
|
||||
|
||||
fprintf(fp, "endsolid %s\n", label);
|
||||
|
||||
fclose(fp);
|
||||
}
|
||||
|
||||
void
|
||||
stl_print_neighbors(stl_file *stl, char *file) {
|
||||
int i;
|
||||
FILE *fp;
|
||||
char *error_msg;
|
||||
|
||||
if (stl->error) return;
|
||||
|
||||
/* Open the file */
|
||||
fp = boost::nowide::fopen(file, "w");
|
||||
if(fp == NULL) {
|
||||
error_msg = (char*)
|
||||
malloc(81 + strlen(file)); /* Allow 80 chars+file size for message */
|
||||
sprintf(error_msg, "stl_print_neighbors: Couldn't open %s for writing",
|
||||
file);
|
||||
perror(error_msg);
|
||||
free(error_msg);
|
||||
stl->error = 1;
|
||||
return;
|
||||
}
|
||||
|
||||
for(i = 0; i < stl->stats.number_of_facets; i++) {
|
||||
fprintf(fp, "%d, %d,%d, %d,%d, %d,%d\n",
|
||||
i,
|
||||
stl->neighbors_start[i].neighbor[0],
|
||||
(int)stl->neighbors_start[i].which_vertex_not[0],
|
||||
stl->neighbors_start[i].neighbor[1],
|
||||
(int)stl->neighbors_start[i].which_vertex_not[1],
|
||||
stl->neighbors_start[i].neighbor[2],
|
||||
(int)stl->neighbors_start[i].which_vertex_not[2]);
|
||||
}
|
||||
fclose(fp);
|
||||
}
|
||||
|
||||
#ifndef BOOST_LITTLE_ENDIAN
|
||||
// Swap a buffer of 32bit data from little endian to big endian and vice versa.
|
||||
void stl_internal_reverse_quads(char *buf, size_t cnt)
|
||||
{
|
||||
for (size_t i = 0; i < cnt; i += 4) {
|
||||
std::swap(buf[i], buf[i+3]);
|
||||
std::swap(buf[i+1], buf[i+2]);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
void
|
||||
stl_write_binary(stl_file *stl, const char *file, const char *label) {
|
||||
FILE *fp;
|
||||
int i;
|
||||
char *error_msg;
|
||||
|
||||
if (stl->error) return;
|
||||
|
||||
/* Open the file */
|
||||
fp = boost::nowide::fopen(file, "wb");
|
||||
if(fp == NULL) {
|
||||
error_msg = (char*)
|
||||
malloc(81 + strlen(file)); /* Allow 80 chars+file size for message */
|
||||
sprintf(error_msg, "stl_write_binary: Couldn't open %s for writing",
|
||||
file);
|
||||
perror(error_msg);
|
||||
free(error_msg);
|
||||
stl->error = 1;
|
||||
return;
|
||||
}
|
||||
|
||||
fprintf(fp, "%s", label);
|
||||
for(i = strlen(label); i < LABEL_SIZE; i++) putc(0, fp);
|
||||
|
||||
fseek(fp, LABEL_SIZE, SEEK_SET);
|
||||
#ifdef BOOST_LITTLE_ENDIAN
|
||||
fwrite(&stl->stats.number_of_facets, 4, 1, fp);
|
||||
for (i = 0; i < stl->stats.number_of_facets; ++ i)
|
||||
fwrite(stl->facet_start + i, SIZEOF_STL_FACET, 1, fp);
|
||||
#else /* BOOST_LITTLE_ENDIAN */
|
||||
char buffer[50];
|
||||
// Convert the number of facets to little endian.
|
||||
memcpy(buffer, &stl->stats.number_of_facets, 4);
|
||||
stl_internal_reverse_quads(buffer, 4);
|
||||
fwrite(buffer, 4, 1, fp);
|
||||
for (i = 0; i < stl->stats.number_of_facets; ++ i) {
|
||||
memcpy(buffer, stl->facet_start + i, 50);
|
||||
// Convert to little endian.
|
||||
stl_internal_reverse_quads(buffer, 48);
|
||||
fwrite(buffer, SIZEOF_STL_FACET, 1, fp);
|
||||
}
|
||||
#endif /* BOOST_LITTLE_ENDIAN */
|
||||
fclose(fp);
|
||||
}
|
||||
|
||||
void
|
||||
stl_write_vertex(stl_file *stl, int facet, int vertex) {
|
||||
if (stl->error) return;
|
||||
printf(" vertex %d/%d % .8E % .8E % .8E\n", vertex, facet,
|
||||
stl->facet_start[facet].vertex[vertex](0),
|
||||
stl->facet_start[facet].vertex[vertex](1),
|
||||
stl->facet_start[facet].vertex[vertex](2));
|
||||
}
|
||||
|
||||
void
|
||||
stl_write_facet(stl_file *stl, char *label, int facet) {
|
||||
if (stl->error) return;
|
||||
printf("facet (%d)/ %s\n", facet, label);
|
||||
stl_write_vertex(stl, facet, 0);
|
||||
stl_write_vertex(stl, facet, 1);
|
||||
stl_write_vertex(stl, facet, 2);
|
||||
}
|
||||
|
||||
void
|
||||
stl_write_edge(stl_file *stl, char *label, stl_hash_edge edge) {
|
||||
if (stl->error) return;
|
||||
printf("edge (%d)/(%d) %s\n", edge.facet_number, edge.which_edge, label);
|
||||
if(edge.which_edge < 3) {
|
||||
stl_write_vertex(stl, edge.facet_number, edge.which_edge % 3);
|
||||
stl_write_vertex(stl, edge.facet_number, (edge.which_edge + 1) % 3);
|
||||
} else {
|
||||
stl_write_vertex(stl, edge.facet_number, (edge.which_edge + 1) % 3);
|
||||
stl_write_vertex(stl, edge.facet_number, edge.which_edge % 3);
|
||||
}
|
||||
}
|
||||
|
||||
void
|
||||
stl_write_neighbor(stl_file *stl, int facet) {
|
||||
if (stl->error) return;
|
||||
printf("Neighbors %d: %d, %d, %d ; %d, %d, %d\n", facet,
|
||||
stl->neighbors_start[facet].neighbor[0],
|
||||
stl->neighbors_start[facet].neighbor[1],
|
||||
stl->neighbors_start[facet].neighbor[2],
|
||||
stl->neighbors_start[facet].which_vertex_not[0],
|
||||
stl->neighbors_start[facet].which_vertex_not[1],
|
||||
stl->neighbors_start[facet].which_vertex_not[2]);
|
||||
}
|
||||
|
||||
void
|
||||
