ENH: ease removal of tree supports

Previously tree supports are harder to remove than normal
supports. We learn from normal supports and improve the gap between
object and supports.

Jira: STUDIO-3530

Change-Id: I229a7b869b334bdf4c5aba96c9450213b83457f2
This commit is contained in:
Arthur 2023-06-30 18:11:31 +08:00 committed by Lane.Wei
parent 73059c79af
commit 04bfe7e405
4 changed files with 128 additions and 38 deletions

View file

@ -196,6 +196,40 @@ public:
//BBS: this function calculate the maximum void grid area of sparse infill of this layer. Just estimated value
coordf_t get_sparse_infill_max_void_area();
// FN_HIGHER_EQUAL: the provided object pointer has a Z value >= of an internal threshold.
// Find the first item with Z value >= of an internal threshold of fn_higher_equal.
// If no vec item with Z value >= of an internal threshold of fn_higher_equal is found, return vec.size()
// If the initial idx is size_t(-1), then use binary search.
// Otherwise search linearly upwards.
template<typename IteratorType, typename IndexType, typename FN_HIGHER_EQUAL>
static IndexType idx_higher_or_equal(IteratorType begin, IteratorType end, IndexType idx, FN_HIGHER_EQUAL fn_higher_equal)
{
auto size = int(end - begin);
if (size == 0) {
idx = 0;
}
else if (idx == IndexType(-1)) {
// First of the batch of layers per thread pool invocation. Use binary search.
int idx_low = 0;
int idx_high = std::max(0, size - 1);
while (idx_low + 1 < idx_high) {
int idx_mid = (idx_low + idx_high) / 2;
if (fn_higher_equal(begin[idx_mid]))
idx_high = idx_mid;
else
idx_low = idx_mid;
}
idx = fn_higher_equal(begin[idx_low]) ? idx_low :
(fn_higher_equal(begin[idx_high]) ? idx_high : size);
}
else {
// For the other layers of this batch of layers, search incrementally, which is cheaper than the binary search.
while (int(idx) < size && !fn_higher_equal(begin[idx]))
++idx;
}
return idx;
}
protected:
friend class PrintObject;
friend std::vector<Layer*> new_layers(PrintObject*, const std::vector<coordf_t>&);

View file

@ -2834,41 +2834,10 @@ PrintObjectSupportMaterial::MyLayersPtr PrintObjectSupportMaterial::bottom_conta
return bottom_contacts;
}
// FN_HIGHER_EQUAL: the provided object pointer has a Z value >= of an internal threshold.
// Find the first item with Z value >= of an internal threshold of fn_higher_equal.
// If no vec item with Z value >= of an internal threshold of fn_higher_equal is found, return vec.size()
// If the initial idx is size_t(-1), then use binary search.
// Otherwise search linearly upwards.
template<typename IteratorType, typename IndexType, typename FN_HIGHER_EQUAL>
IndexType idx_higher_or_equal(IteratorType begin, IteratorType end, IndexType idx, FN_HIGHER_EQUAL fn_higher_equal)
{
auto size = int(end - begin);
if (size == 0) {
idx = 0;
} else if (idx == IndexType(-1)) {
// First of the batch of layers per thread pool invocation. Use binary search.
int idx_low = 0;
int idx_high = std::max(0, size - 1);
while (idx_low + 1 < idx_high) {
int idx_mid = (idx_low + idx_high) / 2;
if (fn_higher_equal(begin[idx_mid]))
idx_high = idx_mid;
else
idx_low = idx_mid;
}
idx = fn_higher_equal(begin[idx_low]) ? idx_low :
(fn_higher_equal(begin[idx_high]) ? idx_high : size);
} else {
// For the other layers of this batch of layers, search incrementally, which is cheaper than the binary search.
while (int(idx) < size && ! fn_higher_equal(begin[idx]))
++ idx;
}
return idx;
}
template<typename T, typename IndexType, typename FN_HIGHER_EQUAL>
IndexType idx_higher_or_equal(const std::vector<T>& vec, IndexType idx, FN_HIGHER_EQUAL fn_higher_equal)
{
return idx_higher_or_equal(vec.begin(), vec.end(), idx, fn_higher_equal);
return Layer::idx_higher_or_equal(vec.begin(), vec.end(), idx, fn_higher_equal);
}
// FN_LOWER_EQUAL: the provided object pointer has a Z value <= of an internal threshold.
@ -3353,7 +3322,7 @@ void PrintObjectSupportMaterial::trim_support_layers_by_object(
assert(! support_layer.polygons.empty() && support_layer.print_z >= m_slicing_params.raft_contact_top_z + EPSILON);
// Find the overlapping object layers including the extra above / below gap.
coordf_t z_threshold = support_layer.bottom_print_z() - gap_extra_below + EPSILON;
idx_object_layer_overlapping = idx_higher_or_equal(
idx_object_layer_overlapping = Layer::idx_higher_or_equal(
object.layers().begin(), object.layers().end(), idx_object_layer_overlapping,
[z_threshold](const Layer *layer){ return layer->print_z >= z_threshold; });
// Collect all the object layers intersecting with this layer.

