Marlin/Marlin/src/feature/bedlevel/bdl/bdl.cpp
Scott Lahteine e99d801e6b
Some checks are pending
CI - Build Tests / Build Test (push) Waiting to run
CI - Unit Tests / Unit Test (push) Waiting to run
CI - Validate Source Files / Validate Source Files (push) Waiting to run
🧑‍💻 Add a "Marlin" class
2025-11-30 20:07:48 -06:00

259 lines
9 KiB
C++

/**
* Marlin 3D Printer Firmware
* Copyright (c) 2022 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../../../inc/MarlinConfig.h"
#if ENABLED(BD_SENSOR)
#include "../../../gcode/gcode.h"
#include "../../../module/settings.h"
#include "../../../module/motion.h"
#include "../../../module/planner.h"
#include "../../../module/stepper.h"
#include "../../../module/probe.h"
#include "../../../module/temperature.h"
#include "../../../module/endstops.h"
#include "../../babystep.h"
#include "../../../lcd/marlinui.h"
// I2C software Master library for segment bed heating and bed distance sensor
#include <Panda_segmentBed_I2C.h>
#include "bdl.h"
BDS_Leveling bdl;
//#define DEBUG_OUT_BD
#define DEBUG_OUT ENABLED(DEBUG_OUT_BD)
#include "../../../core/debug_out.h"
/**
* M102 S<#> : Set adjustable Z height in 0.1mm units (10ths of a mm)
* (e.g., 'M102 S4' enables adjusting for Z <= 0.4mm)
* M102 S0 : Disable adjustable Z height
*
* M102 S-1 : Read BDsensor version
* M102 S-2 : Read BDsensor distance value
* M102 S-5 : Read raw Calibration data
* M102 S-6 : Start Calibration
*/
#define MAX_BD_HEIGHT 4.0f
#define CMD_READ_VERSION 1016
#define CMD_START_READ_CALIBRATE_DATA 1017
#define CMD_END_READ_CALIBRATE_DATA 1018
#define CMD_START_CALIBRATE 1019
#define CMD_END_CALIBRATE 1021
#define BD_SENSOR_I2C_ADDR 0x3C
I2C_SegmentBED BD_I2C_SENSOR;
float BDS_Leveling::pos_zero_offset;
int8_t BDS_Leveling::config_state;
void BDS_Leveling::init(uint8_t _sda, uint8_t _scl, uint16_t delay_s) {
config_state = BDS_IDLE;
const int ret = BD_I2C_SENSOR.i2c_init(_sda, _scl, BD_SENSOR_I2C_ADDR, delay_s);
if (ret != 1) SERIAL_ECHOLNPGM("BD Sensor Init Fail (", ret, ")");
sync_plan_position();
pos_zero_offset = planner.get_axis_position_mm(Z_AXIS) - current_position.z;
SERIAL_ECHOLNPGM("BD Sensor Zero Offset:", pos_zero_offset);
}
bool BDS_Leveling::check(const uint16_t data, const bool raw_data/*=false*/, const bool hicheck/*=false*/) {
if (BD_I2C_SENSOR.BD_Check_OddEven(data) == 0) {
SERIAL_ECHOLNPGM("Read Error.");
return true; // error
}
if (raw_data == true) {
if (hicheck && (data & 0x3FF) > 400)
SERIAL_ECHOLNPGM("Bad BD Sensor height! Recommended distance 0.5-2.0mm");
else if (!good_data(data))
SERIAL_ECHOLNPGM("Invalid data, please calibrate.");
else
return false;
}
else {
if ((data & 0x3FF) >= (MAX_BD_HEIGHT) * 100 - 10)
SERIAL_ECHOLNPGM("Out of Range.");
else
return false;
}
return true; // error
}
float BDS_Leveling::interpret(const uint16_t data) {
return (data & 0x3FF) * 0.01f;
}
float BDS_Leveling::read() {
const uint16_t data = BD_I2C_SENSOR.BD_i2c_read();
return check(data) ? NAN : interpret(data);
}
void BDS_Leveling::process() {
if (config_state == BDS_IDLE && marlin.printingIsActive()) return;
static millis_t next_check_ms = 0; // starting at T=0
static float zpos = 0.0f;
const millis_t ms = millis();
if (ELAPSED(ms, next_check_ms)) { // timed out (or first run)
// Check at 1KHz, 5Hz, or 20Hz
next_check_ms = ms + (config_state == BDS_HOMING_Z ? 1 : (config_state < BDS_IDLE ? 200 : 50));
uint16_t tmp = 0;
const float cur_z = planner.get_axis_position_mm(Z_AXIS) - pos_zero_offset;
static float old_cur_z = cur_z, old_buf_z = current_position.z;
tmp = BD_I2C_SENSOR.BD_i2c_read();
if (BD_I2C_SENSOR.BD_Check_OddEven(tmp) && good_data(tmp)) {
const float z_sensor = interpret(tmp);
#if ENABLED(BABYSTEPPING)
if (config_state > 0) {
if (cur_z < config_state * 0.1f
&& old_cur_z == cur_z
&& old_buf_z == current_position.z