stl_write_quad_object(stl_file *stl, char *file) {
|
||||
FILE *fp;
|
||||
int i;
|
||||
int j;
|
||||
char *error_msg;
|
||||
stl_vertex connect_color = stl_vertex::Zero();
|
||||
stl_vertex uncon_1_color = stl_vertex::Zero();
|
||||
stl_vertex uncon_2_color = stl_vertex::Zero();
|
||||
stl_vertex uncon_3_color = stl_vertex::Zero();
|
||||
stl_vertex color;
|
||||
|
||||
if (stl->error) return;
|
||||
|
||||
/* Open the file */
|
||||
fp = boost::nowide::fopen(file, "w");
|
||||
if(fp == NULL) {
|
||||
error_msg = (char*)
|
||||
malloc(81 + strlen(file)); /* Allow 80 chars+file size for message */
|
||||
sprintf(error_msg, "stl_write_quad_object: Couldn't open %s for writing",
|
||||
file);
|
||||
perror(error_msg);
|
||||
free(error_msg);
|
||||
stl->error = 1;
|
||||
return;
|
||||
}
|
||||
|
||||
fprintf(fp, "CQUAD\n");
|
||||
for(i = 0; i < stl->stats.number_of_facets; i++) {
|
||||
j = ((stl->neighbors_start[i].neighbor[0] == -1) +
|
||||
(stl->neighbors_start[i].neighbor[1] == -1) +
|
||||
(stl->neighbors_start[i].neighbor[2] == -1));
|
||||
if(j == 0) {
|
||||
color = connect_color;
|
||||
} else if(j == 1) {
|
||||
color = uncon_1_color;
|
||||
} else if(j == 2) {
|
||||
color = uncon_2_color;
|
||||
} else {
|
||||
color = uncon_3_color;
|
||||
}
|
||||
fprintf(fp, "%f %f %f %1.1f %1.1f %1.1f 1\n",
|
||||
stl->facet_start[i].vertex[0](0),
|
||||
stl->facet_start[i].vertex[0](1),
|
||||
stl->facet_start[i].vertex[0](2), color(0), color(1), color(2));
|
||||
fprintf(fp, "%f %f %f %1.1f %1.1f %1.1f 1\n",
|
||||
stl->facet_start[i].vertex[1](0),
|
||||
stl->facet_start[i].vertex[1](1),
|
||||
stl->facet_start[i].vertex[1](2), color(0), color(1), color(2));
|
||||
fprintf(fp, "%f %f %f %1.1f %1.1f %1.1f 1\n",
|
||||
stl->facet_start[i].vertex[2](0),
|
||||
stl->facet_start[i].vertex[2](1),
|
||||
stl->facet_start[i].vertex[2](2), color(0), color(1), color(2));
|
||||
fprintf(fp, "%f %f %f %1.1f %1.1f %1.1f 1\n",
|
||||
stl->facet_start[i].vertex[2](0),
|
||||
stl->facet_start[i].vertex[2](1),
|
||||
stl->facet_start[i].vertex[2](2), color(0), color(1), color(2));
|
||||
}
|
||||
fclose(fp);
|
||||
}
|
||||
|
||||
void
|
||||
stl_write_dxf(stl_file *stl, char *file, char *label) {
|
||||
int i;
|
||||
FILE *fp;
|
||||
char *error_msg;
|
||||
|
||||
if (stl->error) return;
|
||||
|
||||
/* Open the file */
|
||||
fp = boost::nowide::fopen(file, "w");
|
||||
if(fp == NULL) {
|
||||
error_msg = (char*)
|
||||
malloc(81 + strlen(file)); /* Allow 80 chars+file size for message */
|
||||
sprintf(error_msg, "stl_write_ascii: Couldn't open %s for writing",
|
||||
file);
|
||||
perror(error_msg);
|
||||
free(error_msg);
|
||||
stl->error = 1;
|
||||
return;
|
||||
}
|
||||
|
||||
fprintf(fp, "999\n%s\n", label);
|
||||
fprintf(fp, "0\nSECTION\n2\nHEADER\n0\nENDSEC\n");
|
||||
fprintf(fp, "0\nSECTION\n2\nTABLES\n0\nTABLE\n2\nLAYER\n70\n1\n\
|
||||
0\nLAYER\n2\n0\n70\n0\n62\n7\n6\nCONTINUOUS\n0\nENDTAB\n0\nENDSEC\n");
|
||||
fprintf(fp, "0\nSECTION\n2\nBLOCKS\n0\nENDSEC\n");
|
||||
|
||||
fprintf(fp, "0\nSECTION\n2\nENTITIES\n");
|
||||
|
||||
for(i = 0; i < stl->stats.number_of_facets; i++) {
|
||||
fprintf(fp, "0\n3DFACE\n8\n0\n");
|
||||
fprintf(fp, "10\n%f\n20\n%f\n30\n%f\n",
|
||||
stl->facet_start[i].vertex[0](0), stl->facet_start[i].vertex[0](1),
|
||||
stl->facet_start[i].vertex[0](2));
|
||||
fprintf(fp, "11\n%f\n21\n%f\n31\n%f\n",
|
||||
stl->facet_start[i].vertex[1](0), stl->facet_start[i].vertex[1](1),
|
||||
stl->facet_start[i].vertex[1](2));
|
||||
fprintf(fp, "12\n%f\n22\n%f\n32\n%f\n",
|
||||
stl->facet_start[i].vertex[2](0), stl->facet_start[i].vertex[2](1),
|
||||
stl->facet_start[i].vertex[2](2));
|
||||
fprintf(fp, "13\n%f\n23\n%f\n33\n%f\n",
|
||||
stl->facet_start[i].vertex[2](0), stl->facet_start[i].vertex[2](1),
|
||||
stl->facet_start[i].vertex[2](2));
|
||||
}
|
||||
|
||||
fprintf(fp, "0\nENDSEC\n0\nEOF\n");
|
||||
|
||||
fclose(fp);
|
||||
}
|
||||
|
||||
void
|
||||
stl_clear_error(stl_file *stl) {
|
||||
stl->error = 0;
|
||||
}
|
||||
|
||||
void
|
||||
stl_exit_on_error(stl_file *stl) {
|
||||
if (!stl->error) return;
|
||||
stl->error = 0;
|
||||
stl_close(stl);
|
||||
exit(1);
|
||||
}
|
||||
|
||||
int
|
||||
stl_get_error(stl_file *stl) {
|
||||
return stl->error;
|
||||
}
|
382
src/admesh/stlinit.cpp
Normal file
382
src/admesh/stlinit.cpp
Normal file
|
@ -0,0 +1,382 @@
|
|||
/* ADMesh -- process triangulated solid meshes
|
||||
* Copyright (C) 1995, 1996 Anthony D. Martin <amartin@engr.csulb.edu>
|
||||
* Copyright (C) 2013, 2014 several contributors, see AUTHORS
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation; either version 2 of the License, or
|
||||
* (at your option) any later version.
