WIP: Moved sources int src/, separated most of the source code from Perl.

The XS was left only for the unit / integration tests, and it links
libslic3r only. No wxWidgets are allowed to be used from Perl starting
from now.
This commit is contained in:
bubnikv 2018-09-19 11:02:24 +02:00
parent 3ddaccb641
commit 0558b53493
1706 changed files with 7413 additions and 7638 deletions

12
src/admesh/CMakeLists.txt Normal file
View file

@ -0,0 +1,12 @@
project(admesh)
cmake_minimum_required(VERSION 2.6)
add_library(admesh STATIC
connect.cpp
normals.cpp
shared.cpp
stl.h
stl_io.cpp
stlinit.cpp
util.cpp
)

911
src/admesh/connect.cpp Normal file
View file

@ -0,0 +1,911 @@
/* ADMesh -- process triangulated solid meshes
* Copyright (C) 1995, 1996 Anthony D. Martin <amartin@engr.csulb.edu>
* Copyright (C) 2013, 2014 several contributors, see AUTHORS
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Questions, comments, suggestions, etc to
* https://github.com/admesh/admesh/issues
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <boost/detail/endian.hpp>
#include "stl.h"
static void stl_match_neighbors_nearby(stl_file *stl,
stl_hash_edge *edge_a, stl_hash_edge *edge_b);
static void stl_record_neighbors(stl_file *stl,
stl_hash_edge *edge_a, stl_hash_edge *edge_b);
static void stl_initialize_facet_check_exact(stl_file *stl);
static void stl_initialize_facet_check_nearby(stl_file *stl);
static void stl_load_edge_exact(stl_file *stl, stl_hash_edge *edge,
stl_vertex *a, stl_vertex *b);
static int stl_load_edge_nearby(stl_file *stl, stl_hash_edge *edge,
stl_vertex *a, stl_vertex *b, float tolerance);
static void insert_hash_edge(stl_file *stl, stl_hash_edge edge,
void (*match_neighbors)(stl_file *stl,
stl_hash_edge *edge_a, stl_hash_edge *edge_b));
static int stl_compare_function(stl_hash_edge *edge_a, stl_hash_edge *edge_b);
static void stl_free_edges(stl_file *stl);
static void stl_remove_facet(stl_file *stl, int facet_number);
static void stl_change_vertices(stl_file *stl, int facet_num, int vnot,
stl_vertex new_vertex);
static void stl_which_vertices_to_change(stl_file *stl, stl_hash_edge *edge_a,
stl_hash_edge *edge_b, int *facet1, int *vertex1,
int *facet2, int *vertex2,
stl_vertex *new_vertex1, stl_vertex *new_vertex2);
static void stl_remove_degenerate(stl_file *stl, int facet);
extern int stl_check_normal_vector(stl_file *stl,
int facet_num, int normal_fix_flag);
static void stl_update_connects_remove_1(stl_file *stl, int facet_num);
void
stl_check_facets_exact(stl_file *stl) {
/* This function builds the neighbors list. No modifications are made
* to any of the facets. The edges are said to match only if all six
* floats of the first edge matches all six floats of the second edge.
*/
stl_hash_edge edge;
stl_facet facet;
int i;
int j;
if (stl->error) return;
stl->stats.connected_edges = 0;
stl->stats.connected_facets_1_edge = 0;
stl->stats.connected_facets_2_edge = 0;
stl->stats.connected_facets_3_edge = 0;
stl_initialize_facet_check_exact(stl);
for(i = 0; i < stl->stats.number_of_facets; i++) {
facet = stl->facet_start[i];
// If any two of the three vertices are found to be exactally the same, call them degenerate and remove the facet.
if (facet.vertex[0] == facet.vertex[1] ||
facet.vertex[1] == facet.vertex[2] ||
facet.vertex[0] == facet.vertex[2]) {
stl->stats.degenerate_facets += 1;
stl_remove_facet(stl, i);
-- i;
continue;
}
for(j = 0; j < 3; j++) {
edge.facet_number = i;
edge.which_edge = j;
stl_load_edge_exact(stl, &edge, &facet.vertex[j], &facet.vertex[(j + 1) % 3]);
insert_hash_edge(stl, edge, stl_record_neighbors);
}
}
stl_free_edges(stl);
#if 0
printf("Number of faces: %d, number of manifold edges: %d, number of connected edges: %d, number of unconnected edges: %d\r\n",
stl->stats.number_of_facets, stl->stats.number_of_facets * 3,
stl->stats.connected_edges, stl->stats.number_of_facets * 3 - stl->stats.connected_edges);
#endif
}
static void
stl_load_edge_exact(stl_file *stl, stl_hash_edge *edge,
stl_vertex *a, stl_vertex *b) {
if (stl->error) return;
{
stl_vertex diff = (*a - *b).cwiseAbs();
float max_diff = std::max(diff(0), std::max(diff(1), diff(2)));
stl->stats.shortest_edge = std::min(max_diff, stl->stats.shortest_edge);
}
// Ensure identical vertex ordering of equal edges.
// This method is numerically robust.
if (stl_vertex_lower(*a, *b)) {
} else {
std::swap(a, b);
edge->which_edge += 3; /* this edge is loaded backwards */
}
memcpy(&edge->key[0], a->data(), sizeof(stl_vertex));
memcpy(&edge->key[sizeof(stl_vertex)], b->data(), sizeof(stl_vertex));
// Switch negative zeros to positive zeros, so memcmp will consider them to be equal.
for (size_t i = 0; i < 6; ++ i) {
unsigned char *p = edge->key + i * 4;
#ifdef BOOST_LITTLE_ENDIAN
if (p[0] == 0 && p[1] == 0 && p[2] == 0 && p[3] == 0x80)
// Negative zero, switch to positive zero.
p[3] = 0;
#else /* BOOST_LITTLE_ENDIAN */
if (p[0] == 0x80 && p[1] == 0 && p[2] == 0 && p[3] == 0)
// Negative zero, switch to positive zero.
p[0] = 0;
#endif /* BOOST_LITTLE_ENDIAN */
}
}
static void
stl_initialize_facet_check_exact(stl_file *stl) {
int i;
if (stl->error) return;
stl->stats.malloced = 0;
stl->stats.freed = 0;
stl->stats.collisions = 0;
stl->M = 81397;
for(i = 0; i < stl->stats.number_of_facets ; i++) {
/* initialize neighbors list to -1 to mark unconnected edges */
stl->neighbors_start[i].neighbor[0] = -1;
stl->neighbors_start[i].neighbor[1] = -1;
stl->neighbors_start[i].neighbor[2] = -1;
}
stl->heads = (stl_hash_edge**)calloc(stl->M, sizeof(*stl->heads));
if(stl->heads == NULL) perror("stl_initialize_facet_check_exact");
stl->tail = (stl_hash_edge*)malloc(sizeof(stl_hash_edge));
if(stl->tail == NULL) perror("stl_initialize_facet_check_exact");
stl->tail->next = stl->tail;
for(i = 0; i < stl->M; i++) {
stl->heads[i] = stl->tail;
}
}
static void insert_hash_edge(stl_file *stl, stl_hash_edge edge,
void (*match_neighbors)(stl_file *stl,
stl_hash_edge *edge_a, stl_hash_edge *edge_b))
{
if (stl->error) return;
int chain_number = edge.hash(stl->M);
stl_hash_edge *link = stl->heads[chain_number];
stl_hash_edge *new_edge;
stl_hash_edge *temp;
if(link == stl->tail) {
/* This list doesn't have any edges currently in it. Add this one. */
new_edge = (stl_hash_edge*)malloc(sizeof(stl_hash_edge));
if(new_edge == NULL) perror("insert_hash_edge");
stl->stats.malloced++;
*new_edge = edge;
new_edge->next = stl->tail;
stl->heads[chain_number] = new_edge;
return;
} else if(!stl_compare_function(&edge, link)) {
/* This is a match. Record result in neighbors list. */
match_neighbors(stl, &edge, link);
/* Delete the matched edge from the list. */
stl->heads[chain_number] = link->next;
free(link);
stl->stats.freed++;
return;
} else {
/* Continue through the rest of the list */
for(;;) {
if(link->next == stl->tail) {
/* This is the last item in the list. Insert a new edge. */
new_edge = (stl_hash_edge*)malloc(sizeof(stl_hash_edge));
if(new_edge == NULL) perror("insert_hash_edge");
stl->stats.malloced++;
*new_edge = edge;
new_edge->next = stl->tail;
link->next = new_edge;
stl->stats.collisions++;
return;
} else if(!stl_compare_function(&edge, link->next)) {
/* This is a match. Record result in neighbors list. */
match_neighbors(stl, &edge, link->next);
/* Delete the matched edge from the list. */
temp = link->next;
link->next = link->next->next;
free(temp);
stl->stats.freed++;
return;
} else {
/* This is not a match. Go to the next link */
link = link->next;
stl->stats.collisions++;
}
}
}
}
// Return 1 if the edges are not matched.
static inline int stl_compare_function(stl_hash_edge *edge_a, stl_hash_edge *edge_b)
{
// Don't match edges of the same facet
return (edge_a->facet_number == edge_b->facet_number) || (*edge_a != *edge_b);
}
void stl_check_facets_nearby(stl_file *stl, float tolerance)
{
if (stl->error)
return;
if( (stl->stats.connected_facets_1_edge == stl->stats.number_of_facets)
&& (stl->stats.connected_facets_2_edge == stl->stats.number_of_facets)
&& (stl->stats.connected_facets_3_edge == stl->stats.number_of_facets)) {
/* No need to check any further. All facets are connected */
return;
}
stl_initialize_facet_check_nearby(stl);
for (int i = 0; i < stl->stats.number_of_facets; ++ i) {
//FIXME is the copy necessary?
stl_facet facet = stl->facet_start[i];
for (int j = 0; j < 3; j++) {
if(stl->neighbors_start[i].neighbor[j] == -1) {
stl_hash_edge edge;
edge.facet_number = i;
edge.which_edge = j;
if(stl_load_edge_nearby(stl, &edge, &facet.vertex[j],
&facet.vertex[(j + 1) % 3],
tolerance)) {
/* only insert edges that have different keys */
insert_hash_edge(stl, edge, stl_match_neighbors_nearby);
}
}
}
}
stl_free_edges(stl);
}
static int stl_load_edge_nearby(stl_file *stl, stl_hash_edge *edge, stl_vertex *a, stl_vertex *b, float tolerance)
{
// Index of a grid cell spaced by tolerance.
typedef Eigen::Matrix<int32_t, 3, 1, Eigen::DontAlign> Vec3i;
Vec3i vertex1 = (*a / tolerance).cast<int32_t>();
Vec3i vertex2 = (*b / tolerance).cast<int32_t>();
static_assert(sizeof(Vec3i) == 12, "size of Vec3i incorrect");
if (vertex1 == vertex2)
// Both vertices hash to the same value
return 0;
// Ensure identical vertex ordering of edges, which vertices land into equal grid cells.
// This method is numerically robust.
if ((vertex1[0] != vertex2[0]) ?
(vertex1[0] < vertex2[0]) :
((vertex1[1] != vertex2[1]) ?
(vertex1[1] < vertex2[1]) :
(vertex1[2] < vertex2[2]))) {
memcpy(&edge->key[0], vertex1.data(), sizeof(stl_vertex));
memcpy(&edge->key[sizeof(stl_vertex)], vertex2.data(), sizeof(stl_vertex));
} else {
memcpy(&edge->key[0], vertex2.data(), sizeof(stl_vertex));
memcpy(&edge->key[sizeof(stl_vertex)], vertex1.data(), sizeof(stl_vertex));
edge->which_edge += 3; /* this edge is loaded backwards */
}
return 1;
}
static void stl_free_edges(stl_file *stl)
{
if (stl->error)
return;
if(stl->stats.malloced != stl->stats.freed) {
for (int i = 0; i < stl->M; i++) {
for (stl_hash_edge *temp = stl->heads[i]; stl->heads[i] != stl->tail; temp = stl->heads[i]) {
stl->heads[i] = stl->heads[i]->next;
free(temp);
++ stl->stats.freed;
}
}
}
free(stl->heads);
free(stl->tail);
}
static void stl_initialize_facet_check_nearby(stl_file *stl)
{
int i;
if (stl->error) return;
stl->stats.malloced = 0;
stl->stats.freed = 0;
stl->stats.collisions = 0;
/* tolerance = STL_MAX(stl->stats.shortest_edge, tolerance);*/
/* tolerance = STL_MAX((stl->stats.bounding_diameter / 500000.0), tolerance);*/
/* tolerance *= 0.5;*/
stl->M = 81397;
stl->heads = (stl_hash_edge**)calloc(stl->M, sizeof(*stl->heads));
if(stl->heads == NULL) perror("stl_initialize_facet_check_nearby");
stl->tail = (stl_hash_edge*)malloc(sizeof(stl_hash_edge));
if(stl->tail == NULL) perror("stl_initialize_facet_check_nearby");
stl->tail->next = stl->tail;
for(i = 0; i < stl->M; i++) {
stl->heads[i] = stl->tail;
}
}
static void
stl_record_neighbors(stl_file *stl,
stl_hash_edge *edge_a, stl_hash_edge *edge_b) {
int i;
int j;
if (stl->error) return;
/* Facet a's neighbor is facet b */
stl->neighbors_start[edge_a->facet_number].neighbor[edge_a->which_edge % 3] =
edge_b->facet_number; /* sets the .neighbor part */
stl->neighbors_start[edge_a->facet_number].
which_vertex_not[edge_a->which_edge % 3] =
(edge_b->which_edge + 2) % 3; /* sets the .which_vertex_not part */
/* Facet b's neighbor is facet a */
stl->neighbors_start[edge_b->facet_number].neighbor[edge_b->which_edge % 3] =
edge_a->facet_number; /* sets the .neighbor part */
stl->neighbors_start[edge_b->facet_number].
which_vertex_not[edge_b->which_edge % 3] =
(edge_a->which_edge + 2) % 3; /* sets the .which_vertex_not part */
if( ((edge_a->which_edge < 3) && (edge_b->which_edge < 3))
|| ((edge_a->which_edge > 2) && (edge_b->which_edge > 2))) {
/* these facets are oriented in opposite directions. */
/* their normals are probably messed up. */
stl->neighbors_start[edge_a->facet_number].
which_vertex_not[edge_a->which_edge % 3] += 3;
stl->neighbors_start[edge_b->facet_number].
which_vertex_not[edge_b->which_edge % 3] += 3;
}
/* Count successful connects */
/* Total connects */
stl->stats.connected_edges += 2;
/* Count individual connects */
i = ((stl->neighbors_start[edge_a->facet_number].neighbor[0] == -1) +
(stl->neighbors_start[edge_a->facet_number].neighbor[1] == -1) +
(stl->neighbors_start[edge_a->facet_number].neighbor[2] == -1));
j = ((stl->neighbors_start[edge_b->facet_number].neighbor[0] == -1) +
(stl->neighbors_start[edge_b->facet_number].neighbor[1] == -1) +
(stl->neighbors_start[edge_b->facet_number].neighbor[2] == -1));
if(i == 2) {
stl->stats.connected_facets_1_edge +=1;
} else if(i == 1) {
stl->stats.connected_facets_2_edge +=1;
} else {
stl->stats.connected_facets_3_edge +=1;
}
if(j == 2) {
stl->stats.connected_facets_1_edge +=1;
} else if(j == 1) {
stl->stats.connected_facets_2_edge +=1;
} else {
stl->stats.connected_facets_3_edge +=1;
}
}
static void stl_match_neighbors_nearby(stl_file *stl, stl_hash_edge *edge_a, stl_hash_edge *edge_b)
{
int facet1;
int facet2;
int vertex1;
int vertex2;
int vnot1;
int vnot2;
stl_vertex new_vertex1;
stl_vertex new_vertex2;
if (stl->error) return;
stl_record_neighbors(stl, edge_a, edge_b);
stl_which_vertices_to_change(stl, edge_a, edge_b, &facet1, &vertex1,
&facet2, &vertex2, &new_vertex1, &new_vertex2);
if(facet1 != -1) {
if(facet1 == edge_a->facet_number) {
vnot1 = (edge_a->which_edge + 2) % 3;
} else {
vnot1 = (edge_b->which_edge + 2) % 3;
}
if(((vnot1 + 2) % 3) == vertex1) {
vnot1 += 3;
}