&& z_sensor < (MAX_BD_HEIGHT) - 0.1f
) {
babystep.set_mm(Z_AXIS, cur_z - z_sensor);
DEBUG_ECHOLNPGM("BD:", z_sensor, ", Z:", cur_z, "|", current_position.z);
}
else
babystep.set_mm(Z_AXIS, 0);
}
#endif
old_cur_z = cur_z;
old_buf_z = current_position.z;
endstops.bdp_state_update(z_sensor <= BD_SENSOR_HOME_Z_POSITION);
#if HAS_STATUS_MESSAGE
static float old_z_sensor = 0;
if (old_z_sensor != z_sensor) {
old_z_sensor = z_sensor;
char tmp_1[32];
sprintf_P(tmp_1, PSTR("BD:%d.%02dmm"), int(z_sensor), int(z_sensor * 100) % 100);
//SERIAL_ECHOLNPGM("Bed Dis:", z_sensor, "mm");
ui.set_status(tmp_1, true);
}
#endif
}
else if (config_state == BDS_HOMING_Z) {
SERIAL_ECHOLNPGM("Read:", tmp);
marlin.kill(F("BDsensor connect Err!"));
}
DEBUG_ECHOLNPGM("BD:", tmp & 0x3FF, " Z:", cur_z, "|", current_position.z);
if (TERN0(DEBUG_OUT_BD, BD_I2C_SENSOR.BD_Check_OddEven(tmp) == 0)) DEBUG_ECHOLNPGM("CRC error");
if (!good_data(tmp)) {
BD_I2C_SENSOR.BD_i2c_stop();
safe_delay(10);
}
// Read version. Usually used as a connection check
if (config_state == BDS_VERSION) {
config_state = BDS_IDLE;
BD_I2C_SENSOR.BD_i2c_write(CMD_READ_VERSION);
safe_delay(100);
char tmp_1[21];
for (int i = 0; i < 19; i++) {
tmp_1[i] = BD_I2C_SENSOR.BD_i2c_read() & 0xFF;
safe_delay(50);
}
BD_I2C_SENSOR.BD_i2c_write(CMD_END_READ_CALIBRATE_DATA);
SERIAL_ECHOLNPGM("BD Sensor version:", tmp_1);
if (tmp_1[0] != 'V') SERIAL_ECHOLNPGM("Read Error. Check connection and delay.");
safe_delay(50);
}
// read raw calibrate data
else if (config_state == BDS_READ_RAW) {
BD_I2C_SENSOR.BD_i2c_write(CMD_START_READ_CALIBRATE_DATA);
safe_delay(100);
for (int i = 0; i < MAX_BD_HEIGHT * 10; i++) {
tmp = BD_I2C_SENSOR.BD_i2c_read();
SERIAL_ECHOLNPGM("Calibrate data:", i, ",", tmp & 0x3FF);
(void)check(tmp, true, i == 0);
safe_delay(50);
}
BD_I2C_SENSOR.BD_i2c_write(CMD_END_READ_CALIBRATE_DATA);
safe_delay(50);
config_state = BDS_IDLE;
}
else if (config_state <= BDS_CALIBRATE_START) { // Start Calibrate
safe_delay(10);
if (config_state == BDS_CALIBRATE_START) {
config_state = BDS_CALIBRATING;
REMEMBER(gsit, gcode.stepper_inactive_time, MIN_TO_MS(5));
SERIAL_ECHOLNPGM("c_z0:", planner.get_axis_position_mm(Z_AXIS), "-", pos_zero_offset);
// Move the z axis instead of enabling the Z axis with M17
// TODO: Use do_blocking_move_to_z for synchronized move.
current_position.z = 0;
sync_plan_position();
gcode.process_subcommands_now(F("G1Z0.05"));
safe_delay(300);
gcode.process_subcommands_now(F("G1Z0.00"));
safe_delay(300);
current_position.z = 0;
sync_plan_position();
//safe_delay(1000);
while ((planner.get_axis_position_mm(Z_AXIS) - pos_zero_offset) > 0.00001f) {
safe_delay(200);
SERIAL_ECHOLNPGM("waiting cur_z:", planner.get_axis_position_mm(Z_AXIS));
}
zpos = 0.00001f;
safe_delay(100);
BD_I2C_SENSOR.BD_i2c_write(CMD_START_CALIBRATE); // Begin calibrate
SERIAL_ECHOLNPGM("BD Sensor Calibrating...");
safe_delay(200);
}
else if ((planner.get_axis_position_mm(Z_AXIS) - pos_zero_offset) < 10.0f) {
if (zpos >= MAX_BD_HEIGHT) {
config_state = BDS_IDLE;
BD_I2C_SENSOR.BD_i2c_write(CMD_END_CALIBRATE); // End calibrate
SERIAL_ECHOLNPGM("BD Sensor calibrated.");
zpos = 7.0f;
safe_delay(500);
}
else {
char tmp_1[32];
// TODO: Use prepare_internal_move_to_destination to guarantee machine space
sprintf_P(tmp_1, PSTR("G1Z%d.%d"), int(zpos), int(zpos * 10) % 10);
gcode.process_subcommands_now(tmp_1);
SERIAL_ECHO(tmp_1); SERIAL_ECHOLNPGM(", Z:", current_position.z);
uint16_t failcount = 300;
for (float tmp_k = 0; abs(zpos - tmp_k) > 0.006f && failcount--;) {
tmp_k = planner.get_axis_position_mm(Z_AXIS) - pos_zero_offset;
safe_delay(10);
if (!failcount--) break;
}
safe_delay(600);
tmp = uint16_t((zpos + 0.00001f) * 10);
BD_I2C_SENSOR.BD_i2c_write(tmp);
SERIAL_ECHOLNPGM("w:", tmp, ", Z:", zpos);
zpos += 0.1001f;
}
}
}
}
}
#endif // BD_SENSOR