|
||||
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
|
||||
* You should have received a copy of the GNU General Public License along
|
||||
* with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
*
|
||||
* Questions, comments, suggestions, etc to
|
||||
* https://github.com/admesh/admesh/issues
|
||||
*/
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include <math.h>
|
||||
#include <assert.h>
|
||||
|
||||
#include <boost/nowide/cstdio.hpp>
|
||||
#include <boost/detail/endian.hpp>
|
||||
|
||||
#include "stl.h"
|
||||
|
||||
#ifndef SEEK_SET
|
||||
#error "SEEK_SET not defined"
|
||||
#endif
|
||||
|
||||
void
|
||||
stl_open(stl_file *stl, const char *file) {
|
||||
stl_initialize(stl);
|
||||
stl_count_facets(stl, file);
|
||||
stl_allocate(stl);
|
||||
stl_read(stl, 0, true);
|
||||
if (!stl->error) fclose(stl->fp);
|
||||
}
|
||||
|
||||
|
||||
void
|
||||
stl_initialize(stl_file *stl) {
|
||||
memset(stl, 0, sizeof(stl_file));
|
||||
stl->stats.volume = -1.0;
|
||||
}
|
||||
|
||||
#ifndef BOOST_LITTLE_ENDIAN
|
||||
extern void stl_internal_reverse_quads(char *buf, size_t cnt);
|
||||
#endif /* BOOST_LITTLE_ENDIAN */
|
||||
|
||||
void
|
||||
stl_count_facets(stl_file *stl, const char *file) {
|
||||
long file_size;
|
||||
uint32_t header_num_facets;
|
||||
uint32_t num_facets;
|
||||
int i;
|
||||
size_t s;
|
||||
unsigned char chtest[128];
|
||||
int num_lines = 1;
|
||||
char *error_msg;
|
||||
|
||||
if (stl->error) return;
|
||||
|
||||
/* Open the file in binary mode first */
|
||||
stl->fp = boost::nowide::fopen(file, "rb");
|
||||
if(stl->fp == NULL) {
|
||||
error_msg = (char*)
|
||||
malloc(81 + strlen(file)); /* Allow 80 chars+file size for message */
|
||||
sprintf(error_msg, "stl_initialize: Couldn't open %s for reading",
|
||||
file);
|
||||
perror(error_msg);
|
||||
free(error_msg);
|
||||
stl->error = 1;
|
||||
return;
|
||||
}
|
||||
/* Find size of file */
|
||||
fseek(stl->fp, 0, SEEK_END);
|
||||
file_size = ftell(stl->fp);
|
||||
|
||||
/* Check for binary or ASCII file */
|
||||
fseek(stl->fp, HEADER_SIZE, SEEK_SET);
|
||||
if (!fread(chtest, sizeof(chtest), 1, stl->fp)) {
|
||||
perror("The input is an empty file");
|
||||
stl->error = 1;
|
||||
return;
|
||||
}
|
||||
stl->stats.type = ascii;
|
||||
for(s = 0; s < sizeof(chtest); s++) {
|
||||
if(chtest[s] > 127) {
|
||||
stl->stats.type = binary;
|
||||
break;
|
||||
}
|
||||
}
|
||||
rewind(stl->fp);
|
||||
|
||||
/* Get the header and the number of facets in the .STL file */
|
||||
/* If the .STL file is binary, then do the following */
|
||||
if(stl->stats.type == binary) {
|
||||
/* Test if the STL file has the right size */
|
||||
if(((file_size - HEADER_SIZE) % SIZEOF_STL_FACET != 0)
|
||||
|| (file_size < STL_MIN_FILE_SIZE)) {
|
||||
fprintf(stderr, "The file %s has the wrong size.\n", file);
|
||||
stl->error = 1;
|
||||
return;
|
||||
}
|
||||
num_facets = (file_size - HEADER_SIZE) / SIZEOF_STL_FACET;
|
||||
|
||||
/* Read the header */
|
||||
if (fread(stl->stats.header, LABEL_SIZE, 1, stl->fp) > 79) {
|
||||
stl->stats.header[80] = '\0';
|
||||
}
|
||||
|
||||
/* Read the int following the header. This should contain # of facets */
|
||||
bool header_num_faces_read = fread(&header_num_facets, sizeof(uint32_t), 1, stl->fp);
|
||||
#ifndef BOOST_LITTLE_ENDIAN
|
||||
// Convert from little endian to big endian.
|
||||
stl_internal_reverse_quads((char*)&header_num_facets, 4);
|
||||
#endif /* BOOST_LITTLE_ENDIAN */
|
||||
if (! header_num_faces_read || num_facets != header_num_facets) {
|
||||
fprintf(stderr,
|
||||
"Warning: File size doesn't match number of facets in the header\n");
|
||||
}
|
||||
}
|
||||
/* Otherwise, if the .STL file is ASCII, then do the following */
|
||||
else {
|
||||
/* Reopen the file in text mode (for getting correct newlines on Windows) */
|
||||
// fix to silence a warning about unused return value.
|
||||
// obviously if it fails we have problems....