stl_change_vertices(stl, facet1, vnot1, new_vertex1);
}
if(facet2 != -1) {
if(facet2 == edge_a->facet_number) {
vnot2 = (edge_a->which_edge + 2) % 3;
} else {
vnot2 = (edge_b->which_edge + 2) % 3;
}
if(((vnot2 + 2) % 3) == vertex2) {
vnot2 += 3;
}
stl_change_vertices(stl, facet2, vnot2, new_vertex2);
}
stl->stats.edges_fixed += 2;
}
static void stl_change_vertices(stl_file *stl, int facet_num, int vnot, stl_vertex new_vertex) {
int first_facet;
int direction;
int next_edge;
int pivot_vertex;
if (stl->error) return;
first_facet = facet_num;
direction = 0;
for(;;) {
if(vnot > 2) {
if(direction == 0) {
pivot_vertex = (vnot + 2) % 3;
next_edge = pivot_vertex;
direction = 1;
} else {
pivot_vertex = (vnot + 1) % 3;
next_edge = vnot % 3;
direction = 0;
}
} else {
if(direction == 0) {
pivot_vertex = (vnot + 1) % 3;
next_edge = vnot;
} else {
pivot_vertex = (vnot + 2) % 3;
next_edge = pivot_vertex;
}
}
#if 0
if (stl->facet_start[facet_num].vertex[pivot_vertex](0) == new_vertex(0) &&
stl->facet_start[facet_num].vertex[pivot_vertex](1) == new_vertex(1) &&
stl->facet_start[facet_num].vertex[pivot_vertex](2) == new_vertex(2))
printf("Changing vertex %f,%f,%f: Same !!!\r\n",
new_vertex(0), new_vertex(1), new_vertex(2));
else {
if (stl->facet_start[facet_num].vertex[pivot_vertex](0) != new_vertex(0))
printf("Changing coordinate x, vertex %e (0x%08x) to %e(0x%08x)\r\n",
stl->facet_start[facet_num].vertex[pivot_vertex](0),
*reinterpret_cast<const int*>(&stl->facet_start[facet_num].vertex[pivot_vertex](0)),
new_vertex(0),
*reinterpret_cast<const int*>(&new_vertex(0)));
if (stl->facet_start[facet_num].vertex[pivot_vertex](1) != new_vertex(1))
printf("Changing coordinate x, vertex %e (0x%08x) to %e(0x%08x)\r\n",
stl->facet_start[facet_num].vertex[pivot_vertex](1),
*reinterpret_cast<const int*>(&stl->facet_start[facet_num].vertex[pivot_vertex](1)),
new_vertex(1),
*reinterpret_cast<const int*>(&new_vertex(1)));
if (stl->facet_start[facet_num].vertex[pivot_vertex](2) != new_vertex(2))
printf("Changing coordinate x, vertex %e (0x%08x) to %e(0x%08x)\r\n",
stl->facet_start[facet_num].vertex[pivot_vertex](2),
*reinterpret_cast<const int*>(&stl->facet_start[facet_num].vertex[pivot_vertex](2)),
new_vertex(2),
*reinterpret_cast<const int*>(&new_vertex(2)));
}
#endif
stl->facet_start[facet_num].vertex[pivot_vertex] = new_vertex;
vnot = stl->neighbors_start[facet_num].which_vertex_not[next_edge];
facet_num = stl->neighbors_start[facet_num].neighbor[next_edge];
if(facet_num == -1) {
break;
}
if(facet_num == first_facet) {
/* back to the beginning */
printf("\
Back to the first facet changing vertices: probably a mobius part.\n\
Try using a smaller tolerance or don't do a nearby check\n");
return;
}
}
}
static void
stl_which_vertices_to_change(stl_file *stl, stl_hash_edge *edge_a,
stl_hash_edge *edge_b, int *facet1, int *vertex1,
int *facet2, int *vertex2,
stl_vertex *new_vertex1, stl_vertex *new_vertex2) {
int v1a; /* pair 1, facet a */
int v1b; /* pair 1, facet b */
int v2a; /* pair 2, facet a */
int v2b; /* pair 2, facet b */
/* Find first pair */
if(edge_a->which_edge < 3) {
v1a = edge_a->which_edge;
v2a = (edge_a->which_edge + 1) % 3;
} else {
v2a = edge_a->which_edge % 3;
v1a = (edge_a->which_edge + 1) % 3;
}
if(edge_b->which_edge < 3) {
v1b = edge_b->which_edge;
v2b = (edge_b->which_edge + 1) % 3;
} else {
v2b = edge_b->which_edge % 3;
v1b = (edge_b->which_edge + 1) % 3;
}
// Of the first pair, which vertex, if any, should be changed
if(stl->facet_start[edge_a->facet_number].vertex[v1a] ==
stl->facet_start[edge_b->facet_number].vertex[v1b]) {
// These facets are already equal. No need to change.
*facet1 = -1;
} else {
if( (stl->neighbors_start[edge_a->facet_number].neighbor[v1a] == -1)
&& (stl->neighbors_start[edge_a->facet_number].
neighbor[(v1a + 2) % 3] == -1)) {
/* This vertex has no neighbors. This is a good one to change */
*facet1 = edge_a->facet_number;
*vertex1 = v1a;
*new_vertex1 = stl->facet_start[edge_b->facet_number].vertex[v1b];
} else {
*facet1 = edge_b->facet_number;
*vertex1 = v1b;
*new_vertex1 = stl->facet_start[edge_a->facet_number].vertex[v1a];
}
}
/* Of the second pair, which vertex, if any, should be changed */
if(stl->facet_start[edge_a->facet_number].vertex[v2a] ==
stl->facet_start[edge_b->facet_number].vertex[v2b]) {
// These facets are already equal. No need to change.
*facet2 = -1;
} else {
if( (stl->neighbors_start[edge_a->facet_number].neighbor[v2a] == -1)
&& (stl->neighbors_start[edge_a->facet_number].
neighbor[(v2a + 2) % 3] == -1)) {
/* This vertex has no neighbors. This is a good one to change */
*facet2 = edge_a->facet_number;
*vertex2 = v2a;
*new_vertex2 = stl->facet_start[edge_b->facet_number].vertex[v2b];
} else {
*facet2 = edge_b->facet_number;
*vertex2 = v2b;
*new_vertex2 = stl->facet_start[edge_a->facet_number].vertex[v2a];
}
}
}
static void
stl_remove_facet(stl_file *stl, int facet_number) {
int neighbor[3];
int vnot[3];
int i;
int j;
if (stl->error) return;
stl->stats.facets_removed += 1;
/* Update list of connected edges */
j = ((stl->neighbors_start[facet_number].neighbor[0] == -1) +
(stl->neighbors_start[facet_number].neighbor[1] == -1) +
(stl->neighbors_start[facet_number].neighbor[2] == -1));
if(j == 2) {
stl->stats.connected_facets_1_edge -= 1;
} else if(j == 1) {
stl->stats.connected_facets_2_edge -= 1;
stl->stats.connected_facets_1_edge -= 1;
} else if(j == 0) {
stl->stats.connected_facets_3_edge -= 1;
stl->stats.connected_facets_2_edge -= 1;
stl->stats.connected_facets_1_edge -= 1;
}
stl->facet_start[facet_number] =
stl->facet_start[stl->stats.number_of_facets - 1];
/* I could reallocate at this point, but it is not really necessary. */
stl->neighbors_start[facet_number] =
stl->neighbors_start[stl->stats.number_of_facets - 1];
stl->stats.number_of_facets -= 1;
for(i = 0; i < 3; i++) {
neighbor[i] = stl->neighbors_start[facet_number].neighbor[i];
vnot[i] = stl->neighbors_start[facet_number].which_vertex_not[i];
}
for(i = 0; i < 3; i++) {
if(neighbor[i] != -1) {
if(stl->neighbors_start[neighbor[i]].neighbor[(vnot[i] + 1)% 3] !=
stl->stats.number_of_facets) {
printf("\
in stl_remove_facet: neighbor = %d numfacets = %d this is wrong\n",
stl->neighbors_start[neighbor[i]].neighbor[(vnot[i] + 1)% 3],
stl->stats.number_of_facets);
return;
}
stl->neighbors_start[neighbor[i]].neighbor[(vnot[i] + 1)% 3]
= facet_number;
}
}
}
void stl_remove_unconnected_facets(stl_file *stl)
{
/* A couple of things need to be done here. One is to remove any */
/* completely unconnected facets (0 edges connected) since these are */
/* useless and could be completely wrong. The second thing that needs to */
/* be done is to remove any degenerate facets that were created during */
/* stl_check_facets_nearby(). */
if (stl->error)
return;
// remove degenerate facets
for (int i = 0; i < stl->stats.number_of_facets; ++ i) {
if(stl->facet_start[i].vertex[0] == stl->facet_start[i].vertex[1] ||
stl->facet_start[i].vertex[0] == stl->facet_start[i].vertex[2] ||
stl->facet_start[i].vertex[1] == stl->facet_start[i].vertex[2]) {
stl_remove_degenerate(stl, i);
i--;
}
}
if(stl->stats.connected_facets_1_edge < stl->stats.number_of_facets) {
// remove completely unconnected facets
for (int i = 0; i < stl->stats.number_of_facets; i++) {
if (stl->neighbors_start[i].neighbor[0] == -1 &&
stl->neighbors_start[i].neighbor[1] == -1 &&
stl->neighbors_start[i].neighbor[2] == -1) {
// This facet is completely unconnected. Remove it.
stl_remove_facet(stl, i);
-- i;
}
}
}
}
static void
stl_remove_degenerate(stl_file *stl, int facet) {
int edge1;
int edge2;
int edge3;
int neighbor1;
int neighbor2;
int neighbor3;
int vnot1;
int vnot2;
int vnot3;
if (stl->error) return;
if (stl->facet_start[facet].vertex[0] == stl->facet_start[facet].vertex[1] &&
stl->facet_start[facet].vertex[1] == stl->facet_start[facet].vertex[2]) {
/* all 3 vertices are equal. Just remove the facet. I don't think*/
/* this is really possible, but just in case... */
printf("removing a facet in stl_remove_degenerate\n");
stl_remove_facet(stl, facet);
return;
}
if (stl->facet_start[facet].vertex[0] == stl->facet_start[facet].vertex[1]) {
edge1 = 1;
edge2 = 2;
edge3 = 0;
} else if (stl->facet_start[facet].vertex[1] == stl->facet_start[facet].vertex[2]) {
edge1 = 0;
edge2 = 2;
edge3 = 1;
} else if (stl->facet_start[facet].vertex[2] == stl->facet_start[facet].vertex[0]) {
edge1 = 0;
edge2 = 1;
edge3 = 2;
} else {
/* No degenerate. Function shouldn't have been called. */
return;
}
neighbor1 = stl->neighbors_start[facet].neighbor[edge1];
neighbor2 = stl->neighbors_start[facet].neighbor[edge2];
if(neighbor1 == -1) {
stl_update_connects_remove_1(stl, neighbor2);
}
if(neighbor2 == -1) {
stl_update_connects_remove_1(stl, neighbor1);
}
neighbor3 = stl->neighbors_start[facet].neighbor[edge3];
vnot1 = stl->neighbors_start[facet].which_vertex_not[edge1];
vnot2 = stl->neighbors_start[facet].which_vertex_not[edge2];
vnot3 = stl->neighbors_start[facet].which_vertex_not[edge3];
if(neighbor1 >= 0){
stl->neighbors_start[neighbor1].neighbor[(vnot1 + 1) % 3] = neighbor2;
stl->neighbors_start[neighbor1].which_vertex_not[(vnot1 + 1) % 3] = vnot2;
}
if(neighbor2 >= 0){
stl->neighbors_start[neighbor2].neighbor[(vnot2 + 1) % 3] = neighbor1;
stl->neighbors_start[neighbor2].which_vertex_not[(vnot2 + 1) % 3] = vnot1;
}
stl_remove_facet(stl, facet);
if(neighbor3 >= 0) {
stl_update_connects_remove_1(stl, neighbor3);
stl->neighbors_start[neighbor3].neighbor[(vnot3 + 1) % 3] = -1;
}
}
void
stl_update_connects_remove_1(stl_file *stl, int facet_num) {
int j;
if (stl->error) return;
/* Update list of connected edges */
j = ((stl->neighbors_start[facet_num].neighbor[0] == -1) +
(stl->neighbors_start[facet_num].neighbor[1] == -1) +
(stl->neighbors_start[facet_num].neighbor[2] == -1));
if(j == 0) { /* Facet has 3 neighbors */
stl->stats.connected_facets_3_edge -= 1;
} else if(j == 1) { /* Facet has 2 neighbors */
stl->stats.connected_facets_2_edge -= 1;
} else if(j == 2) { /* Facet has 1 neighbor */
stl->stats.connected_facets_1_edge -= 1;
}
}
void
stl_fill_holes(stl_file *stl) {
stl_facet facet;
stl_facet new_facet;
int neighbors_initial[3];
stl_hash_edge edge;
int first_facet;
int direction;
int facet_num;
int vnot;
int next_edge;
int pivot_vertex;
int next_facet;
int i;
int j;
int k;
if (stl->error) return;
/* Insert all unconnected edges into hash list */
stl_initialize_facet_check_nearby(stl);
for(i = 0; i < stl->stats.number_of_facets; i++) {
facet = stl->facet_start[i];
for(j = 0; j < 3; j++) {
if(stl->neighbors_start[i].neighbor[j] != -1) continue;
edge.facet_number = i;
edge.which_edge = j;
stl_load_edge_exact(stl, &edge, &facet.vertex[j],
&facet.vertex[(j + 1) % 3]);
insert_hash_edge(stl, edge, stl_record_neighbors);
}
}
for(i = 0; i < stl->stats.number_of_facets; i++) {
facet = stl->facet_start[i];
neighbors_initial[0] = stl->neighbors_start[i].neighbor[0];
neighbors_initial[1] = stl->neighbors_start[i].neighbor[1];
neighbors_initial[2] = stl->neighbors_start[i].neighbor[2];
first_facet = i;
for(j = 0; j < 3; j++) {
if(stl->neighbors_start[i].neighbor[j] != -1) continue;
new_facet.vertex[0] = facet.vertex[j];
new_facet.vertex[1] = facet.vertex[(j + 1) % 3];
if(neighbors_initial[(j + 2) % 3] == -1) {
direction = 1;
} else {
direction = 0;
}
facet_num = i;
vnot = (j + 2) % 3;
for(;;) {
if(vnot > 2) {
if(direction == 0) {
pivot_vertex = (vnot + 2) % 3;
next_edge = pivot_vertex;
direction = 1;
} else {
pivot_vertex = (vnot + 1) % 3;
next_edge = vnot % 3;
direction = 0;
}
} else {
if(direction == 0) {
pivot_vertex = (vnot + 1) % 3;
next_edge = vnot;
} else {
pivot_vertex = (vnot + 2) % 3;
next_edge = pivot_vertex;
}
}
next_facet = stl->neighbors_start[facet_num].neighbor[next_edge];
if(next_facet == -1) {
new_facet.vertex[2] = stl->facet_start[facet_num].
vertex[vnot % 3];
stl_add_facet(stl, &new_facet);
for(k = 0; k < 3; k++) {
edge.facet_number = stl->stats.number_of_facets - 1;
edge.which_edge = k;
stl_load_edge_exact(stl, &edge, &new_facet.vertex[k],
&new_facet.vertex[(k + 1) % 3]);
insert_hash_edge(stl, edge, stl_record_neighbors);
}
break;
} else {
vnot = stl->neighbors_start[facet_num].
which_vertex_not[next_edge];
facet_num = next_facet;
}
if(facet_num == first_facet) {
/* back to the beginning */
printf("\
Back to the first facet filling holes: probably a mobius part.\n\
Try using a smaller tolerance or don't do a nearby check\n");
return;
}
}
}
}
}
void
stl_add_facet(stl_file *stl, stl_facet *new_facet) {
if (stl->error) return;
stl->stats.facets_added += 1;
if(stl->stats.facets_malloced < stl->stats.number_of_facets + 1) {
stl->facet_start = (stl_facet*)realloc(stl->facet_start,
(sizeof(stl_facet) * (stl->stats.facets_malloced + 256)));
if(stl->facet_start == NULL) perror("stl_add_facet");
stl->neighbors_start = (stl_neighbors*)realloc(stl->neighbors_start,
(sizeof(stl_neighbors) * (stl->stats.facets_malloced + 256)));
if(stl->neighbors_start == NULL) perror("stl_add_facet");
stl->stats.facets_malloced += 256;
}
stl->facet_start[stl->stats.number_of_facets] = *new_facet;
/* note that the normal vector is not set here, just initialized to 0 */
stl->facet_start[stl->stats.number_of_facets].normal = stl_normal::Zero();
stl->neighbors_start[stl->stats.number_of_facets].neighbor[0] = -1;
stl->neighbors_start[stl->stats.number_of_facets].neighbor[1] = -1;
stl->neighbors_start[stl->stats.number_of_facets].neighbor[2] = -1;
stl->stats.number_of_facets += 1;
}