View file

@ -1959,7 +1959,8 @@ coordf_t TreeSupport::calc_branch_radius(coordf_t base_radius, coordf_t mm_to_to
return radius;
}
ExPolygons avoid_object_remove_extra_small_parts(ExPolygons &expolys, const ExPolygons &avoid_region) {
template<typename RegionType> // RegionType could be ExPolygons or Polygons
ExPolygons avoid_object_remove_extra_small_parts(ExPolygons &expolys, const RegionType&avoid_region) {
ExPolygons expolys_out;
for (auto expoly : expolys) {
auto expolys_avoid = diff_ex(expoly, avoid_region);
@ -1977,6 +1978,82 @@ ExPolygons avoid_object_remove_extra_small_parts(ExPolygons &expolys, const ExPo
return expolys_out;
}
Polygons TreeSupport::get_trim_support_regions(
const PrintObject& object,
SupportLayer* support_layer_ptr,
const coordf_t gap_extra_above,
const coordf_t gap_extra_below,
const coordf_t gap_xy)
{
static const double sharp_tail_xy_gap = 0.2f;
static const double no_overlap_xy_gap = 0.2f;
double gap_xy_scaled = scale_(gap_xy);
SupportLayer& support_layer = *support_layer_ptr;
auto m_print_config = object.print()->config();
size_t idx_object_layer_overlapping = size_t(-1);
auto is_layers_overlap = [](const SupportLayer& support_layer, const Layer& object_layer, coordf_t bridging_height = 0.f) -> bool {
if (std::abs(support_layer.print_z - object_layer.print_z) < EPSILON)
return true;
coordf_t object_lh = bridging_height > EPSILON ? bridging_height : object_layer.height;
if (support_layer.print_z < object_layer.print_z && support_layer.print_z > object_layer.print_z - object_lh)
return true;
if (support_layer.print_z > object_layer.print_z && support_layer.bottom_z() < object_layer.print_z - EPSILON)
return true;
return false;
};
// Find the overlapping object layers including the extra above / below gap.
coordf_t z_threshold = support_layer.bottom_z() - gap_extra_below + EPSILON;
idx_object_layer_overlapping = Layer::idx_higher_or_equal(
object.layers().begin(), object.layers().end(), idx_object_layer_overlapping,
[z_threshold](const Layer* layer) { return layer->print_z >= z_threshold; });
// Collect all the object layers intersecting with this layer.
Polygons polygons_trimming;
size_t i = idx_object_layer_overlapping;
for (; i < object.layers().size(); ++i) {
const Layer& object_layer = *object.layers()[i];
if (object_layer.bottom_z() > support_layer.print_z + gap_extra_above - EPSILON)
break;
bool is_overlap = is_layers_overlap(support_layer, object_layer);
for (const ExPolygon& expoly : object_layer.lslices) {
// BBS
bool is_sharptail = !intersection_ex({ expoly }, object_layer.sharp_tails).empty();
coordf_t trimming_offset = is_sharptail ? scale_(sharp_tail_xy_gap) :
is_overlap ? gap_xy_scaled :
scale_(no_overlap_xy_gap);
polygons_append(polygons_trimming, offset({ expoly }, trimming_offset, SUPPORT_SURFACES_OFFSET_PARAMETERS));
}
}
if (!m_slicing_params.soluble_interface && m_object_config->thick_bridges) {
// Collect all bottom surfaces, which will be extruded with a bridging flow.