|
||||
stl->fp = boost::nowide::freopen(file, "r", stl->fp);
|
||||
|
||||
// do another null check to be safe
|
||||
if(stl->fp == NULL) {
|
||||
error_msg = (char*)
|
||||
malloc(81 + strlen(file)); /* Allow 80 chars+file size for message */
|
||||
sprintf(error_msg, "stl_initialize: Couldn't open %s for reading",
|
||||
file);
|
||||
perror(error_msg);
|
||||
free(error_msg);
|
||||
stl->error = 1;
|
||||
return;
|
||||
}
|
||||
|
||||
/* Find the number of facets */
|
||||
char linebuf[100];
|
||||
while (fgets(linebuf, 100, stl->fp) != NULL) {
|
||||
/* don't count short lines */
|
||||
if (strlen(linebuf) <= 4) continue;
|
||||
|
||||
/* skip solid/endsolid lines as broken STL file generators may put several of them */
|
||||
if (strncmp(linebuf, "solid", 5) == 0 || strncmp(linebuf, "endsolid", 8) == 0) continue;
|
||||
|
||||
++num_lines;
|
||||
}
|
||||
|
||||
rewind(stl->fp);
|
||||
|
||||
/* Get the header */
|
||||
for(i = 0;
|
||||
(i < 80) && (stl->stats.header[i] = getc(stl->fp)) != '\n'; i++);
|
||||
stl->stats.header[i] = '\0'; /* Lose the '\n' */
|
||||
stl->stats.header[80] = '\0';
|
||||
|
||||
num_facets = num_lines / ASCII_LINES_PER_FACET;
|
||||
}
|
||||
stl->stats.number_of_facets += num_facets;
|
||||
stl->stats.original_num_facets = stl->stats.number_of_facets;
|
||||
}
|
||||
|
||||
void
|
||||
stl_allocate(stl_file *stl) {
|
||||
if (stl->error) return;
|
||||
|
||||
/* Allocate memory for the entire .STL file */
|
||||
stl->facet_start = (stl_facet*)calloc(stl->stats.number_of_facets,
|
||||
sizeof(stl_facet));
|
||||
if(stl->facet_start == NULL) perror("stl_initialize");
|
||||
stl->stats.facets_malloced = stl->stats.number_of_facets;
|
||||
|
||||
/* Allocate memory for the neighbors list */
|
||||
stl->neighbors_start = (stl_neighbors*)
|
||||
calloc(stl->stats.number_of_facets, sizeof(stl_neighbors));
|
||||
if(stl->facet_start == NULL) perror("stl_initialize");
|
||||
}
|
||||
|
||||
void
|
||||
stl_open_merge(stl_file *stl, char *file_to_merge) {
|
||||
int num_facets_so_far;
|
||||
stl_type origStlType;
|
||||
FILE *origFp;
|
||||
stl_file stl_to_merge;
|
||||
|
||||
if (stl->error) return;
|
||||
|
||||
/* Record how many facets we have so far from the first file. We will start putting
|
||||
facets in the next position. Since we're 0-indexed, it'l be the same position. */
|
||||
num_facets_so_far = stl->stats.number_of_facets;
|
||||
|
||||
/* Record the file type we started with: */
|
||||
origStlType=stl->stats.type;
|
||||
/* Record the file pointer too: */
|
||||
origFp=stl->fp;
|
||||
|
||||
/* Initialize the sturucture with zero stats, header info and sizes: */
|
||||
stl_initialize(&stl_to_merge);
|
||||
stl_count_facets(&stl_to_merge, file_to_merge);
|
||||
|
||||
/* Copy what we need to into stl so that we can read the file_to_merge directly into it
|
||||
using stl_read: Save the rest of the valuable info: */
|
||||
stl->stats.type=stl_to_merge.stats.type;
|
||||
stl->fp=stl_to_merge.fp;
|
||||
|
||||
/* Add the number of facets we already have in stl with what we we found in stl_to_merge but
|
||||
haven't read yet. */
|
||||
stl->stats.number_of_facets=num_facets_so_far+stl_to_merge.stats.number_of_facets;
|
||||
|
||||
/* Allocate enough room for stl->stats.number_of_facets facets and neighbors: */
|
||||
stl_reallocate(stl);
|
||||
|
||||
/* Read the file to merge directly into stl, adding it to what we have already.
|
||||
Start at num_facets_so_far, the index to the first unused facet. Also say
|
||||
that this isn't our first time so we should augment stats like min and max
|
||||
instead of erasing them. */
|
||||
stl_read(stl, num_facets_so_far, false);
|
||||
|
||||
/* Restore the stl information we overwrote (for stl_read) so that it still accurately
|
||||
reflects the subject part: */
|
||||
stl->stats.type=origStlType;
|
||||
stl->fp=origFp;
|
||||
}
|
||||
|
||||
extern void
|
||||
stl_reallocate(stl_file *stl) {
|
||||
if (stl->error) return;
|
||||
/* Reallocate more memory for the .STL file(s) */
|
||||
stl->facet_start = (stl_facet*)realloc(stl->facet_start, stl->stats.number_of_facets *
|
||||
sizeof(stl_facet));
|
||||
if(stl->facet_start == NULL) perror("stl_initialize");
|
||||
stl->stats.facets_malloced = stl->stats.number_of_facets;
|
||||
|
||||
/* Reallocate more memory for the neighbors list */
|
||||
stl->neighbors_start = (stl_neighbors*)
|
||||
realloc(stl->neighbors_start, stl->stats.number_of_facets *
|
||||
sizeof(stl_neighbors));
|
||||
if(stl->facet_start == NULL) perror("stl_initialize");
|
||||
}
|
||||
|
||||
|
||||
/* Reads the contents of the file pointed to by stl->fp into the stl structure,
|
||||
starting at facet first_facet. The second argument says if it's our first
|
||||
time running this for the stl and therefore we should reset our max and min stats. */
|
||||
void stl_read(stl_file *stl, int first_facet, bool first) {
|
||||
stl_facet facet;
|
||||
int i;
|
||||
|
||||
if (stl->error) return;
|
||||
|
||||
if(stl->stats.type == binary) {
|
||||
fseek(stl->fp, HEADER_SIZE, SEEK_SET);
|
||||
} else {
|
||||
rewind(stl->fp);
|
||||
}
|
||||
|
||||
char normal_buf[3][32];
|
||||
for(i = first_facet; i < stl->stats.number_of_facets; i++) {
|
||||
if(stl->stats.type == binary)
|
||||
/* Read a single facet from a binary .STL file */
|
||||
{
|
||||
/* we assume little-endian architecture! */
|
||||
if (fread(&facet, 1, SIZEOF_STL_FACET, stl->fp) != SIZEOF_STL_FACET) {
|
||||
stl->error = 1;
|
||||
return;
|
||||
}
|
||||
#ifndef BOOST_LITTLE_ENDIAN
|
||||
// Convert the loaded little endian data to big endian.
|
||||
stl_internal_reverse_quads((char*)&facet, 48);
|
||||
#endif /* BOOST_LITTLE_ENDIAN */
|
||||
} else
|
||||
/* Read a single facet from an ASCII .STL file */
|
||||
{
|
||||
// skip solid/endsolid
|
||||
// (in this order, otherwise it won't work when they are paired in the middle of a file)
|
||||
fscanf(stl->fp, "endsolid%*[^\n]\n");
|
||||
fscanf(stl->fp, "solid%*[^\n]\n"); // name might contain spaces so %*s doesn't work and it also can be empty (just "solid")
|
||||
// Leading space in the fscanf format skips all leading white spaces including numerous new lines and tabs.
|
||||
int res_normal = fscanf(stl->fp, " facet normal %31s %31s %31s", normal_buf[0], normal_buf[1], normal_buf[2]);
|
||||
assert(res_normal == 3);
|
||||
int res_outer_loop = fscanf(stl->fp, " outer loop");
|
||||
assert(res_outer_loop == 0);
|
||||
int res_vertex1 = fscanf(stl->fp, " vertex %f %f %f", &facet.vertex[0](0), &facet.vertex[0](1), &facet.vertex[0](2));
|
||||
assert(res_vertex1 == 3);
|
||||
int res_vertex2 = fscanf(stl->fp, " vertex %f %f %f", &facet.vertex[1](0), &facet.vertex[1](1), &facet.vertex[1](2));
|
||||
assert(res_vertex2 == 3);
|
||||
int res_vertex3 = fscanf(stl->fp, " vertex %f %f %f", &facet.vertex[2](0), &facet.vertex[2](1), &facet.vertex[2](2));
|
||||
assert(res_vertex3 == 3);
|
||||
int res_endloop = fscanf(stl->fp, " endloop");
|
||||
assert(res_endloop == 0);
|
||||
// There is a leading and trailing white space around endfacet to eat up all leading and trailing white spaces including numerous tabs and new lines.