292
src/admesh/normals.cpp Normal file
View file

@ -0,0 +1,292 @@
/* ADMesh -- process triangulated solid meshes
* Copyright (C) 1995, 1996 Anthony D. Martin <amartin@engr.csulb.edu>
* Copyright (C) 2013, 2014 several contributors, see AUTHORS
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Questions, comments, suggestions, etc to
* https://github.com/admesh/admesh/issues
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "stl.h"
static int stl_check_normal_vector(stl_file *stl, int facet_num, int normal_fix_flag);
static void
stl_reverse_facet(stl_file *stl, int facet_num) {
stl_vertex tmp_vertex;
/* int tmp_neighbor;*/
int neighbor[3];
int vnot[3];
stl->stats.facets_reversed += 1;
neighbor[0] = stl->neighbors_start[facet_num].neighbor[0];
neighbor[1] = stl->neighbors_start[facet_num].neighbor[1];
neighbor[2] = stl->neighbors_start[facet_num].neighbor[2];
vnot[0] = stl->neighbors_start[facet_num].which_vertex_not[0];
vnot[1] = stl->neighbors_start[facet_num].which_vertex_not[1];
vnot[2] = stl->neighbors_start[facet_num].which_vertex_not[2];
/* reverse the facet */
tmp_vertex = stl->facet_start[facet_num].vertex[0];
stl->facet_start[facet_num].vertex[0] =
stl->facet_start[facet_num].vertex[1];
stl->facet_start[facet_num].vertex[1] = tmp_vertex;
/* fix the vnots of the neighboring facets */
if(neighbor[0] != -1)
stl->neighbors_start[neighbor[0]].which_vertex_not[(vnot[0] + 1) % 3] =
(stl->neighbors_start[neighbor[0]].
which_vertex_not[(vnot[0] + 1) % 3] + 3) % 6;
if(neighbor[1] != -1)
stl->neighbors_start[neighbor[1]].which_vertex_not[(vnot[1] + 1) % 3] =
(stl->neighbors_start[neighbor[1]].
which_vertex_not[(vnot[1] + 1) % 3] + 4) % 6;
if(neighbor[2] != -1)
stl->neighbors_start[neighbor[2]].which_vertex_not[(vnot[2] + 1) % 3] =
(stl->neighbors_start[neighbor[2]].
which_vertex_not[(vnot[2] + 1) % 3] + 2) % 6;
/* swap the neighbors of the facet that is being reversed */
stl->neighbors_start[facet_num].neighbor[1] = neighbor[2];
stl->neighbors_start[facet_num].neighbor[2] = neighbor[1];
/* swap the vnots of the facet that is being reversed */
stl->neighbors_start[facet_num].which_vertex_not[1] = vnot[2];
stl->neighbors_start[facet_num].which_vertex_not[2] = vnot[1];
/* reverse the values of the vnots of the facet that is being reversed */
stl->neighbors_start[facet_num].which_vertex_not[0] =
(stl->neighbors_start[facet_num].which_vertex_not[0] + 3) % 6;
stl->neighbors_start[facet_num].which_vertex_not[1] =
(stl->neighbors_start[facet_num].which_vertex_not[1] + 3) % 6;
stl->neighbors_start[facet_num].which_vertex_not[2] =
(stl->neighbors_start[facet_num].which_vertex_not[2] + 3) % 6;
}
void
stl_fix_normal_directions(stl_file *stl) {
char *norm_sw;
/* int edge_num;*/
/* int vnot;*/
int checked = 0;
int facet_num;
/* int next_facet;*/
int i;
int j;
struct stl_normal {
int facet_num;
struct stl_normal *next;
};
struct stl_normal *head;
struct stl_normal *tail;
struct stl_normal *newn;
struct stl_normal *temp;
int* reversed_ids;
int reversed_count = 0;
int id;
int force_exit = 0;
if (stl->error) return;
/* Initialize linked list. */
head = (struct stl_normal*)malloc(sizeof(struct stl_normal));
if(head == NULL) perror("stl_fix_normal_directions");
tail = (struct stl_normal*)malloc(sizeof(struct stl_normal));
if(tail == NULL) perror("stl_fix_normal_directions");
head->next = tail;
tail->next = tail;
/* Initialize list that keeps track of already fixed facets. */
norm_sw = (char*)calloc(stl->stats.number_of_facets, sizeof(char));
if(norm_sw == NULL) perror("stl_fix_normal_directions");
/* Initialize list that keeps track of reversed facets. */
reversed_ids = (int*)calloc(stl->stats.number_of_facets, sizeof(int));
if (reversed_ids == NULL) perror("stl_fix_normal_directions reversed_ids");
facet_num = 0;
/* If normal vector is not within tolerance and backwards:
Arbitrarily starts at face 0. If this one is wrong, we're screwed. Thankfully, the chances
of it being wrong randomly are low if most of the triangles are right: */
if (stl_check_normal_vector(stl, 0, 0) == 2) {
stl_reverse_facet(stl, 0);
reversed_ids[reversed_count++] = 0;
}
/* Say that we've fixed this facet: */
norm_sw[facet_num] = 1;
checked++;
for(;;) {
/* Add neighbors_to_list.
Add unconnected neighbors to the list:a */
for(j = 0; j < 3; j++) {
/* Reverse the neighboring facets if necessary. */
if(stl->neighbors_start[facet_num].which_vertex_not[j] > 2) {
/* If the facet has a neighbor that is -1, it means that edge isn't shared by another facet */
if(stl->neighbors_start[facet_num].neighbor[j] != -1) {
if (norm_sw[stl->neighbors_start[facet_num].neighbor[j]] == 1) {
/* trying to modify a facet already marked as fixed, revert all changes made until now and exit (fixes: #716, #574, #413, #269, #262, #259, #230, #228, #206) */
for (id = reversed_count - 1; id >= 0; --id) {
stl_reverse_facet(stl, reversed_ids[id]);
}
force_exit = 1;
break;
} else {
stl_reverse_facet(stl, stl->neighbors_start[facet_num].neighbor[j]);
reversed_ids[reversed_count++] = stl->neighbors_start[facet_num].neighbor[j];
}
}
}
/* If this edge of the facet is connected: */
if(stl->neighbors_start[facet_num].neighbor[j] != -1) {
/* If we haven't fixed this facet yet, add it to the list: */
if(norm_sw[stl->neighbors_start[facet_num].neighbor[j]] != 1) {
/* Add node to beginning of list. */
newn = (struct stl_normal*)malloc(sizeof(struct stl_normal));
if(newn == NULL) perror("stl_fix_normal_directions");
newn->facet_num = stl->neighbors_start[facet_num].neighbor[j];
newn->next = head->next;
head->next = newn;
}
}
}
/* an error occourred, quit the for loop and exit */
if (force_exit) break;
/* Get next facet to fix from top of list. */
if(head->next != tail) {
facet_num = head->next->facet_num;
if(norm_sw[facet_num] != 1) { /* If facet is in list mutiple times */
norm_sw[facet_num] = 1; /* Record this one as being fixed. */
checked++;
}
temp = head->next; /* Delete this facet from the list. */
head->next = head->next->next;
free(temp);
} else { /* if we ran out of facets to fix: */
/* All of the facets in this part have been fixed. */
stl->stats.number_of_parts += 1;
if(checked >= stl->stats.number_of_facets) {
/* All of the facets have been checked. Bail out. */
break;
} else {
/* There is another part here. Find it and continue. */
for(i = 0; i < stl->stats.number_of_facets; i++) {
if(norm_sw[i] == 0) {
/* This is the first facet of the next part. */
facet_num = i;
if(stl_check_normal_vector(stl, i, 0) == 2) {
stl_reverse_facet(stl, i);
reversed_ids[reversed_count++] = i;
}
norm_sw[facet_num] = 1;
checked++;
break;
}
}
}
}
}
free(head);
free(tail);
free(reversed_ids);
free(norm_sw);
}
static int stl_check_normal_vector(stl_file *stl, int facet_num, int normal_fix_flag) {
/* Returns 0 if the normal is within tolerance */
/* Returns 1 if the normal is not within tolerance, but direction is OK */
/* Returns 2 if the normal is not within tolerance and backwards */
/* Returns 4 if the status is unknown. */
stl_facet *facet;
facet = &stl->facet_start[facet_num];
stl_normal normal;
stl_calculate_normal(normal, facet);
stl_normalize_vector(normal);
stl_normal normal_dif = (normal - facet->normal).cwiseAbs();
const float eps = 0.001f;
if (normal_dif(0) < eps && normal_dif(1) < eps && normal_dif(2) < eps) {
/* It is not really necessary to change the values here */
/* but just for consistency, I will. */
facet->normal = normal;
return 0;
}
stl_normal test_norm = facet->normal;
stl_normalize_vector(test_norm);
normal_dif = (normal - test_norm).cwiseAbs();
if (normal_dif(0) < eps && normal_dif(1) < eps && normal_dif(2) < eps) {
if(normal_fix_flag) {
facet->normal = normal;
stl->stats.normals_fixed += 1;
}
return 1;
}
test_norm *= -1.f;
normal_dif = (normal - test_norm).cwiseAbs();
if (normal_dif(0) < eps && normal_dif(1) < eps && normal_dif(2) < eps) {
// Facet is backwards.
if(normal_fix_flag) {
facet->normal = normal;
stl->stats.normals_fixed += 1;
}
return 2;
}
if(normal_fix_flag) {
facet->normal = normal;
stl->stats.normals_fixed += 1;
}
return 4;
}
void stl_fix_normal_values(stl_file *stl) {
int i;
if (stl->error) return;
for(i = 0; i < stl->stats.number_of_facets; i++) {
stl_check_normal_vector(stl, i, 1);
}
}
void stl_reverse_all_facets(stl_file *stl)
{
if (stl->error)
return;
stl_normal normal;
for(int i = 0; i < stl->stats.number_of_facets; i++) {
stl_reverse_facet(stl, i);
stl_calculate_normal(normal, &stl->facet_start[i]);
stl_normalize_vector(normal);
stl->facet_start[i].normal = normal;
}
}