for (; i < object.layers().size(); ++i) {
const Layer& object_layer = *object.layers()[i];
bool some_region_overlaps = false;
for (LayerRegion* region : object_layer.regions()) {
coordf_t bridging_height = region->region().bridging_height_avg(m_print_config);
if (object_layer.print_z - bridging_height > support_layer.print_z + gap_extra_above - EPSILON)
break;
some_region_overlaps = true;
bool is_overlap = is_layers_overlap(support_layer, object_layer, bridging_height);
coordf_t trimming_offset = is_overlap ? gap_xy_scaled : scale_(no_overlap_xy_gap);
polygons_append(polygons_trimming,
offset(region->fill_surfaces.filter_by_type(stBottomBridge), trimming_offset, SUPPORT_SURFACES_OFFSET_PARAMETERS));
}
if (!some_region_overlaps)
break;
}
}
return polygons_trimming;
}
void TreeSupport::draw_circles(const std::vector<std::vector<Node*>>& contact_nodes)
{
const PrintObjectConfig &config = m_object->config();
@ -2171,7 +2248,8 @@ void TreeSupport::draw_circles(const std::vector<std::vector<Node*>>& contact_no
roof_1st_layer = std::move(offset2_ex(roof_1st_layer, contact_dist_scaled, -contact_dist_scaled));
// avoid object
auto avoid_region_interface = m_ts_data->get_collision(m_ts_data->m_xy_distance, layer_nr);
//ExPolygons avoid_region_interface = m_ts_data->get_collision(m_ts_data->m_xy_distance, layer_nr);
Polygons avoid_region_interface = get_trim_support_regions(*m_object, ts_layer, m_slicing_params.gap_object_support, m_slicing_params.gap_support_object, m_ts_data->m_xy_distance);
if (has_circle_node) {
roof_areas = avoid_object_remove_extra_small_parts(roof_areas, avoid_region_interface);
roof_1st_layer = avoid_object_remove_extra_small_parts(roof_1st_layer, avoid_region_interface);
@ -2248,7 +2326,7 @@ void TreeSupport::draw_circles(const std::vector<std::vector<Node*>>& contact_no
}
});
#if 1
if (with_lightning_infill)
{
const bool global_lightning_infill = true;
@ -2433,7 +2511,7 @@ void TreeSupport::draw_circles(const std::vector<std::vector<Node*>>& contact_no
}
}
}
#endif
#ifdef SUPPORT_TREE_DEBUG_TO_SVG
for (int layer_nr = m_object->layer_count() - 1; layer_nr >= 0; layer_nr--) {

View file

@ -20,6 +20,7 @@ namespace Slic3r
{
class PrintObject;
class TreeSupport;
class SupportLayer;
struct LayerHeightData
{
@ -494,6 +495,14 @@ private:
Polygons contact_nodes_to_polygon(const std::vector<Node*>& contact_nodes, Polygons layer_contours, int layer_nr, std::vector<double>& radiis, std::vector<bool>& is_interface);
coordf_t calc_branch_radius(coordf_t base_radius, size_t layers_to_top, size_t tip_layers, double diameter_angle_scale_factor);
coordf_t calc_branch_radius(coordf_t base_radius, coordf_t mm_to_top, double diameter_angle_scale_factor);
// similar to SupportMaterial::trim_support_layers_by_object
Polygons get_trim_support_regions(
const PrintObject& object,
SupportLayer* support_layer_ptr,
const coordf_t gap_extra_above,
const coordf_t gap_extra_below,
const coordf_t gap_xy);
};
}