|
||||
int res_endfacet = fscanf(stl->fp, " endfacet ");
|
||||
if (res_normal != 3 || res_outer_loop != 0 || res_vertex1 != 3 || res_vertex2 != 3 || res_vertex3 != 3 || res_endloop != 0 || res_endfacet != 0) {
|
||||
perror("Something is syntactically very wrong with this ASCII STL!");
|
||||
stl->error = 1;
|
||||
return;
|
||||
}
|
||||
|
||||
// The facet normal has been parsed as a single string as to workaround for not a numbers in the normal definition.
|
||||
if (sscanf(normal_buf[0], "%f", &facet.normal(0)) != 1 ||
|
||||
sscanf(normal_buf[1], "%f", &facet.normal(1)) != 1 ||
|
||||
sscanf(normal_buf[2], "%f", &facet.normal(2)) != 1) {
|
||||
// Normal was mangled. Maybe denormals or "not a number" were stored?
|
||||
// Just reset the normal and silently ignore it.
|
||||
memset(&facet.normal, 0, sizeof(facet.normal));
|
||||
}
|
||||
}
|
||||
|
||||
#if 0
|
||||
// Report close to zero vertex coordinates. Due to the nature of the floating point numbers,
|
||||
// close to zero values may be represented with singificantly higher precision than the rest of the vertices.
|
||||
// It may be worth to round these numbers to zero during loading to reduce the number of errors reported
|
||||
// during the STL import.
|
||||
for (size_t j = 0; j < 3; ++ j) {
|
||||
if (facet.vertex[j](0) > -1e-12f && facet.vertex[j](0) < 1e-12f)
|
||||
printf("stl_read: facet %d(0) = %e\r\n", j, facet.vertex[j](0));
|
||||
if (facet.vertex[j](1) > -1e-12f && facet.vertex[j](1) < 1e-12f)
|
||||
printf("stl_read: facet %d(1) = %e\r\n", j, facet.vertex[j](1));
|
||||
if (facet.vertex[j](2) > -1e-12f && facet.vertex[j](2) < 1e-12f)
|
||||
printf("stl_read: facet %d(2) = %e\r\n", j, facet.vertex[j](2));
|
||||
}
|
||||
#endif
|
||||
|
||||
/* Write the facet into memory. */
|
||||
stl->facet_start[i] = facet;
|
||||
stl_facet_stats(stl, facet, first);
|
||||
}
|
||||
stl->stats.size = stl->stats.max - stl->stats.min;
|
||||
stl->stats.bounding_diameter = stl->stats.size.norm();
|
||||
}
|
||||
|
||||
void stl_facet_stats(stl_file *stl, stl_facet facet, bool &first)
|
||||
{
|
||||
if (stl->error)
|
||||
return;
|
||||
|
||||
// While we are going through all of the facets, let's find the
|
||||
// maximum and minimum values for x, y, and z
|
||||
|
||||
if (first) {
|
||||
// Initialize the max and min values the first time through
|
||||
stl->stats.min = facet.vertex[0];
|
||||
stl->stats.max = facet.vertex[0];
|
||||
stl_vertex diff = (facet.vertex[1] - facet.vertex[0]).cwiseAbs();
|
||||
stl->stats.shortest_edge = std::max(diff(0), std::max(diff(1), diff(2)));
|
||||
first = false;
|
||||
}
|
||||
|
||||
// Now find the max and min values.
|
||||
for (size_t i = 0; i < 3; ++ i) {
|
||||
stl->stats.min = stl->stats.min.cwiseMin(facet.vertex[i]);
|
||||
stl->stats.max = stl->stats.max.cwiseMax(facet.vertex[i]);
|
||||
}
|
||||
}
|
||||
|
||||
void
|
||||
stl_close(stl_file *stl) {
|
||||
if (stl->error) return;
|
||||
|
||||
if(stl->neighbors_start != NULL)
|
||||
free(stl->neighbors_start);
|
||||
if(stl->facet_start != NULL)
|
||||
free(stl->facet_start);
|
||||
if(stl->v_indices != NULL)
|
||||
free(stl->v_indices);
|
||||
if(stl->v_shared != NULL)
|
||||
free(stl->v_shared);
|
||||
}
|
||||
|
518
src/admesh/util.cpp
Normal file
518
src/admesh/util.cpp
Normal file
|
@ -0,0 +1,518 @@
|
|||
/* ADMesh -- process triangulated solid meshes
|
||||
* Copyright (C) 1995, 1996 Anthony D. Martin <amartin@engr.csulb.edu>
|
||||
* Copyright (C) 2013, 2014 several contributors, see AUTHORS
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation; either version 2 of the License, or
|
||||
* (at your option) any later version.