264
src/admesh/shared.cpp Normal file
View file

@ -0,0 +1,264 @@
/* ADMesh -- process triangulated solid meshes
* Copyright (C) 1995, 1996 Anthony D. Martin <amartin@engr.csulb.edu>
* Copyright (C) 2013, 2014 several contributors, see AUTHORS
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Questions, comments, suggestions, etc to
* https://github.com/admesh/admesh/issues
*/
#include <stdlib.h>
#include <string.h>
#include <boost/nowide/cstdio.hpp>
#include "stl.h"
void
stl_invalidate_shared_vertices(stl_file *stl) {
if (stl->error) return;
if (stl->v_indices != NULL) {
free(stl->v_indices);
stl->v_indices = NULL;
}
if (stl->v_shared != NULL) {
free(stl->v_shared);
stl->v_shared = NULL;
}
}
void
stl_generate_shared_vertices(stl_file *stl) {
int i;
int j;
int first_facet;
int direction;
int facet_num;
int vnot;
int next_edge;
int pivot_vertex;
int next_facet;
int reversed;
if (stl->error) return;
/* make sure this function is idempotent and does not leak memory */
stl_invalidate_shared_vertices(stl);
stl->v_indices = (v_indices_struct*)
calloc(stl->stats.number_of_facets, sizeof(v_indices_struct));
if(stl->v_indices == NULL) perror("stl_generate_shared_vertices");
stl->v_shared = (stl_vertex*)
calloc((stl->stats.number_of_facets / 2), sizeof(stl_vertex));
if(stl->v_shared == NULL) perror("stl_generate_shared_vertices");
stl->stats.shared_malloced = stl->stats.number_of_facets / 2;
stl->stats.shared_vertices = 0;
for(i = 0; i < stl->stats.number_of_facets; i++) {
stl->v_indices[i].vertex[0] = -1;
stl->v_indices[i].vertex[1] = -1;
stl->v_indices[i].vertex[2] = -1;
}
for(i = 0; i < stl->stats.number_of_facets; i++) {
first_facet = i;
for(j = 0; j < 3; j++) {
if(stl->v_indices[i].vertex[j] != -1) {
continue;
}
if(stl->stats.shared_vertices == stl->stats.shared_malloced) {
stl->stats.shared_malloced += 1024;
stl->v_shared = (stl_vertex*)realloc(stl->v_shared,
stl->stats.shared_malloced * sizeof(stl_vertex));
if(stl->v_shared == NULL) perror("stl_generate_shared_vertices");
}
stl->v_shared[stl->stats.shared_vertices] =
stl->facet_start[i].vertex[j];
direction = 0;
reversed = 0;
facet_num = i;
vnot = (j + 2) % 3;
for(;;) {
if(vnot > 2) {
if(direction == 0) {
pivot_vertex = (vnot + 2) % 3;
next_edge = pivot_vertex;
direction = 1;
} else {
pivot_vertex = (vnot + 1) % 3;
next_edge = vnot % 3;
direction = 0;
}
} else {
if(direction == 0) {
pivot_vertex = (vnot + 1) % 3;
next_edge = vnot;
} else {
pivot_vertex = (vnot + 2) % 3;
next_edge = pivot_vertex;
}
}
stl->v_indices[facet_num].vertex[pivot_vertex] =
stl->stats.shared_vertices;
next_facet = stl->neighbors_start[facet_num].neighbor[next_edge];
if(next_facet == -1) {
if(reversed) {
break;
} else {
direction = 1;
vnot = (j + 1) % 3;
reversed = 1;
facet_num = first_facet;
}
} else if(next_facet != first_facet) {
vnot = stl->neighbors_start[facet_num].
which_vertex_not[next_edge];
facet_num = next_facet;
} else {
break;
}
}
stl->stats.shared_vertices += 1;
}
}
}
void
stl_write_off(stl_file *stl, char *file) {
int i;
FILE *fp;
char *error_msg;
if (stl->error) return;
/* Open the file */
fp = boost::nowide::fopen(file, "w");
if(fp == NULL) {
error_msg = (char*)
malloc(81 + strlen(file)); /* Allow 80 chars+file size for message */
sprintf(error_msg, "stl_write_ascii: Couldn't open %s for writing",
file);
perror(error_msg);
free(error_msg);
stl->error = 1;
return;
}
fprintf(fp, "OFF\n");
fprintf(fp, "%d %d 0\n",
stl->stats.shared_vertices, stl->stats.number_of_facets);
for(i = 0; i < stl->stats.shared_vertices; i++) {
fprintf(fp, "\t%f %f %f\n",
stl->v_shared[i](0), stl->v_shared[i](1), stl->v_shared[i](2));
}
for(i = 0; i < stl->stats.number_of_facets; i++) {
fprintf(fp, "\t3 %d %d %d\n", stl->v_indices[i].vertex[0],
stl->v_indices[i].vertex[1], stl->v_indices[i].vertex[2]);
}
fclose(fp);
}
void
stl_write_vrml(stl_file *stl, char *file) {
int i;
FILE *fp;
char *error_msg;
if (stl->error) return;
/* Open the file */
fp = boost::nowide::fopen(file, "w");
if(fp == NULL) {
error_msg = (char*)
malloc(81 + strlen(file)); /* Allow 80 chars+file size for message */
sprintf(error_msg, "stl_write_ascii: Couldn't open %s for writing",
file);
perror(error_msg);
free(error_msg);
stl->error = 1;
return;
}
fprintf(fp, "#VRML V1.0 ascii\n\n");
fprintf(fp, "Separator {\n");
fprintf(fp, "\tDEF STLShape ShapeHints {\n");
fprintf(fp, "\t\tvertexOrdering COUNTERCLOCKWISE\n");
fprintf(fp, "\t\tfaceType CONVEX\n");
fprintf(fp, "\t\tshapeType SOLID\n");
fprintf(fp, "\t\tcreaseAngle 0.0\n");
fprintf(fp, "\t}\n");
fprintf(fp, "\tDEF STLModel Separator {\n");
fprintf(fp, "\t\tDEF STLColor Material {\n");
fprintf(fp, "\t\t\temissiveColor 0.700000 0.700000 0.000000\n");
fprintf(fp, "\t\t}\n");
fprintf(fp, "\t\tDEF STLVertices Coordinate3 {\n");
fprintf(fp, "\t\t\tpoint [\n");
for(i = 0; i < (stl->stats.shared_vertices - 1); i++) {
fprintf(fp, "\t\t\t\t%f %f %f,\n",
stl->v_shared[i](0), stl->v_shared[i](1), stl->v_shared[i](2));
}
fprintf(fp, "\t\t\t\t%f %f %f]\n",
stl->v_shared[i](0), stl->v_shared[i](1), stl->v_shared[i](2));
fprintf(fp, "\t\t}\n");
fprintf(fp, "\t\tDEF STLTriangles IndexedFaceSet {\n");
fprintf(fp, "\t\t\tcoordIndex [\n");
for(i = 0; i < (stl->stats.number_of_facets - 1); i++) {
fprintf(fp, "\t\t\t\t%d, %d, %d, -1,\n", stl->v_indices[i].vertex[0],
stl->v_indices[i].vertex[1], stl->v_indices[i].vertex[2]);
}
fprintf(fp, "\t\t\t\t%d, %d, %d, -1]\n", stl->v_indices[i].vertex[0],
stl->v_indices[i].vertex[1], stl->v_indices[i].vertex[2]);
fprintf(fp, "\t\t}\n");
fprintf(fp, "\t}\n");
fprintf(fp, "}\n");
fclose(fp);
}
void stl_write_obj (stl_file *stl, char *file) {
int i;
FILE* fp;
if (stl->error) return;
/* Open the file */
fp = boost::nowide::fopen(file, "w");
if (fp == NULL) {
char* error_msg = (char*)malloc(81 + strlen(file)); /* Allow 80 chars+file size for message */
sprintf(error_msg, "stl_write_ascii: Couldn't open %s for writing", file);
perror(error_msg);
free(error_msg);
stl->error = 1;
return;
}
for (i = 0; i < stl->stats.shared_vertices; i++) {
fprintf(fp, "v %f %f %f\n", stl->v_shared[i](0), stl->v_shared[i](1), stl->v_shared[i](2));
}
for (i = 0; i < stl->stats.number_of_facets; i++) {
fprintf(fp, "f %d %d %d\n", stl->v_indices[i].vertex[0]+1, stl->v_indices[i].vertex[1]+1, stl->v_indices[i].vertex[2]+1);
}
fclose(fp);
}