|
||||
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
|
||||
* You should have received a copy of the GNU General Public License along
|
||||
* with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
*
|
||||
* Questions, comments, suggestions, etc to
|
||||
* https://github.com/admesh/admesh/issues
|
||||
*/
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include <math.h>
|
||||
|
||||
#include "stl.h"
|
||||
|
||||
static void stl_rotate(float *x, float *y, const double c, const double s);
|
||||
static float get_area(stl_facet *facet);
|
||||
static float get_volume(stl_file *stl);
|
||||
|
||||
|
||||
void
|
||||
stl_verify_neighbors(stl_file *stl) {
|
||||
int i;
|
||||
int j;
|
||||
stl_edge edge_a;
|
||||
stl_edge edge_b;
|
||||
int neighbor;
|
||||
int vnot;
|
||||
|
||||
if (stl->error) return;
|
||||
|
||||
stl->stats.backwards_edges = 0;
|
||||
|
||||
for(i = 0; i < stl->stats.number_of_facets; i++) {
|
||||
for(j = 0; j < 3; j++) {
|
||||
edge_a.p1 = stl->facet_start[i].vertex[j];
|
||||
edge_a.p2 = stl->facet_start[i].vertex[(j + 1) % 3];
|
||||
neighbor = stl->neighbors_start[i].neighbor[j];
|
||||
vnot = stl->neighbors_start[i].which_vertex_not[j];
|
||||
|
||||
if(neighbor == -1)
|
||||
continue; /* this edge has no neighbor... Continue. */
|
||||
if(vnot < 3) {
|
||||
edge_b.p1 = stl->facet_start[neighbor].vertex[(vnot + 2) % 3];
|
||||
edge_b.p2 = stl->facet_start[neighbor].vertex[(vnot + 1) % 3];
|
||||
} else {
|
||||
stl->stats.backwards_edges += 1;
|
||||
edge_b.p1 = stl->facet_start[neighbor].vertex[(vnot + 1) % 3];
|
||||
edge_b.p2 = stl->facet_start[neighbor].vertex[(vnot + 2) % 3];
|
||||
}
|
||||
if (edge_a.p1 != edge_b.p1 || edge_a.p2 != edge_b.p2) {
|
||||
/* These edges should match but they don't. Print results. */
|
||||
printf("edge %d of facet %d doesn't match edge %d of facet %d\n",
|
||||
j, i, vnot + 1, neighbor);
|
||||
stl_write_facet(stl, (char*)"first facet", i);
|
||||
stl_write_facet(stl, (char*)"second facet", neighbor);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void stl_translate(stl_file *stl, float x, float y, float z)
|
||||
{
|
||||
if (stl->error)
|
||||
return;
|
||||
|
||||
stl_vertex new_min(x, y, z);
|
||||
stl_vertex shift = new_min - stl->stats.min;
|
||||
for (int i = 0; i < stl->stats.number_of_facets; ++ i)
|
||||
for (int j = 0; j < 3; ++ j)
|
||||
stl->facet_start[i].vertex[j] += shift;
|
||||
stl->stats.min = new_min;
|
||||
stl->stats.max += shift;
|
||||
stl_invalidate_shared_vertices(stl);
|
||||
}
|
||||
|
||||
/* Translates the stl by x,y,z, relatively from wherever it is currently */
|
||||
void stl_translate_relative(stl_file *stl, float x, float y, float z)
|
||||
{
|
||||
if (stl->error)
|
||||
return;
|
||||
|
||||
stl_vertex shift(x, y, z);
|
||||
for (int i = 0; i < stl->stats.number_of_facets; ++ i)
|
||||
for (int j = 0; j < 3; ++ j)
|
||||
stl->facet_start[i].vertex[j] += shift;
|
||||
stl->stats.min += shift;
|
||||
stl->stats.max += shift;
|
||||
stl_invalidate_shared_vertices(stl);
|
||||
}
|
||||
|
||||
void stl_scale_versor(stl_file *stl, const stl_vertex &versor)
|
||||
{
|
||||
if (stl->error)
|
||||
return;
|
||||
|
||||
// Scale extents.
|
||||
auto s = versor.array();
|
||||
stl->stats.min.array() *= s;
|
||||
stl->stats.max.array() *= s;
|
||||
// Scale size.
|
||||
stl->stats.size.array() *= s;
|
||||
// Scale volume.
|
||||
if (stl->stats.volume > 0.0)
|
||||
stl->stats.volume *= versor(0) * versor(1) * versor(2);
|
||||
// Scale the mesh.
|
||||
for (int i = 0; i < stl->stats.number_of_facets; ++ i)
|
||||
for (int j = 0; j < 3; ++ j)
|
||||
stl->facet_start[i].vertex[j].array() *= s;
|
||||
stl_invalidate_shared_vertices(stl);
|
||||
}
|
||||
|
||||
static void calculate_normals(stl_file *stl)
|
||||
{
|
||||
if (stl->error)
|
||||
return;
|
||||
|
||||
stl_normal normal;
|
||||
for(uint32_t i = 0; i < stl->stats.number_of_facets; i++) {
|
||||
stl_calculate_normal(normal, &stl->facet_start[i]);
|
||||
stl_normalize_vector(normal);
|
||||
stl->facet_start[i].normal = normal;
|
||||
}
|
||||
}
|
||||
|
||||
void stl_transform(stl_file *stl, float *trafo3x4) {
|
||||
int i_face, i_vertex;
|
||||
if (stl->error)
|
||||
return;
|
||||
for (i_face = 0; i_face < stl->stats.number_of_facets; ++ i_face) {
|
||||
stl_vertex *vertices = stl->facet_start[i_face].vertex;
|
||||
for (i_vertex = 0; i_vertex < 3; ++ i_vertex) {
|
||||
stl_vertex &v_dst = vertices[i_vertex];
|
||||
stl_vertex v_src = v_dst;
|
||||
v_dst(0) = trafo3x4[0] * v_src(0) + trafo3x4[1] * v_src(1) + trafo3x4[2] * v_src(2) + trafo3x4[3];
|
||||
v_dst(1) = trafo3x4[4] * v_src(0) + trafo3x4[5] * v_src(1) + trafo3x4[6] * v_src(2) + trafo3x4[7];
|
||||
v_dst(2) = trafo3x4[8] * v_src(0) + trafo3x4[9] * v_src(1) + trafo3x4[10] * v_src(2) + trafo3x4[11];
|
||||
}
|
||||
}
|
||||
stl_get_size(stl);
|
||||
calculate_normals(stl);
|
||||
}
|
||||
|
||||
void stl_transform(stl_file *stl, const Eigen::Transform<float, 3, Eigen::Affine, Eigen::DontAlign>& t)
|
||||
{
|
||||
if (stl->error)
|
||||
return;
|
||||
|
||||
unsigned int vertices_count = 3 * (unsigned int)stl->stats.number_of_facets;
|
||||
if (vertices_count == 0)
|
||||
return;
|
||||
|
||||
Eigen::MatrixXf src_vertices(3, vertices_count);
|
||||
stl_facet* facet_ptr = stl->facet_start;
|
||||
unsigned int v_id = 0;
|
||||
while (facet_ptr < stl->facet_start + stl->stats.number_of_facets)
|
||||
{
|
||||
for (int i = 0; i < 3; ++i)
|
||||
{
|
||||
::memcpy((void*)src_vertices.col(v_id).data(), (const void*)&facet_ptr->vertex[i], 3 * sizeof(float));
|
||||
++v_id;
|
||||
}
|
||||
facet_ptr += 1;
|
||||
}
|
||||
|
||||
Eigen::MatrixXf dst_vertices(3, vertices_count);
|
||||
dst_vertices = t * src_vertices.colwise().homogeneous();
|
||||
|
||||
facet_ptr = stl->facet_start;
|
||||
v_id = 0;
|
||||
while (facet_ptr < stl->facet_start + stl->stats.number_of_facets)
|
||||
{
|
||||
for (int i = 0; i < 3; ++i)
|
||||
{
|
||||
::memcpy((void*)&facet_ptr->vertex[i], (const void*)dst_vertices.col(v_id).data(), 3 * sizeof(float));
|
||||
++v_id;
|
||||
}
|
||||
facet_ptr += 1;
|
||||
}
|
||||
|
||||
stl_get_size(stl);
|
||||
calculate_normals(stl);
|
||||
}
|
||||
|
||||
void
|
||||
stl_rotate_x(stl_file *stl, float angle) {
|
||||
int i;
|
||||
int j;
|
||||
double radian_angle = (angle / 180.0) * M_PI;
|
||||
double c = cos(radian_angle);
|
||||
double s = sin(radian_angle);
|
||||
|
||||
if (stl->error) return;
|
||||
|
||||
for(i = 0; i < stl->stats.number_of_facets; i++) {
|
||||
for(j = 0; j < 3; j++) {
|
||||
stl_rotate(&stl->facet_start[i].vertex[j](1),
|
||||
&stl->facet_start[i].vertex[j](2), c, s);
|
||||
}
|
||||
}
|
||||
stl_get_size(stl);
|
||||
calculate_normals(stl);
|
||||
}
|
||||
|
||||
void
|
||||
stl_rotate_y(stl_file *stl, float angle) {
|
||||
int i;
|
||||
int j;
|
||||
double radian_angle = (angle / 180.0) * M_PI;
|
||||
double c = cos(radian_angle);
|
||||
double s = sin(radian_angle);
|
||||
|
||||
if (stl->error) return;
|
||||
|
||||
for(i = 0; i < stl->stats.number_of_facets; i++) {
|
||||
for(j = 0; j < 3; j++) {
|
||||
stl_rotate(&stl->facet_start[i].vertex[j](2),
|
||||
&stl->facet_start[i].vertex[j](0), c, s);
|
||||
}
|
||||
}
|
||||
stl_get_size(stl);
|
||||
calculate_normals(stl);
|
||||
}
|
||||
|
||||
void
|
||||
stl_rotate_z(stl_file *stl, float angle) {
|
||||
int i;
|
||||
int j;
|
||||
double radian_angle = (angle / 180.0) * M_PI;
|
||||
double c = cos(radian_angle);
|
||||
double s = sin(radian_angle);
|
||||
|
||||
if (stl->error) return;
|
||||
|
||||
for(i = 0; i < stl->stats.number_of_facets; i++) {
|
||||
for(j = 0; j < 3; j++) {
|
||||
stl_rotate(&stl->facet_start[i].vertex[j](0),
|
||||
&stl->facet_start[i].vertex[j](1), c, s);
|
||||
}
|
||||
}
|
||||
stl_get_size(stl);
|
||||
calculate_normals(stl);
|
||||
}
|
||||
|
||||
|
||||
|
||||
static void
|
||||
stl_rotate(float *x, float *y, const double c, const double s) {
|
||||
double xold = *x;
|
||||
double yold = *y;
|
||||
*x = float(c * xold - s * yold);
|
||||
*y = float(s * xold + c * yold);
|
||||
}
|
||||
|
||||
void stl_get_size(stl_file *stl)
|
||||
{
|
||||
if (stl->error || stl->stats.number_of_facets == 0)
|
||||
return;
|
||||
stl->stats.min = stl->facet_start[0].vertex[0];
|
||||
stl->stats.max = stl->stats.min;
|
||||
for (int i = 0; i < stl->stats.number_of_facets; ++ i) {
|
||||
const stl_facet &face = stl->facet_start[i];
|
||||
for (int j = 0; j < 3; ++ j) {
|
||||
stl->stats.min = stl->stats.min.cwiseMin(face.vertex[j]);
|
||||
stl->stats.max = stl->stats.max.cwiseMax(face.vertex[j]);
|
||||
}
|
||||
}
|
||||
stl->stats.size = stl->stats.max - stl->stats.min;
|
||||
stl->stats.bounding_diameter = stl->stats.size.norm();
|
||||
}
|
||||
|
||||
void stl_mirror_xy(stl_file *stl)
|
||||
{
|
||||
if (stl->error)
|
||||
return;
|
||||
|
||||
for(int i = 0; i < stl->stats.number_of_facets; i++) {
|
||||
for(int j = 0; j < 3; j++) {
|
||||
stl->facet_start[i].vertex[j](2) *= -1.0;
|
||||
}
|
||||
}
|
||||
float temp_size = stl->stats.min(2);
|
||||
stl->stats.min(2) = stl->stats.max(2);
|
||||
stl->stats.max(2) = temp_size;
|
||||
stl->stats.min(2) *= -1.0;
|
||||
stl->stats.max(2) *= -1.0;
|
||||
stl_reverse_all_facets(stl);
|
||||
stl->stats.facets_reversed -= stl->stats.number_of_facets; /* for not altering stats */
|
||||
}
|
||||
|
||||
void stl_mirror_yz(stl_file *stl)
|
||||
{
|
||||
if (stl->error) return;
|
||||
|
||||
for (int i = 0; i < stl->stats.number_of_facets; i++) {
|
||||
for (int j = 0; j < 3; j++) {
|
||||
stl->facet_start[i].vertex[j](0) *= -1.0;
|
||||
}
|
||||
}
|
||||
float temp_size = stl->stats.min(0);
|
||||
stl->stats.min(0) = stl->stats.max(0);
|
||||
stl->stats.max(0) = temp_size;
|
||||
stl->stats.min(0) *= -1.0;
|
||||
stl->stats.max(0) *= -1.0;
|
||||
stl_reverse_all_facets(stl);
|
||||
stl->stats.facets_reversed -= stl->stats.number_of_facets; /* for not altering stats */
|
||||
}
|
||||
|
||||
void stl_mirror_xz(stl_file *stl)
|
||||
{
|
||||
if (stl->error)
|
||||
return;
|
||||
|
||||
for (int i = 0; i < stl->stats.number_of_facets; i++) {
|
||||
for (int j = 0; j < 3; j++) {
|
||||
stl->facet_start[i].vertex[j](1) *= -1.0;
|
||||
}
|
||||
}
|
||||
float temp_size = stl->stats.min(1);
|
||||
stl->stats.min(1) = stl->stats.max(1);
|
||||
stl->stats.max(1) = temp_size;
|
||||
stl->stats.min(1) *= -1.0;
|
||||
stl->stats.max(1) *= -1.0;
|
||||
stl_reverse_all_facets(stl);
|
||||
stl->stats.facets_reversed -= stl->stats.number_of_facets; /* for not altering stats */
|
||||
}
|
||||
|
||||
static float get_volume(stl_file *stl)
|
||||
{
|
||||
if (stl->error)
|
||||
return 0;
|
||||
|
||||
// Choose a point, any point as the reference.
|
||||
stl_vertex p0 = stl->facet_start[0].vertex[0];
|
||||
float volume = 0.f;
|
||||
for(uint32_t i = 0; i < stl->stats.number_of_facets; ++ i) {
|
||||
// Do dot product to get distance from point to plane.