215
src/admesh/stl.h Normal file
View file

@ -0,0 +1,215 @@
/* ADMesh -- process triangulated solid meshes
* Copyright (C) 1995, 1996 Anthony D. Martin <amartin@engr.csulb.edu>
* Copyright (C) 2013, 2014 several contributors, see AUTHORS
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Questions, comments, suggestions, etc to
* https://github.com/admesh/admesh/issues
*/
#ifndef __admesh_stl__
#define __admesh_stl__
#include <stdio.h>
#include <stdint.h>
#include <stddef.h>
#include <Eigen/Geometry>
// Size of the binary STL header, free form.
#define LABEL_SIZE 80
// Binary STL, length of the "number of faces" counter.
#define NUM_FACET_SIZE 4
// Binary STL, sizeof header + number of faces.
#define HEADER_SIZE 84
#define STL_MIN_FILE_SIZE 284
#define ASCII_LINES_PER_FACET 7
typedef Eigen::Matrix<float, 3, 1, Eigen::DontAlign> stl_vertex;
typedef Eigen::Matrix<float, 3, 1, Eigen::DontAlign> stl_normal;
static_assert(sizeof(stl_vertex) == 12, "size of stl_vertex incorrect");
static_assert(sizeof(stl_normal) == 12, "size of stl_normal incorrect");
typedef struct {
stl_normal normal;
stl_vertex vertex[3];
char extra[2];
} stl_facet;
#define SIZEOF_STL_FACET 50
static_assert(offsetof(stl_facet, normal) == 0, "stl_facet.normal has correct offset");
static_assert(offsetof(stl_facet, vertex) == 12, "stl_facet.vertex has correct offset");
static_assert(offsetof(stl_facet, extra ) == 48, "stl_facet.extra has correct offset");
static_assert(sizeof(stl_facet) >= SIZEOF_STL_FACET, "size of stl_facet incorrect");
typedef enum {binary, ascii, inmemory} stl_type;
typedef struct {
stl_vertex p1;
stl_vertex p2;
int facet_number;
} stl_edge;
typedef struct stl_hash_edge {
// Key of a hash edge: sorted vertices of the edge.
unsigned char key[2 * sizeof(stl_vertex)];
// Compare two keys.
bool operator==(const stl_hash_edge &rhs) { return memcmp(key, rhs.key, sizeof(key)) == 0; }
bool operator!=(const stl_hash_edge &rhs) { return ! (*this == rhs); }
int hash(int M) const { return ((key[0] / 23 + key[1] / 19 + key[2] / 17 + key[3] /13 + key[4] / 11 + key[5] / 7 ) % M); }
// Index of a facet owning this edge.
int facet_number;
// Index of this edge inside the facet with an index of facet_number.
// If this edge is stored backwards, which_edge is increased by 3.
int which_edge;
struct stl_hash_edge *next;
} stl_hash_edge;
typedef struct {
// Index of a neighbor facet.
int neighbor[3];
// Index of an opposite vertex at the neighbor face.
char which_vertex_not[3];
} stl_neighbors;
typedef struct {
int vertex[3];
} v_indices_struct;
typedef struct {
char header[81];
stl_type type;
uint32_t number_of_facets;
stl_vertex max;
stl_vertex min;
stl_vertex size;
float bounding_diameter;
float shortest_edge;
float volume;
unsigned number_of_blocks;
int connected_edges;
int connected_facets_1_edge;
int connected_facets_2_edge;
int connected_facets_3_edge;
int facets_w_1_bad_edge;
int facets_w_2_bad_edge;
int facets_w_3_bad_edge;
int original_num_facets;
int edges_fixed;
int degenerate_facets;
int facets_removed;
int facets_added;
int facets_reversed;
int backwards_edges;
int normals_fixed;
int number_of_parts;
int malloced;
int freed;
int facets_malloced;
int collisions;
int shared_vertices;
int shared_malloced;
} stl_stats;
typedef struct {
FILE *fp;
stl_facet *facet_start;
stl_edge *edge_start;
stl_hash_edge **heads;
stl_hash_edge *tail;
int M;
stl_neighbors *neighbors_start;
v_indices_struct *v_indices;
stl_vertex *v_shared;
stl_stats stats;
char error;
} stl_file;
extern void stl_open(stl_file *stl, const char *file);
extern void stl_close(stl_file *stl);
extern void stl_stats_out(stl_file *stl, FILE *file, char *input_file);
extern void stl_print_edges(stl_file *stl, FILE *file);
extern void stl_print_neighbors(stl_file *stl, char *file);
extern void stl_put_little_int(FILE *fp, int value_in);
extern void stl_put_little_float(FILE *fp, float value_in);
extern void stl_write_ascii(stl_file *stl, const char *file, const char *label);
extern void stl_write_binary(stl_file *stl, const char *file, const char *label);
extern void stl_write_binary_block(stl_file *stl, FILE *fp);
extern void stl_check_facets_exact(stl_file *stl);
extern void stl_check_facets_nearby(stl_file *stl, float tolerance);
extern void stl_remove_unconnected_facets(stl_file *stl);
extern void stl_write_vertex(stl_file *stl, int facet, int vertex);
extern void stl_write_facet(stl_file *stl, char *label, int facet);
extern void stl_write_edge(stl_file *stl, char *label, stl_hash_edge edge);
extern void stl_write_neighbor(stl_file *stl, int facet);
extern void stl_write_quad_object(stl_file *stl, char *file);
extern void stl_verify_neighbors(stl_file *stl);
extern void stl_fill_holes(stl_file *stl);
extern void stl_fix_normal_directions(stl_file *stl);
extern void stl_fix_normal_values(stl_file *stl);
extern void stl_reverse_all_facets(stl_file *stl);
extern void stl_translate(stl_file *stl, float x, float y, float z);
extern void stl_translate_relative(stl_file *stl, float x, float y, float z);
extern void stl_scale_versor(stl_file *stl, const stl_vertex &versor);
inline void stl_scale(stl_file *stl, float factor) { stl_scale_versor(stl, stl_vertex(factor, factor, factor)); }
extern void stl_rotate_x(stl_file *stl, float angle);
extern void stl_rotate_y(stl_file *stl, float angle);
extern void stl_rotate_z(stl_file *stl, float angle);
extern void stl_mirror_xy(stl_file *stl);
extern void stl_mirror_yz(stl_file *stl);
extern void stl_mirror_xz(stl_file *stl);
extern void stl_transform(stl_file *stl, float *trafo3x4);
extern void stl_transform(stl_file *stl, const Eigen::Transform<float, 3, Eigen::Affine, Eigen::DontAlign>& t);
extern void stl_open_merge(stl_file *stl, char *file);
extern void stl_invalidate_shared_vertices(stl_file *stl);
extern void stl_generate_shared_vertices(stl_file *stl);
extern void stl_write_obj(stl_file *stl, char *file);
extern void stl_write_off(stl_file *stl, char *file);
extern void stl_write_dxf(stl_file *stl, char *file, char *label);
extern void stl_write_vrml(stl_file *stl, char *file);
inline void stl_calculate_normal(stl_normal &normal, stl_facet *facet) {
normal = (facet->vertex[1] - facet->vertex[0]).cross(facet->vertex[2] - facet->vertex[0]);
}
inline void stl_normalize_vector(stl_normal &normal) {
double length = normal.cast<double>().norm();
if (length < 0.000000000001)
normal = stl_normal::Zero();
else
normal *= (1.0 / length);
}
inline bool stl_vertex_lower(const stl_vertex &a, const stl_vertex &b) {
return (a(0) != b(0)) ? (a(0) < b(0)) :
((a(1) != b(1)) ? (a(1) < b(1)) : (a(2) < b(2)));
}
extern void stl_calculate_volume(stl_file *stl);
extern void stl_repair(stl_file *stl, int fixall_flag, int exact_flag, int tolerance_flag, float tolerance, int increment_flag, float increment, int nearby_flag, int iterations, int remove_unconnected_flag, int fill_holes_flag, int normal_directions_flag, int normal_values_flag, int reverse_all_flag, int verbose_flag);
extern void stl_initialize(stl_file *stl);
extern void stl_count_facets(stl_file *stl, const char *file);
extern void stl_allocate(stl_file *stl);
extern void stl_read(stl_file *stl, int first_facet, bool first);
extern void stl_facet_stats(stl_file *stl, stl_facet facet, bool &first);
extern void stl_reallocate(stl_file *stl);
extern void stl_add_facet(stl_file *stl, stl_facet *new_facet);
extern void stl_get_size(stl_file *stl);
extern void stl_clear_error(stl_file *stl);
extern int stl_get_error(stl_file *stl);
extern void stl_exit_on_error(stl_file *stl);
#endif

433
src/admesh/stl_io.cpp Normal file
View file

@ -0,0 +1,433 @@
/* ADMesh -- process triangulated solid meshes
* Copyright (C) 1995, 1996 Anthony D. Martin <amartin@engr.csulb.edu>
* Copyright (C) 2013, 2014 several contributors, see AUTHORS
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Questions, comments, suggestions, etc to
* https://github.com/admesh/admesh/issues
*/
#include <stdlib.h>
#include <string.h>
#include "stl.h"
#include <boost/nowide/cstdio.hpp>
#include <boost/detail/endian.hpp>
#if !defined(SEEK_SET)
#define SEEK_SET 0
#define SEEK_CUR 1
#define SEEK_END 2
#endif
void
stl_print_edges(stl_file *stl, FILE *file) {
int i;
int edges_allocated;
if (stl->error) return;
edges_allocated = stl->stats.number_of_facets * 3;
for(i = 0; i < edges_allocated; i++) {
fprintf(file, "%d, %f, %f, %f, %f, %f, %f\n",
stl->edge_start[i].facet_number,
stl->edge_start[i].p1(0), stl->edge_start[i].p1(1),
stl->edge_start[i].p1(2), stl->edge_start[i].p2(0),
stl->edge_start[i].p2(1), stl->edge_start[i].p2(2));
}
}
void
stl_stats_out(stl_file *stl, FILE *file, char *input_file) {
if (stl->error) return;
/* this is here for Slic3r, without our config.h
it won't use this part of the code anyway */
#ifndef VERSION
#define VERSION "unknown"
#endif
fprintf(file, "\n\
================= Results produced by ADMesh version " VERSION " ================\n");
fprintf(file, "\
Input file : %s\n", input_file);
if(stl->stats.type == binary) {
fprintf(file, "\
File type : Binary STL file\n");
} else {
fprintf(file, "\
File type : ASCII STL file\n");
}
fprintf(file, "\
Header : %s\n", stl->stats.header);
fprintf(file, "============== Size ==============\n");
fprintf(file, "Min X = % f, Max X = % f\n",
stl->stats.min(0), stl->stats.max(0));
fprintf(file, "Min Y = % f, Max Y = % f\n",
stl->stats.min(1), stl->stats.max(1));
fprintf(file, "Min Z = % f, Max Z = % f\n",
stl->stats.min(2), stl->stats.max(2));
fprintf(file, "\
========= Facet Status ========== Original ============ Final ====\n");
fprintf(file, "\
Number of facets : %5d %5d\n",
stl->stats.original_num_facets, stl->stats.number_of_facets);
fprintf(file, "\
Facets with 1 disconnected edge : %5d %5d\n",
stl->stats.facets_w_1_bad_edge, stl->stats.connected_facets_2_edge -
stl->stats.connected_facets_3_edge);
fprintf(file, "\
Facets with 2 disconnected edges : %5d %5d\n",
stl->stats.facets_w_2_bad_edge, stl->stats.connected_facets_1_edge -
stl->stats.connected_facets_2_edge);
fprintf(file, "\
Facets with 3 disconnected edges : %5d %5d\n",
stl->stats.facets_w_3_bad_edge, stl->stats.number_of_facets -
stl->stats.connected_facets_1_edge);
fprintf(file, "\
Total disconnected facets : %5d %5d\n",
stl->stats.facets_w_1_bad_edge + stl->stats.facets_w_2_bad_edge +
stl->stats.facets_w_3_bad_edge, stl->stats.number_of_facets -
stl->stats.connected_facets_3_edge);
fprintf(file,
"=== Processing Statistics === ===== Other Statistics =====\n");
fprintf(file, "\
Number of parts : %5d Volume : % f\n",
stl->stats.number_of_parts, stl->stats.volume);
fprintf(file, "\
Degenerate facets : %5d\n", stl->stats.degenerate_facets);
fprintf(file, "\
Edges fixed : %5d\n", stl->stats.edges_fixed);
fprintf(file, "\
Facets removed : %5d\n", stl->stats.facets_removed);
fprintf(file, "\
Facets added : %5d\n", stl->stats.facets_added);
fprintf(file, "\
Facets reversed : %5d\n", stl->stats.facets_reversed);
fprintf(file, "\
Backwards edges : %5d\n", stl->stats.backwards_edges);
fprintf(file, "\
Normals fixed : %5d\n", stl->stats.normals_fixed);
}
void
stl_write_ascii(stl_file *stl, const char *file, const char *label) {
int i;
char *error_msg;
if (stl->error) return;
/* Open the file */
FILE *fp = boost::nowide::fopen(file, "w");
if(fp == NULL) {
error_msg = (char*)
malloc(81 + strlen(file)); /* Allow 80 chars+file size for message */
sprintf(error_msg, "stl_write_ascii: Couldn't open %s for writing",
file);
perror(error_msg);
free(error_msg);
stl->error = 1;
return;
}
fprintf(fp, "solid %s\n", label);
for(i = 0; i < stl->stats.number_of_facets; i++) {
fprintf(fp, " facet normal % .8E % .8E % .8E\n",
stl->facet_start[i].normal(0), stl->facet_start[i].normal(1),
stl->facet_start[i].normal(2));
fprintf(fp, " outer loop\n");
fprintf(fp, " vertex % .8E % .8E % .8E\n",
stl->facet_start[i].vertex[0](0), stl->facet_start[i].vertex[0](1),
stl->facet_start[i].vertex[0](2));
fprintf(fp, " vertex % .8E % .8E % .8E\n",
stl->facet_start[i].vertex[1](0), stl->facet_start[i].vertex[1](1),
stl->facet_start[i].vertex[1](2));
fprintf(fp, " vertex % .8E % .8E % .8E\n",
stl->facet_start[i].vertex[2](0), stl->facet_start[i].vertex[2](1),
stl->facet_start[i].vertex[2](2));
fprintf(fp, " endloop\n");
fprintf(fp, " endfacet\n");
}
fprintf(fp, "endsolid %s\n", label);
fclose(fp);
}
void
stl_print_neighbors(stl_file *stl, char *file) {
int i;
FILE *fp;
char *error_msg;
if (stl->error) return;
/* Open the file */
fp = boost::nowide::fopen(file, "w");
if(fp == NULL) {
error_msg = (char*)
malloc(81 + strlen(file)); /* Allow 80 chars+file size for message */
sprintf(error_msg, "stl_print_neighbors: Couldn't open %s for writing",
file);
perror(error_msg);
free(error_msg);
stl->error = 1;
return;
}
for(i = 0; i < stl->stats.number_of_facets; i++) {
fprintf(fp, "%d, %d,%d, %d,%d, %d,%d\n",
i,
stl->neighbors_start[i].neighbor[0],
(int)stl->neighbors_start[i].which_vertex_not[0],
stl->neighbors_start[i].neighbor[1],
(int)stl->neighbors_start[i].which_vertex_not[1],
stl->neighbors_start[i].neighbor[2],
(int)stl->neighbors_start[i].which_vertex_not[2]);
}
fclose(fp);
}
#ifndef BOOST_LITTLE_ENDIAN
// Swap a buffer of 32bit data from little endian to big endian and vice versa.
void stl_internal_reverse_quads(char *buf, size_t cnt)
{
for (size_t i = 0; i < cnt; i += 4) {
std::swap(buf[i], buf[i+3]);
std::swap(buf[i+1], buf[i+2]);
}
}
#endif
void
stl_write_binary(stl_file *stl, const char *file, const char *label) {
FILE *fp;
int i;
char *error_msg;
if (stl->error) return;
/* Open the file */
fp = boost::nowide::fopen(file, "wb");
if(fp == NULL) {
error_msg = (char*)
malloc(81 + strlen(file)); /* Allow 80 chars+file size for message */
sprintf(error_msg, "stl_write_binary: Couldn't open %s for writing",
file);
perror(error_msg);
free(error_msg);
stl->error = 1;
return;
}
fprintf(fp, "%s", label);
for(i = strlen(label); i < LABEL_SIZE; i++) putc(0, fp);
fseek(fp, LABEL_SIZE, SEEK_SET);
#ifdef BOOST_LITTLE_ENDIAN
fwrite(&stl->stats.number_of_facets, 4, 1, fp);
for (i = 0; i < stl->stats.number_of_facets; ++ i)
fwrite(stl->facet_start + i, SIZEOF_STL_FACET, 1, fp);
#else /* BOOST_LITTLE_ENDIAN */
char buffer[50];
// Convert the number of facets to little endian.
memcpy(buffer, &stl->stats.number_of_facets, 4);
stl_internal_reverse_quads(buffer, 4);
fwrite(buffer, 4, 1, fp);
for (i = 0; i < stl->stats.number_of_facets; ++ i) {
memcpy(buffer, stl->facet_start + i, 50);
// Convert to little endian.
stl_internal_reverse_quads(buffer, 48);
fwrite(buffer, SIZEOF_STL_FACET, 1, fp);
}
#endif /* BOOST_LITTLE_ENDIAN */
fclose(fp);
}
void
stl_write_vertex(stl_file *stl, int facet, int vertex) {
if (stl->error) return;
printf(" vertex %d/%d % .8E % .8E % .8E\n", vertex, facet,
stl->facet_start[facet].vertex[vertex](0),
stl->facet_start[facet].vertex[vertex](1),
stl->facet_start[facet].vertex[vertex](2));
}
void
stl_write_facet(stl_file *stl, char *label, int facet) {
if (stl->error) return;
printf("facet (%d)/ %s\n", facet, label);
stl_write_vertex(stl, facet, 0);
stl_write_vertex(stl, facet, 1);
stl_write_vertex(stl, facet, 2);
}
void
stl_write_edge(stl_file *stl, char *label, stl_hash_edge edge) {
if (stl->error) return;
printf("edge (%d)/(%d) %s\n", edge.facet_number, edge.which_edge, label);
if(edge.which_edge < 3) {
stl_write_vertex(stl, edge.facet_number, edge.which_edge % 3);
stl_write_vertex(stl, edge.facet_number, (edge.which_edge + 1) % 3);
} else {
stl_write_vertex(stl, edge.facet_number, (edge.which_edge + 1) % 3);
stl_write_vertex(stl, edge.facet_number, edge.which_edge % 3);
}
}
void
stl_write_neighbor(stl_file *stl, int facet) {
if (stl->error) return;
printf("Neighbors %d: %d, %d, %d ; %d, %d, %d\n", facet,
stl->neighbors_start[facet].neighbor[0],
stl->neighbors_start[facet].neighbor[1],
stl->neighbors_start[facet].neighbor[2],
stl->neighbors_start[facet].which_vertex_not[0],
stl->neighbors_start[facet].which_vertex_not[1],
stl->neighbors_start[facet].which_vertex_not[2]);
}
void
stl_write_quad_object(stl_file *stl, char *file) {
FILE *fp;
int i;
int j;
char *error_msg;
stl_vertex connect_color = stl_vertex::Zero();
stl_vertex uncon_1_color = stl_vertex::Zero();
stl_vertex uncon_2_color = stl_vertex::Zero();
stl_vertex uncon_3_color = stl_vertex::Zero();
stl_vertex color;
if (stl->error) return;
/* Open the file */
fp = boost::nowide::fopen(file, "w");
if(fp == NULL) {
error_msg = (char*)
malloc(81 + strlen(file)); /* Allow 80 chars+file size for message */
sprintf(error_msg, "stl_write_quad_object: Couldn't open %s for writing",
file);
perror(error_msg);
free(error_msg);
stl->error = 1;
return;
}
fprintf(fp, "CQUAD\n");
for(i = 0; i < stl->stats.number_of_facets; i++) {
j = ((stl->neighbors_start[i].neighbor[0] == -1) +
(stl->neighbors_start[i].neighbor[1] == -1) +
(stl->neighbors_start[i].neighbor[2] == -1));
if(j == 0) {
color = connect_color;
} else if(j == 1) {
color = uncon_1_color;
} else if(j == 2) {
color = uncon_2_color;
} else {
color = uncon_3_color;
}
fprintf(fp, "%f %f %f %1.1f %1.1f %1.1f 1\n",
stl->facet_start[i].vertex[0](0),
stl->facet_start[i].vertex[0](1),
stl->facet_start[i].vertex[0](2), color(0), color(1), color(2));
fprintf(fp, "%f %f %f %1.1f %1.1f %1.1f 1\n",
stl->facet_start[i].vertex[1](0),
stl->facet_start[i].vertex[1](1),
stl->facet_start[i].vertex[1](2), color(0), color(1), color(2));
fprintf(fp, "%f %f %f %1.1f %1.1f %1.1f 1\n",
stl->facet_start[i].vertex[2](0),
stl->facet_start[i].vertex[2](1),
stl->facet_start[i].vertex[2](2), color(0), color(1), color(2));
fprintf(fp, "%f %f %f %1.1f %1.1f %1.1f 1\n",
stl->facet_start[i].vertex[2](0),
stl->facet_start[i].vertex[2](1),
stl->facet_start[i].vertex[2](2), color(0), color(1), color(2));
}
fclose(fp);
}
void
stl_write_dxf(stl_file *stl, char *file, char *label) {
int i;
FILE *fp;
char *error_msg;
if (stl->error) return;
/* Open the file */
fp = boost::nowide::fopen(file, "w");
if(fp == NULL) {
error_msg = (char*)
malloc(81 + strlen(file)); /* Allow 80 chars+file size for message */
sprintf(error_msg, "stl_write_ascii: Couldn't open %s for writing",
file);
perror(error_msg);
free(error_msg);
stl->error = 1;
return;
}
fprintf(fp, "999\n%s\n", label);
fprintf(fp, "0\nSECTION\n2\nHEADER\n0\nENDSEC\n");
fprintf(fp, "0\nSECTION\n2\nTABLES\n0\nTABLE\n2\nLAYER\n70\n1\n\
0\nLAYER\n2\n0\n70\n0\n62\n7\n6\nCONTINUOUS\n0\nENDTAB\n0\nENDSEC\n");
fprintf(fp, "0\nSECTION\n2\nBLOCKS\n0\nENDSEC\n");
fprintf(fp, "0\nSECTION\n2\nENTITIES\n");
for(i = 0; i < stl->stats.number_of_facets; i++) {
fprintf(fp, "0\n3DFACE\n8\n0\n");
fprintf(fp, "10\n%f\n20\n%f\n30\n%f\n",
stl->facet_start[i].vertex[0](0), stl->facet_start[i].vertex[0](1),
stl->facet_start[i].vertex[0](2));
fprintf(fp, "11\n%f\n21\n%f\n31\n%f\n",
stl->facet_start[i].vertex[1](0), stl->facet_start[i].vertex[1](1),
stl->facet_start[i].vertex[1](2));
fprintf(fp, "12\n%f\n22\n%f\n32\n%f\n",
stl->facet_start[i].vertex[2](0), stl->facet_start[i].vertex[2](1),
stl->facet_start[i].vertex[2](2));
fprintf(fp, "13\n%f\n23\n%f\n33\n%f\n",
stl->facet_start[i].vertex[2](0), stl->facet_start[i].vertex[2](1),
stl->facet_start[i].vertex[2](2));
}
fprintf(fp, "0\nENDSEC\n0\nEOF\n");
fclose(fp);
}
void
stl_clear_error(stl_file *stl) {
stl->error = 0;
}
void
stl_exit_on_error(stl_file *stl) {
if (!stl->error) return;
stl->error = 0;
stl_close(stl);
exit(1);
}
int
stl_get_error(stl_file *stl) {
return stl->error;
}

382
src/admesh/stlinit.cpp Normal file
View file

@ -0,0 +1,382 @@
/* ADMesh -- process triangulated solid meshes
* Copyright (C) 1995, 1996 Anthony D. Martin <amartin@engr.csulb.edu>
* Copyright (C) 2013, 2014 several contributors, see AUTHORS
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Questions, comments, suggestions, etc to
* https://github.com/admesh/admesh/issues
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <assert.h>
#include <boost/nowide/cstdio.hpp>
#include <boost/detail/endian.hpp>
#include "stl.h"
#ifndef SEEK_SET
#error "SEEK_SET not defined"
#endif
void
stl_open(stl_file *stl, const char *file) {
stl_initialize(stl);
stl_count_facets(stl, file);
stl_allocate(stl);
stl_read(stl, 0, true);
if (!stl->error) fclose(stl->fp);
}
void
stl_initialize(stl_file *stl) {
memset(stl, 0, sizeof(stl_file));
stl->stats.volume = -1.0;
}
#ifndef BOOST_LITTLE_ENDIAN
extern void stl_internal_reverse_quads(char *buf, size_t cnt);
#endif /* BOOST_LITTLE_ENDIAN */
void
stl_count_facets(stl_file *stl, const char *file) {
long file_size;
uint32_t header_num_facets;
uint32_t num_facets;
int i;
size_t s;
unsigned char chtest[128];
int num_lines = 1;
char *error_msg;
if (stl->error) return;
/* Open the file in binary mode first */
stl->fp = boost::nowide::fopen(file, "rb");
if(stl->fp == NULL) {
error_msg = (char*)
malloc(81 + strlen(file)); /* Allow 80 chars+file size for message */
sprintf(error_msg, "stl_initialize: Couldn't open %s for reading",
file);
perror(error_msg);
free(error_msg);
stl->error = 1;
return;
}
/* Find size of file */
fseek(stl->fp, 0, SEEK_END);
file_size = ftell(stl->fp);
/* Check for binary or ASCII file */
fseek(stl->fp, HEADER_SIZE, SEEK_SET);
if (!fread(chtest, sizeof(chtest), 1, stl->fp)) {
perror("The input is an empty file");
stl->error = 1;
return;
}
stl->stats.type = ascii;
for(s = 0; s < sizeof(chtest); s++) {
if(chtest[s] > 127) {
stl->stats.type = binary;
break;
}
}
rewind(stl->fp);
/* Get the header and the number of facets in the .STL file */
/* If the .STL file is binary, then do the following */
if(stl->stats.type == binary) {
/* Test if the STL file has the right size */
if(((file_size - HEADER_SIZE) % SIZEOF_STL_FACET != 0)
|| (file_size < STL_MIN_FILE_SIZE)) {
fprintf(stderr, "The file %s has the wrong size.\n", file);
stl->error = 1;
return;
}
num_facets = (file_size - HEADER_SIZE) / SIZEOF_STL_FACET;
/* Read the header */
if (fread(stl->stats.header, LABEL_SIZE, 1, stl->fp) > 79) {
stl->stats.header[80] = '\0';
}
/* Read the int following the header. This should contain # of facets */
bool header_num_faces_read = fread(&header_num_facets, sizeof(uint32_t), 1, stl->fp);
#ifndef BOOST_LITTLE_ENDIAN
// Convert from little endian to big endian.
stl_internal_reverse_quads((char*)&header_num_facets, 4);
#endif /* BOOST_LITTLE_ENDIAN */
if (! header_num_faces_read || num_facets != header_num_facets) {
fprintf(stderr,
"Warning: File size doesn't match number of facets in the header\n");
}
}
/* Otherwise, if the .STL file is ASCII, then do the following */
else {
/* Reopen the file in text mode (for getting correct newlines on Windows) */
// fix to silence a warning about unused return value.
// obviously if it fails we have problems....
stl->fp = boost::nowide::freopen(file, "r", stl->fp);
// do another null check to be safe
if(stl->fp == NULL) {
error_msg = (char*)
malloc(81 + strlen(file)); /* Allow 80 chars+file size for message */
sprintf(error_msg, "stl_initialize: Couldn't open %s for reading",
file);
perror(error_msg);
free(error_msg);
stl->error = 1;
return;
}
/* Find the number of facets */
char linebuf[100];
while (fgets(linebuf, 100, stl->fp) != NULL) {
/* don't count short lines */
if (strlen(linebuf) <= 4) continue;
/* skip solid/endsolid lines as broken STL file generators may put several of them */
if (strncmp(linebuf, "solid", 5) == 0 || strncmp(linebuf, "endsolid", 8) == 0) continue;
++num_lines;
}
rewind(stl->fp);
/* Get the header */
for(i = 0;
(i < 80) && (stl->stats.header[i] = getc(stl->fp)) != '\n'; i++);
stl->stats.header[i] = '\0'; /* Lose the '\n' */
stl->stats.header[80] = '\0';
num_facets = num_lines / ASCII_LINES_PER_FACET;
}
stl->stats.number_of_facets += num_facets;
stl->stats.original_num_facets = stl->stats.number_of_facets;
}
void
stl_allocate(stl_file *stl) {
if (stl->error) return;
/* Allocate memory for the entire .STL file */
stl->facet_start = (stl_facet*)calloc(stl->stats.number_of_facets,
sizeof(stl_facet));
if(stl->facet_start == NULL) perror("stl_initialize");
stl->stats.facets_malloced = stl->stats.number_of_facets;
/* Allocate memory for the neighbors list */
stl->neighbors_start = (stl_neighbors*)
calloc(stl->stats.number_of_facets, sizeof(stl_neighbors));
if(stl->facet_start == NULL) perror("stl_initialize");
}
void
stl_open_merge(stl_file *stl, char *file_to_merge) {
int num_facets_so_far;
stl_type origStlType;
FILE *origFp;
stl_file stl_to_merge;
if (stl->error) return;
/* Record how many facets we have so far from the first file. We will start putting
facets in the next position. Since we're 0-indexed, it'l be the same position. */
num_facets_so_far = stl->stats.number_of_facets;
/* Record the file type we started with: */
origStlType=stl->stats.type;
/* Record the file pointer too: */
origFp=stl->fp;
/* Initialize the sturucture with zero stats, header info and sizes: */
stl_initialize(&stl_to_merge);
stl_count_facets(&stl_to_merge, file_to_merge);
/* Copy what we need to into stl so that we can read the file_to_merge directly into it
using stl_read: Save the rest of the valuable info: */
stl->stats.type=stl_to_merge.stats.type;
stl->fp=stl_to_merge.fp;
/* Add the number of facets we already have in stl with what we we found in stl_to_merge but
haven't read yet. */
stl->stats.number_of_facets=num_facets_so_far+stl_to_merge.stats.number_of_facets;
/* Allocate enough room for stl->stats.number_of_facets facets and neighbors: */
stl_reallocate(stl);
/* Read the file to merge directly into stl, adding it to what we have already.
Start at num_facets_so_far, the index to the first unused facet. Also say
that this isn't our first time so we should augment stats like min and max
instead of erasing them. */
stl_read(stl, num_facets_so_far, false);
/* Restore the stl information we overwrote (for stl_read) so that it still accurately
reflects the subject part: */
stl->stats.type=origStlType;
stl->fp=origFp;
}
extern void
stl_reallocate(stl_file *stl) {
if (stl->error) return;
/* Reallocate more memory for the .STL file(s) */
stl->facet_start = (stl_facet*)realloc(stl->facet_start, stl->stats.number_of_facets *
sizeof(stl_facet));
if(stl->facet_start == NULL) perror("stl_initialize");
stl->stats.facets_malloced = stl->stats.number_of_facets;
/* Reallocate more memory for the neighbors list */
stl->neighbors_start = (stl_neighbors*)
realloc(stl->neighbors_start, stl->stats.number_of_facets *
sizeof(stl_neighbors));
if(stl->facet_start == NULL) perror("stl_initialize");
}
/* Reads the contents of the file pointed to by stl->fp into the stl structure,
starting at facet first_facet. The second argument says if it's our first
time running this for the stl and therefore we should reset our max and min stats. */
void stl_read(stl_file *stl, int first_facet, bool first) {
stl_facet facet;
int i;
if (stl->error) return;
if(stl->stats.type == binary) {
fseek(stl->fp, HEADER_SIZE, SEEK_SET);
} else {
rewind(stl->fp);
}
char normal_buf[3][32];
for(i = first_facet; i < stl->stats.number_of_facets; i++) {
if(stl->stats.type == binary)
/* Read a single facet from a binary .STL file */
{
/* we assume little-endian architecture! */
if (fread(&facet, 1, SIZEOF_STL_FACET, stl->fp) != SIZEOF_STL_FACET) {
stl->error = 1;
return;
}
#ifndef BOOST_LITTLE_ENDIAN
// Convert the loaded little endian data to big endian.
stl_internal_reverse_quads((char*)&facet, 48);
#endif /* BOOST_LITTLE_ENDIAN */
} else
/* Read a single facet from an ASCII .STL file */
{
// skip solid/endsolid
// (in this order, otherwise it won't work when they are paired in the middle of a file)
fscanf(stl->fp, "endsolid%*[^\n]\n");
fscanf(stl->fp, "solid%*[^\n]\n"); // name might contain spaces so %*s doesn't work and it also can be empty (just "solid")
// Leading space in the fscanf format skips all leading white spaces including numerous new lines and tabs.
int res_normal = fscanf(stl->fp, " facet normal %31s %31s %31s", normal_buf[0], normal_buf[1], normal_buf[2]);
assert(res_normal == 3);
int res_outer_loop = fscanf(stl->fp, " outer loop");
assert(res_outer_loop == 0);
int res_vertex1 = fscanf(stl->fp, " vertex %f %f %f", &facet.vertex[0](0), &facet.vertex[0](1), &facet.vertex[0](2));
assert(res_vertex1 == 3);
int res_vertex2 = fscanf(stl->fp, " vertex %f %f %f", &facet.vertex[1](0), &facet.vertex[1](1), &facet.vertex[1](2));
assert(res_vertex2 == 3);
int res_vertex3 = fscanf(stl->fp, " vertex %f %f %f", &facet.vertex[2](0), &facet.vertex[2](1), &facet.vertex[2](2));
assert(res_vertex3 == 3);
int res_endloop = fscanf(stl->fp, " endloop");
assert(res_endloop == 0);
// There is a leading and trailing white space around endfacet to eat up all leading and trailing white spaces including numerous tabs and new lines.
int res_endfacet = fscanf(stl->fp, " endfacet ");
if (res_normal != 3 || res_outer_loop != 0 || res_vertex1 != 3 || res_vertex2 != 3 || res_vertex3 != 3 || res_endloop != 0 || res_endfacet != 0) {
perror("Something is syntactically very wrong with this ASCII STL!");
stl->error = 1;
return;
}
// The facet normal has been parsed as a single string as to workaround for not a numbers in the normal definition.
if (sscanf(normal_buf[0], "%f", &facet.normal(0)) != 1 ||
sscanf(normal_buf[1], "%f", &facet.normal(1)) != 1 ||
sscanf(normal_buf[2], "%f", &facet.normal(2)) != 1) {
// Normal was mangled. Maybe denormals or "not a number" were stored?
// Just reset the normal and silently ignore it.
memset(&facet.normal, 0, sizeof(facet.normal));
}
}
#if 0
// Report close to zero vertex coordinates. Due to the nature of the floating point numbers,
// close to zero values may be represented with singificantly higher precision than the rest of the vertices.
// It may be worth to round these numbers to zero during loading to reduce the number of errors reported
// during the STL import.
for (size_t j = 0; j < 3; ++ j) {
if (facet.vertex[j](0) > -1e-12f && facet.vertex[j](0) < 1e-12f)
printf("stl_read: facet %d(0) = %e\r\n", j, facet.vertex[j](0));
if (facet.vertex[j](1) > -1e-12f && facet.vertex[j](1) < 1e-12f)
printf("stl_read: facet %d(1) = %e\r\n", j, facet.vertex[j](1));
if (facet.vertex[j](2) > -1e-12f && facet.vertex[j](2) < 1e-12f)
printf("stl_read: facet %d(2) = %e\r\n", j, facet.vertex[j](2));
}
#endif
/* Write the facet into memory. */
stl->facet_start[i] = facet;
stl_facet_stats(stl, facet, first);
}
stl->stats.size = stl->stats.max - stl->stats.min;
stl->stats.bounding_diameter = stl->stats.size.norm();
}
void stl_facet_stats(stl_file *stl, stl_facet facet, bool &first)
{
if (stl->error)
return;
// While we are going through all of the facets, let's find the
// maximum and minimum values for x, y, and z
if (first) {
// Initialize the max and min values the first time through
stl->stats.min = facet.vertex[0];
stl->stats.max = facet.vertex[0];
stl_vertex diff = (facet.vertex[1] - facet.vertex[0]).cwiseAbs();
stl->stats.shortest_edge = std::max(diff(0), std::max(diff(1), diff(2)));
first = false;
}
// Now find the max and min values.
for (size_t i = 0; i < 3; ++ i) {
stl->stats.min = stl->stats.min.cwiseMin(facet.vertex[i]);
stl->stats.max = stl->stats.max.cwiseMax(facet.vertex[i]);
}
}
void
stl_close(stl_file *stl) {
if (stl->error) return;
if(stl->neighbors_start != NULL)
free(stl->neighbors_start);
if(stl->facet_start != NULL)
free(stl->facet_start);
if(stl->v_indices != NULL)
free(stl->v_indices);
if(stl->v_shared != NULL)
free(stl->v_shared);
}

518
src/admesh/util.cpp Normal file
View file

@ -0,0 +1,518 @@
/* ADMesh -- process triangulated solid meshes
* Copyright (C) 1995, 1996 Anthony D. Martin <amartin@engr.csulb.edu>
* Copyright (C) 2013, 2014 several contributors, see AUTHORS
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Questions, comments, suggestions, etc to
* https://github.com/admesh/admesh/issues
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "stl.h"
static void stl_rotate(float *x, float *y, const double c, const double s);
static float get_area(stl_facet *facet);
static float get_volume(stl_file *stl);
void
stl_verify_neighbors(stl_file *stl) {
int i;
int j;
stl_edge edge_a;
stl_edge edge_b;
int neighbor;
int vnot;
if (stl->error) return;
stl->stats.backwards_edges = 0;
for(i = 0; i < stl->stats.number_of_facets; i++) {
for(j = 0; j < 3; j++) {
edge_a.p1 = stl->facet_start[i].vertex[j];
edge_a.p2 = stl->facet_start[i].vertex[(j + 1) % 3];
neighbor = stl->neighbors_start[i].neighbor[j];
vnot = stl->neighbors_start[i].which_vertex_not[j];
if(neighbor == -1)
continue; /* this edge has no neighbor... Continue. */
if(vnot < 3) {
edge_b.p1 = stl->facet_start[neighbor].vertex[(vnot + 2) % 3];
edge_b.p2 = stl->facet_start[neighbor].vertex[(vnot + 1) % 3];
} else {
stl->stats.backwards_edges += 1;
edge_b.p1 = stl->facet_start[neighbor].vertex[(vnot + 1) % 3];
edge_b.p2 = stl->facet_start[neighbor].vertex[(vnot + 2) % 3];
}
if (edge_a.p1 != edge_b.p1 || edge_a.p2 != edge_b.p2) {
/* These edges should match but they don't. Print results. */
printf("edge %d of facet %d doesn't match edge %d of facet %d\n",
j, i, vnot + 1, neighbor);
stl_write_facet(stl, (char*)"first facet", i);
stl_write_facet(stl, (char*)"second facet", neighbor);
}
}
}
}
void stl_translate(stl_file *stl, float x, float y, float z)
{
if (stl->error)
return;
stl_vertex new_min(x, y, z);
stl_vertex shift = new_min - stl->stats.min;
for (int i = 0; i < stl->stats.number_of_facets; ++ i)
for (int j = 0; j < 3; ++ j)
stl->facet_start[i].vertex[j] += shift;
stl->stats.min = new_min;
stl->stats.max += shift;
stl_invalidate_shared_vertices(stl);
}
/* Translates the stl by x,y,z, relatively from wherever it is currently */
void stl_translate_relative(stl_file *stl, float x, float y, float z)
{
if (stl->error)
return;
stl_vertex shift(x, y, z);
for (int i = 0; i < stl->stats.number_of_facets; ++ i)
for (int j = 0; j < 3; ++ j)
stl->facet_start[i].vertex[j] += shift;
stl->stats.min += shift;
stl->stats.max += shift;
stl_invalidate_shared_vertices(stl);
}
void stl_scale_versor(stl_file *stl, const stl_vertex &versor)
{
if (stl->error)
return;
// Scale extents.
auto s = versor.array();
stl->stats.min.array() *= s;
stl->stats.max.array() *= s;
// Scale size.
stl->stats.size.array() *= s;
// Scale volume.
if (stl->stats.volume > 0.0)
stl->stats.volume *= versor(0) * versor(1) * versor(2);
// Scale the mesh.
for (int i = 0; i < stl->stats.number_of_facets; ++ i)
for (int j = 0; j < 3; ++ j)
stl->facet_start[i].vertex[j].array() *= s;
stl_invalidate_shared_vertices(stl);
}
static void calculate_normals(stl_file *stl)
{
if (stl->error)
return;
stl_normal normal;
for(uint32_t i = 0; i < stl->stats.number_of_facets; i++) {
stl_calculate_normal(normal, &stl->facet_start[i]);
stl_normalize_vector(normal);
stl->facet_start[i].normal = normal;
}
}
void stl_transform(stl_file *stl, float *trafo3x4) {
int i_face, i_vertex;
if (stl->error)
return;
for (i_face = 0; i_face < stl->stats.number_of_facets; ++ i_face) {
stl_vertex *vertices = stl->facet_start[i_face].vertex;
for (i_vertex = 0; i_vertex < 3; ++ i_vertex) {
stl_vertex &v_dst = vertices[i_vertex];
stl_vertex v_src = v_dst;
v_dst(0) = trafo3x4[0] * v_src(0) + trafo3x4[1] * v_src(1) + trafo3x4[2] * v_src(2) + trafo3x4[3];
v_dst(1) = trafo3x4[4] * v_src(0) + trafo3x4[5] * v_src(1) + trafo3x4[6] * v_src(2) + trafo3x4[7];
v_dst(2) = trafo3x4[8] * v_src(0) + trafo3x4[9] * v_src(1) + trafo3x4[10] * v_src(2) + trafo3x4[11];
}
}
stl_get_size(stl);
calculate_normals(stl);
}
void stl_transform(stl_file *stl, const Eigen::Transform<float, 3, Eigen::Affine, Eigen::DontAlign>& t)
{
if (stl->error)
return;
unsigned int vertices_count = 3 * (unsigned int)stl->stats.number_of_facets;
if (vertices_count == 0)
return;
Eigen::MatrixXf src_vertices(3, vertices_count);
stl_facet* facet_ptr = stl->facet_start;
unsigned int v_id = 0;
while (facet_ptr < stl->facet_start + stl->stats.number_of_facets)
{
for (int i = 0; i < 3; ++i)
{
::memcpy((void*)src_vertices.col(v_id).data(), (const void*)&facet_ptr->vertex[i], 3 * sizeof(float));
++v_id;
}
facet_ptr += 1;
}
Eigen::MatrixXf dst_vertices(3, vertices_count);
dst_vertices = t * src_vertices.colwise().homogeneous();
facet_ptr = stl->facet_start;
v_id = 0;
while (facet_ptr < stl->facet_start + stl->stats.number_of_facets)
{
for (int i = 0; i < 3; ++i)
{
::memcpy((void*)&facet_ptr->vertex[i], (const void*)dst_vertices.col(v_id).data(), 3 * sizeof(float));
++v_id;
}
facet_ptr += 1;
}
stl_get_size(stl);
calculate_normals(stl);
}
void
stl_rotate_x(stl_file *stl, float angle) {
int i;
int j;
double radian_angle = (angle / 180.0) * M_PI;
double c = cos(radian_angle);
double s = sin(radian_angle);
if (stl->error) return;
for(i = 0; i < stl->stats.number_of_facets; i++) {
for(j = 0; j < 3; j++) {
stl_rotate(&stl->facet_start[i].vertex[j](1),
&stl->facet_start[i].vertex[j](2), c, s);
}
}
stl_get_size(stl);
calculate_normals(stl);
}
void
stl_rotate_y(stl_file *stl, float angle) {
int i;
int j;
double radian_angle = (angle / 180.0) * M_PI;
double c = cos(radian_angle);
double s = sin(radian_angle);
if (stl->error) return;
for(i = 0; i < stl->stats.number_of_facets; i++) {
for(j = 0; j < 3; j++) {
stl_rotate(&stl->facet_start[i].vertex[j](2),
&stl->facet_start[i].vertex[j](0), c, s);
}
}
stl_get_size(stl);
calculate_normals(stl);
}
void
stl_rotate_z(stl_file *stl, float angle) {
int i;
int j;
double radian_angle = (angle / 180.0) * M_PI;
double c = cos(radian_angle);
double s = sin(radian_angle);
if (stl->error) return;
for(i = 0; i < stl->stats.number_of_facets; i++) {
for(j = 0; j < 3; j++) {
stl_rotate(&stl->facet_start[i].vertex[j](0),
&stl->facet_start[i].vertex[j](1), c, s);
}
}
stl_get_size(stl);
calculate_normals(stl);
}
static void
stl_rotate(float *x, float *y, const double c, const double s) {
double xold = *x;
double yold = *y;
*x = float(c * xold - s * yold);
*y = float(s * xold + c * yold);
}
void stl_get_size(stl_file *stl)
{
if (stl->error || stl->stats.number_of_facets == 0)
return;
stl->stats.min = stl->facet_start[0].vertex[0];
stl->stats.max = stl->stats.min;
for (int i = 0; i < stl->stats.number_of_facets; ++ i) {
const stl_facet &face = stl->facet_start[i];
for (int j = 0; j < 3; ++ j) {
stl->stats.min = stl->stats.min.cwiseMin(face.vertex[j]);
stl->stats.max = stl->stats.max.cwiseMax(face.vertex[j]);
}
}
stl->stats.size = stl->stats.max - stl->stats.min;
stl->stats.bounding_diameter = stl->stats.size.norm();
}
void stl_mirror_xy(stl_file *stl)
{
if (stl->error)
return;
for(int i = 0; i < stl->stats.number_of_facets; i++) {
for(int j = 0; j < 3; j++) {
stl->facet_start[i].vertex[j](2) *= -1.0;
}
}
float temp_size = stl->stats.min(2);
stl->stats.min(2) = stl->stats.max(2);
stl->stats.max(2) = temp_size;
stl->stats.min(2) *= -1.0;
stl->stats.max(2) *= -1.0;
stl_reverse_all_facets(stl);
stl->stats.facets_reversed -= stl->stats.number_of_facets; /* for not altering stats */
}
void stl_mirror_yz(stl_file *stl)
{
if (stl->error) return;
for (int i = 0; i < stl->stats.number_of_facets; i++) {
for (int j = 0; j < 3; j++) {
stl->facet_start[i].vertex[j](0) *= -1.0;
}
}
float temp_size = stl->stats.min(0);
stl->stats.min(0) = stl->stats.max(0);
stl->stats.max(0) = temp_size;
stl->stats.min(0) *= -1.0;
stl->stats.max(0) *= -1.0;
stl_reverse_all_facets(stl);
stl->stats.facets_reversed -= stl->stats.number_of_facets; /* for not altering stats */
}
void stl_mirror_xz(stl_file *stl)
{
if (stl->error)
return;
for (int i = 0; i < stl->stats.number_of_facets; i++) {
for (int j = 0; j < 3; j++) {
stl->facet_start[i].vertex[j](1) *= -1.0;
}
}
float temp_size = stl->stats.min(1);
stl->stats.min(1) = stl->stats.max(1);
stl->stats.max(1) = temp_size;
stl->stats.min(1) *= -1.0;
stl->stats.max(1) *= -1.0;
stl_reverse_all_facets(stl);
stl->stats.facets_reversed -= stl->stats.number_of_facets; /* for not altering stats */
}
static float get_volume(stl_file *stl)
{
if (stl->error)
return 0;
// Choose a point, any point as the reference.
stl_vertex p0 = stl->facet_start[0].vertex[0];
float volume = 0.f;
for(uint32_t i = 0; i < stl->stats.number_of_facets; ++ i) {
// Do dot product to get distance from point to plane.
float height = stl->facet_start[i].normal.dot(stl->facet_start[i].vertex[0] - p0);
float area = get_area(&stl->facet_start[i]);
volume += (area * height) / 3.0f;
}
return volume;
}
void stl_calculate_volume(stl_file *stl)
{
if (stl->error) return;
stl->stats.volume = get_volume(stl);
if(stl->stats.volume < 0.0) {
stl_reverse_all_facets(stl);
stl->stats.volume = -stl->stats.volume;
}
}
static float get_area(stl_facet *facet)
{
/* cast to double before calculating cross product because large coordinates
can result in overflowing product
(bad area is responsible for bad volume and bad facets reversal) */
double cross[3][3];
for (int i = 0; i < 3; i++) {
cross[i][0]=(((double)facet->vertex[i](1) * (double)facet->vertex[(i + 1) % 3](2)) -
((double)facet->vertex[i](2) * (double)facet->vertex[(i + 1) % 3](1)));
cross[i][1]=(((double)facet->vertex[i](2) * (double)facet->vertex[(i + 1) % 3](0)) -
((double)facet->vertex[i](0) * (double)facet->vertex[(i + 1) % 3](2)));
cross[i][2]=(((double)facet->vertex[i](0) * (double)facet->vertex[(i + 1) % 3](1)) -
((double)facet->vertex[i](1) * (double)facet->vertex[(i + 1) % 3](0)));
}
stl_normal sum;
sum(0) = cross[0][0] + cross[1][0] + cross[2][0];
sum(1) = cross[0][1] + cross[1][1] + cross[2][1];
sum(2) = cross[0][2] + cross[1][2] + cross[2][2];
// This should already be done. But just in case, let's do it again.
//FIXME this is questionable. the "sum" normal should be accurate, while the normal "n" may be calculated with a low accuracy.
stl_normal n;
stl_calculate_normal(n, facet);
stl_normalize_vector(n);
return 0.5f * n.dot(sum);
}
void stl_repair(stl_file *stl,
int fixall_flag,
int exact_flag,
int tolerance_flag,
float tolerance,
int increment_flag,
float increment,
int nearby_flag,
int iterations,
int remove_unconnected_flag,
int fill_holes_flag,
int normal_directions_flag,
int normal_values_flag,
int reverse_all_flag,
int verbose_flag) {
int i;
int last_edges_fixed = 0;
if (stl->error) return;
if(exact_flag || fixall_flag || nearby_flag || remove_unconnected_flag
|| fill_holes_flag || normal_directions_flag) {
if (verbose_flag)
printf("Checking exact...\n");
exact_flag = 1;
stl_check_facets_exact(stl);
stl->stats.facets_w_1_bad_edge =
(stl->stats.connected_facets_2_edge -
stl->stats.connected_facets_3_edge);
stl->stats.facets_w_2_bad_edge =
(stl->stats.connected_facets_1_edge -
stl->stats.connected_facets_2_edge);
stl->stats.facets_w_3_bad_edge =
(stl->stats.number_of_facets -
stl->stats.connected_facets_1_edge);
}
if(nearby_flag || fixall_flag) {
if(!tolerance_flag) {
tolerance = stl->stats.shortest_edge;
}
if(!increment_flag) {
increment = stl->stats.bounding_diameter / 10000.0;
}
if(stl->stats.connected_facets_3_edge < stl->stats.number_of_facets) {
for(i = 0; i < iterations; i++) {
if(stl->stats.connected_facets_3_edge <
stl->stats.number_of_facets) {
if (verbose_flag)
printf("\
Checking nearby. Tolerance= %f Iteration=%d of %d...",
tolerance, i + 1, iterations);
stl_check_facets_nearby(stl, tolerance);
if (verbose_flag)
printf(" Fixed %d edges.\n",
stl->stats.edges_fixed - last_edges_fixed);
last_edges_fixed = stl->stats.edges_fixed;
tolerance += increment;
} else {
if (verbose_flag)
printf("\
All facets connected. No further nearby check necessary.\n");
break;
}
}
} else {
if (verbose_flag)
printf("All facets connected. No nearby check necessary.\n");
}
}
if(remove_unconnected_flag || fixall_flag || fill_holes_flag) {
if(stl->stats.connected_facets_3_edge < stl->stats.number_of_facets) {
if (verbose_flag)
printf("Removing unconnected facets...\n");
stl_remove_unconnected_facets(stl);
} else
if (verbose_flag)
printf("No unconnected need to be removed.\n");
}
if(fill_holes_flag || fixall_flag) {
if(stl->stats.connected_facets_3_edge < stl->stats.number_of_facets) {
if (verbose_flag)
printf("Filling holes...\n");
stl_fill_holes(stl);
} else
if (verbose_flag)
printf("No holes need to be filled.\n");
}
if(reverse_all_flag) {
if (verbose_flag)
printf("Reversing all facets...\n");
stl_reverse_all_facets(stl);
}
if(normal_directions_flag || fixall_flag) {
if (verbose_flag)
printf("Checking normal directions...\n");
stl_fix_normal_directions(stl);
}
if(normal_values_flag || fixall_flag) {
if (verbose_flag)
printf("Checking normal values...\n");
stl_fix_normal_values(stl);
}
/* Always calculate the volume. It shouldn't take too long */
if (verbose_flag)
printf("Calculating volume...\n");
stl_calculate_volume(stl);
if(exact_flag) {
if (verbose_flag)
printf("Verifying neighbors...\n");
stl_verify_neighbors(stl);
}
}