|
||||
float height = stl->facet_start[i].normal.dot(stl->facet_start[i].vertex[0] - p0);
|
||||
float area = get_area(&stl->facet_start[i]);
|
||||
volume += (area * height) / 3.0f;
|
||||
}
|
||||
return volume;
|
||||
}
|
||||
|
||||
void stl_calculate_volume(stl_file *stl)
|
||||
{
|
||||
if (stl->error) return;
|
||||
stl->stats.volume = get_volume(stl);
|
||||
if(stl->stats.volume < 0.0) {
|
||||
stl_reverse_all_facets(stl);
|
||||
stl->stats.volume = -stl->stats.volume;
|
||||
}
|
||||
}
|
||||
|
||||
static float get_area(stl_facet *facet)
|
||||
{
|
||||
/* cast to double before calculating cross product because large coordinates
|
||||
can result in overflowing product
|
||||
(bad area is responsible for bad volume and bad facets reversal) */
|
||||
double cross[3][3];
|
||||
for (int i = 0; i < 3; i++) {
|
||||
cross[i][0]=(((double)facet->vertex[i](1) * (double)facet->vertex[(i + 1) % 3](2)) -
|
||||
((double)facet->vertex[i](2) * (double)facet->vertex[(i + 1) % 3](1)));
|
||||
cross[i][1]=(((double)facet->vertex[i](2) * (double)facet->vertex[(i + 1) % 3](0)) -
|
||||
((double)facet->vertex[i](0) * (double)facet->vertex[(i + 1) % 3](2)));
|
||||
cross[i][2]=(((double)facet->vertex[i](0) * (double)facet->vertex[(i + 1) % 3](1)) -
|
||||
((double)facet->vertex[i](1) * (double)facet->vertex[(i + 1) % 3](0)));
|
||||
}
|
||||
|
||||
stl_normal sum;
|
||||
sum(0) = cross[0][0] + cross[1][0] + cross[2][0];
|
||||
sum(1) = cross[0][1] + cross[1][1] + cross[2][1];
|
||||
sum(2) = cross[0][2] + cross[1][2] + cross[2][2];
|
||||
|
||||
// This should already be done. But just in case, let's do it again.
|
||||
//FIXME this is questionable. the "sum" normal should be accurate, while the normal "n" may be calculated with a low accuracy.
|
||||
stl_normal n;
|
||||
stl_calculate_normal(n, facet);
|
||||
stl_normalize_vector(n);
|
||||
return 0.5f * n.dot(sum);
|
||||
}
|
||||
|
||||
void stl_repair(stl_file *stl,
|
||||
int fixall_flag,
|
||||
int exact_flag,
|
||||
int tolerance_flag,
|
||||
float tolerance,
|
||||
int increment_flag,
|
||||
float increment,
|
||||
int nearby_flag,
|
||||
int iterations,
|
||||
int remove_unconnected_flag,
|
||||
int fill_holes_flag,
|
||||
int normal_directions_flag,
|
||||
int normal_values_flag,
|
||||
int reverse_all_flag,
|
||||
int verbose_flag) {
|
||||
|
||||
int i;
|
||||
int last_edges_fixed = 0;
|
||||
|
||||
if (stl->error) return;
|
||||
|
||||
if(exact_flag || fixall_flag || nearby_flag || remove_unconnected_flag
|
||||
|| fill_holes_flag || normal_directions_flag) {
|
||||
if (verbose_flag)
|
||||
printf("Checking exact...\n");
|
||||
exact_flag = 1;
|
||||
stl_check_facets_exact(stl);
|
||||
stl->stats.facets_w_1_bad_edge =
|
||||
(stl->stats.connected_facets_2_edge -
|
||||
stl->stats.connected_facets_3_edge);
|
||||
stl->stats.facets_w_2_bad_edge =
|
||||
(stl->stats.connected_facets_1_edge -
|
||||
stl->stats.connected_facets_2_edge);
|
||||
stl->stats.facets_w_3_bad_edge =
|
||||
(stl->stats.number_of_facets -
|
||||
stl->stats.connected_facets_1_edge);
|
||||
}
|
||||
|
||||
if(nearby_flag || fixall_flag) {
|
||||
if(!tolerance_flag) {
|
||||
tolerance = stl->stats.shortest_edge;
|
||||
}
|
||||
if(!increment_flag) {
|
||||
increment = stl->stats.bounding_diameter / 10000.0;
|
||||
}
|
||||
|
||||
if(stl->stats.connected_facets_3_edge < stl->stats.number_of_facets) {
|
||||
for(i = 0; i < iterations; i++) {
|
||||
if(stl->stats.connected_facets_3_edge <
|
||||
stl->stats.number_of_facets) {
|
||||
if (verbose_flag)
|
||||
printf("\
|
||||
Checking nearby. Tolerance= %f Iteration=%d of %d...",
|
||||
tolerance, i + 1, iterations);
|
||||
stl_check_facets_nearby(stl, tolerance);
|
||||
if (verbose_flag)
|
||||
printf(" Fixed %d edges.\n",
|
||||
stl->stats.edges_fixed - last_edges_fixed);
|
||||
last_edges_fixed = stl->stats.edges_fixed;
|
||||
tolerance += increment;
|
||||
} else {
|
||||
if (verbose_flag)
|
||||
printf("\
|
||||
All facets connected. No further nearby check necessary.\n");
|
||||
break;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
if (verbose_flag)
|
||||
printf("All facets connected. No nearby check necessary.\n");
|
||||
}
|
||||
}
|
||||
|
||||
if(remove_unconnected_flag || fixall_flag || fill_holes_flag) {
|
||||
if(stl->stats.connected_facets_3_edge < stl->stats.number_of_facets) {
|
||||
if (verbose_flag)
|
||||
printf("Removing unconnected facets...\n");
|
||||
stl_remove_unconnected_facets(stl);
|
||||
} else
|
||||
if (verbose_flag)
|
||||
printf("No unconnected need to be removed.\n");
|
||||
}
|
||||
|
||||
if(fill_holes_flag || fixall_flag) {
|
||||
if(stl->stats.connected_facets_3_edge < stl->stats.number_of_facets) {
|
||||
if (verbose_flag)
|
||||
printf("Filling holes...\n");
|
||||
stl_fill_holes(stl);
|
||||
} else
|
||||
if (verbose_flag)
|
||||
printf("No holes need to be filled.\n");
|
||||
}
|
||||
|
||||
if(reverse_all_flag) {
|
||||
if (verbose_flag)
|
||||
printf("Reversing all facets...\n");
|
||||
stl_reverse_all_facets(stl);
|
||||
}
|
||||
|
||||
if(normal_directions_flag || fixall_flag) {
|
||||
if (verbose_flag)
|
||||
printf("Checking normal directions...\n");
|
||||
stl_fix_normal_directions(stl);
|
||||
}
|
||||
|
||||
if(normal_values_flag || fixall_flag) {
|
||||
if (verbose_flag)
|
||||
printf("Checking normal values...\n");
|
||||
stl_fix_normal_values(stl);
|
||||
}
|
||||
|
||||
/* Always calculate the volume. It shouldn't take too long */
|
||||
if (verbose_flag)
|
||||
printf("Calculating volume...\n");
|
||||
stl_calculate_volume(stl);
|
||||
|
||||
if(exact_flag) {
|
||||
if (verbose_flag)
|
||||
printf("Verifying neighbors...\n");
|
||||
stl_verify_neighbors(stl);
|
||||
}
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue