🧑‍💻 Fix, extend 'types.h' operators

This commit is contained in:
Scott Lahteine 2025-10-27 11:12:44 -05:00
parent f635a9d0c3
commit 97b5c2d3ea
2 changed files with 47 additions and 20 deletions

View file

@ -547,13 +547,13 @@ struct XYval {
FI constexpr T large() const { return _MAX(x, y); }
// Explicit copy and copies with conversion
FI constexpr XYval<T> copy() const { return *this; }
FI constexpr XYval<T> ABS() const { return { T(_ABS(x)), T(_ABS(y)) }; }
FI constexpr XYval<int16_t> asInt() const { return { int16_t(x), int16_t(y) }; }
FI constexpr XYval<int32_t> asLong() const { return { int32_t(x), int32_t(y) }; }
FI constexpr XYval<int32_t> ROUNDL() const { return { int32_t(LROUND(x)), int32_t(LROUND(y)) }; }
FI constexpr XYval<float> asFloat() const { return { static_cast<float>(x), static_cast<float>(y) }; }
FI constexpr XYval<float> reciprocal() const { return { _RECIP(x), _RECIP(y) }; }
FI constexpr XYval<T> copy() const { return *this; }
FI constexpr XYval<T> ABS() const { return { T(_ABS(x)), T(_ABS(y)) }; }
FI constexpr XYval<int16_t> asInt16() const { return { int16_t(x), int16_t(y) }; }
FI constexpr XYval<int32_t> asInt32() const { return { int32_t(x), int32_t(y) }; }
FI constexpr XYval<int32_t> ROUNDL() const { return { int32_t(LROUND(x)), int32_t(LROUND(y)) }; }
FI constexpr XYval<float> asFloat() const { return { static_cast<float>(x), static_cast<float>(y) }; }
FI constexpr XYval<float> reciprocal() const { return { _RECIP(x), _RECIP(y) }; }
// Marlin workspace shifting is done with G92 and M206
FI XYval<float> asLogical() const { XYval<float> o = asFloat(); toLogical(o); return o; }
@ -625,6 +625,11 @@ struct XYval {
FI bool operator!=(const XYval<T> &rs) const { return !operator==(rs); }
FI bool operator!=(const XYZval<T> &rs) const { return !operator==(rs); }
FI bool operator!=(const XYZEval<T> &rs) const { return !operator==(rs); }
// Exact comparison to a single value
FI bool operator==(const T &p) const { return x == p && y == p; }
FI bool operator!=(const T &p) const { return !operator==(p); }
};
//
@ -701,8 +706,8 @@ struct XYZval {
// Explicit copy and copies with conversion
FI constexpr XYZval<T> copy() const { XYZval<T> o = *this; return o; }
FI constexpr XYZval<T> ABS() const { return NUM_AXIS_ARRAY(T(_ABS(x)), T(_ABS(y)), T(_ABS(z)), T(_ABS(i)), T(_ABS(j)), T(_ABS(k)), T(_ABS(u)), T(_ABS(v)), T(_ABS(w))); }
FI constexpr XYZval<int16_t> asInt() const { return NUM_AXIS_ARRAY(int16_t(x), int16_t(y), int16_t(z), int16_t(i), int16_t(j), int16_t(k), int16_t(u), int16_t(v), int16_t(w)); }
FI constexpr XYZval<int32_t> asLong() const { return NUM_AXIS_ARRAY(int32_t(x), int32_t(y), int32_t(z), int32_t(i), int32_t(j), int32_t(k), int32_t(u), int32_t(v), int32_t(w)); }
FI constexpr XYZval<int16_t> asInt16() const { return NUM_AXIS_ARRAY(int16_t(x), int16_t(y), int16_t(z), int16_t(i), int16_t(j), int16_t(k), int16_t(u), int16_t(v), int16_t(w)); }
FI constexpr XYZval<int32_t> asInt32() const { return NUM_AXIS_ARRAY(int32_t(x), int32_t(y), int32_t(z), int32_t(i), int32_t(j), int32_t(k), int32_t(u), int32_t(v), int32_t(w)); }
FI constexpr XYZval<int32_t> ROUNDL() const { return NUM_AXIS_ARRAY(int32_t(LROUND(x)), int32_t(LROUND(y)), int32_t(LROUND(z)), int32_t(LROUND(i)), int32_t(LROUND(j)), int32_t(LROUND(k)), int32_t(LROUND(u)), int32_t(LROUND(v)), int32_t(LROUND(w))); }
FI constexpr XYZval<float> asFloat() const { return NUM_AXIS_ARRAY(static_cast<float>(x), static_cast<float>(y), static_cast<float>(z), static_cast<float>(i), static_cast<float>(j), static_cast<float>(k), static_cast<float>(u), static_cast<float>(v), static_cast<float>(w)); }
FI constexpr XYZval<float> reciprocal() const { return NUM_AXIS_ARRAY(_RECIP(x), _RECIP(y), _RECIP(z), _RECIP(i), _RECIP(j), _RECIP(k), _RECIP(u), _RECIP(v), _RECIP(w)); }
@ -772,8 +777,13 @@ struct XYZval {
FI XYZval<T>& operator<<=(const int &p) { NUM_AXIS_CODE(_LSE(x), _LSE(y), _LSE(z), _LSE(i), _LSE(j), _LSE(k), _LSE(u), _LSE(v), _LSE(w)); return *this; }
// Exact comparisons. For floats a "NEAR" operation may be better.
FI bool operator==(const XYZEval<T> &rs) const { return true NUM_AXIS_GANG(&& x == rs.x, && y == rs.y, && z == rs.z, && i == rs.i, && j == rs.j, && k == rs.k, && u == rs.u, && v == rs.v, && w == rs.w); }
FI bool operator==(const XYZEval<T> &rs) const { return ENABLED(HAS_X_AXIS) NUM_AXIS_GANG(&& x == rs.x, && y == rs.y, && z == rs.z, && i == rs.i, && j == rs.j, && k == rs.k, && u == rs.u, && v == rs.v, && w == rs.w); }
FI bool operator!=(const XYZEval<T> &rs) const { return !operator==(rs); }
// Exact comparison to a single value
FI bool operator==(const T &p) const { return ENABLED(HAS_X_AXIS) NUM_AXIS_GANG(&& x == p, && y == p, && z == p, && i == p, && j == p, && k == p, && u == p, && v == p, && w == p); }
FI bool operator!=(const T &p) const { return !operator==(p); }
};
//
@ -849,13 +859,16 @@ struct XYZEval {
FI constexpr T large() const { return _MAX(LOGICAL_AXIS_LIST(e, x, y, z, i, j, k, u, v, w)); }
// Explicit copy and copies with conversion
FI constexpr XYZEval<T> copy() const { XYZEval<T> v = *this; return v; }
FI constexpr XYZEval<T> ABS() const { return LOGICAL_AXIS_ARRAY(T(_ABS(e)), T(_ABS(x)), T(_ABS(y)), T(_ABS(z)), T(_ABS(i)), T(_ABS(j)), T(_ABS(k)), T(_ABS(u)), T(_ABS(v)), T(_ABS(w))); }
FI constexpr XYZEval<int16_t> asInt() const { return LOGICAL_AXIS_ARRAY(int16_t(e), int16_t(x), int16_t(y), int16_t(z), int16_t(i), int16_t(j), int16_t(k), int16_t(u), int16_t(v), int16_t(w)); }
FI constexpr XYZEval<int32_t> asLong() const { return LOGICAL_AXIS_ARRAY(int32_t(e), int32_t(x), int32_t(y), int32_t(z), int32_t(i), int32_t(j), int32_t(k), int32_t(u), int32_t(v), int32_t(w)); }
FI constexpr XYZEval<int32_t> ROUNDL() const { return LOGICAL_AXIS_ARRAY(int32_t(LROUND(e)), int32_t(LROUND(x)), int32_t(LROUND(y)), int32_t(LROUND(z)), int32_t(LROUND(i)), int32_t(LROUND(j)), int32_t(LROUND(k)), int32_t(LROUND(u)), int32_t(LROUND(v)), int32_t(LROUND(w))); }
FI constexpr XYZEval<float> asFloat() const { return LOGICAL_AXIS_ARRAY(static_cast<float>(e), static_cast<float>(x), static_cast<float>(y), static_cast<float>(z), static_cast<float>(i), static_cast<float>(j), static_cast<float>(k), static_cast<float>(u), static_cast<float>(v), static_cast<float>(w)); }
FI constexpr XYZEval<float> reciprocal() const { return LOGICAL_AXIS_ARRAY(_RECIP(e), _RECIP(x), _RECIP(y), _RECIP(z), _RECIP(i), _RECIP(j), _RECIP(k), _RECIP(u), _RECIP(v), _RECIP(w)); }
FI constexpr XYZEval<T> copy() const { XYZEval<T> v = *this; return v; }
FI constexpr XYZEval<T> ABS() const { return LOGICAL_AXIS_ARRAY(T(_ABS(e)), T(_ABS(x)), T(_ABS(y)), T(_ABS(z)), T(_ABS(i)), T(_ABS(j)), T(_ABS(k)), T(_ABS(u)), T(_ABS(v)), T(_ABS(w))); }
FI constexpr XYZEval<int16_t> asInt16() const { return LOGICAL_AXIS_ARRAY(int16_t(e), int16_t(x), int16_t(y), int16_t(z), int16_t(i), int16_t(j), int16_t(k), int16_t(u), int16_t(v), int16_t(w)); }
FI constexpr XYZEval<int32_t> asInt32() const { return LOGICAL_AXIS_ARRAY(int32_t(e), int32_t(x), int32_t(y), int32_t(z), int32_t(i), int32_t(j), int32_t(k), int32_t(u), int32_t(v), int32_t(w)); }
FI constexpr XYZEval<uint32_t> asUInt32() const { return LOGICAL_AXIS_ARRAY(uint32_t(e), uint32_t(x), uint32_t(y), uint32_t(z), uint32_t(i), uint32_t(j), uint32_t(k), uint32_t(u), uint32_t(v), uint32_t(w)); }
FI constexpr XYZEval<int64_t> asInt64() const { return LOGICAL_AXIS_ARRAY(int64_t(e), int64_t(x), int64_t(y), int64_t(z), int64_t(i), int64_t(j), int64_t(k), int64_t(u), int64_t(v), int64_t(w)); }
FI constexpr XYZEval<uint64_t> asUInt64() const { return LOGICAL_AXIS_ARRAY(uint64_t(e), uint64_t(x), uint64_t(y), uint64_t(z), uint64_t(i), uint64_t(j), uint64_t(k), uint64_t(u), uint64_t(v), uint64_t(w)); }
FI constexpr XYZEval<int32_t> ROUNDL() const { return LOGICAL_AXIS_ARRAY(int32_t(LROUND(e)), int32_t(LROUND(x)), int32_t(LROUND(y)), int32_t(LROUND(z)), int32_t(LROUND(i)), int32_t(LROUND(j)), int32_t(LROUND(k)), int32_t(LROUND(u)), int32_t(LROUND(v)), int32_t(LROUND(w))); }
FI constexpr XYZEval<float> asFloat() const { return LOGICAL_AXIS_ARRAY(static_cast<float>(e), static_cast<float>(x), static_cast<float>(y), static_cast<float>(z), static_cast<float>(i), static_cast<float>(j), static_cast<float>(k), static_cast<float>(u), static_cast<float>(v), static_cast<float>(w)); }
FI constexpr XYZEval<float> reciprocal() const { return LOGICAL_AXIS_ARRAY(_RECIP(e), _RECIP(x), _RECIP(y), _RECIP(z), _RECIP(i), _RECIP(j), _RECIP(k), _RECIP(u), _RECIP(v), _RECIP(w)); }
// Marlin workspace shifting is done with G92 and M206
FI XYZEval<float> asLogical() const { XYZEval<float> o = asFloat(); toLogical(o); return o; }
@ -889,7 +902,10 @@ struct XYZEval {
FI constexpr XYZEval<T> operator- (const XYZEval<T> &rs) const { return LOGICAL_AXIS_ARRAY(T(e - rs.e), T(x - rs.x), T(y - rs.y), T(z - rs.z), T(i - rs.i), T(j - rs.j), T(k - rs.k), T(u - rs.u), T(v - rs.v), T(w - rs.w)); }
FI constexpr XYZEval<T> operator* (const XYZEval<T> &rs) const { return LOGICAL_AXIS_ARRAY(T(e * rs.e), T(x * rs.x), T(y * rs.y), T(z * rs.z), T(i * rs.i), T(j * rs.j), T(k * rs.k), T(u * rs.u), T(v * rs.v), T(w * rs.w)); }
FI constexpr XYZEval<T> operator/ (const XYZEval<T> &rs) const { return LOGICAL_AXIS_ARRAY(T(e / rs.e), T(x / rs.x), T(y / rs.y), T(z / rs.z), T(i / rs.i), T(j / rs.j), T(k / rs.k), T(u / rs.u), T(v / rs.v), T(w / rs.w)); }
FI constexpr XYZEval<T> operator+ (const uint32_t &p) const { return LOGICAL_AXIS_ARRAY(T(e + p), T(x + p), T(y + p), T(z + p), T(i + p), T(j + p), T(k + p), T(u + p), T(v + p), T(w + p)); }
FI constexpr XYZEval<T> operator* (const float &p) const { return LOGICAL_AXIS_ARRAY(T(e * p), T(x * p), T(y * p), T(z * p), T(i * p), T(j * p), T(k * p), T(u * p), T(v * p), T(w * p)); }
FI constexpr XYZEval<T> operator* (const uint32_t &p) const { return LOGICAL_AXIS_ARRAY(T(e * p), T(x * p), T(y * p), T(z * p), T(i * p), T(j * p), T(k * p), T(u * p), T(v * p), T(w * p)); }
FI constexpr XYZEval<T> operator& (const int64_t &p) const { return LOGICAL_AXIS_ARRAY(T(e & p), T(x & p), T(y & p), T(z & p), T(i & p), T(j & p), T(k & p), T(u & p), T(v & p), T(w & p)); }
FI constexpr XYZEval<T> operator* (const int &p) const { return LOGICAL_AXIS_ARRAY(e * p, x * p, y * p, z * p, i * p, j * p, k * p, u * p, v * p, w * p); }
FI constexpr XYZEval<T> operator/ (const float &p) const { return LOGICAL_AXIS_ARRAY(T(e / p), T(x / p), T(y / p), T(z / p), T(i / p), T(j / p), T(k / p), T(u / p), T(v / p), T(w / p)); }
FI constexpr XYZEval<T> operator/ (const int &p) const { return LOGICAL_AXIS_ARRAY(e / p, x / p, y / p, z / p, i / p, j / p, k / p, u / p, v / p, w / p); }
@ -920,14 +936,22 @@ struct XYZEval {
FI XYZEval<T>& operator<<=(const int &p) { LOGICAL_AXIS_CODE(_LSE(e), _LSE(x), _LSE(y), _LSE(z), _LSE(i), _LSE(j), _LSE(k), _LSE(u), _LSE(v), _LSE(w)); return *this; }
// Exact comparisons. For floats a "NEAR" operation may be better.
FI bool operator==(const XYZval<T> &rs) const { return true NUM_AXIS_GANG(&& x == rs.x, && y == rs.y, && z == rs.z, && i == rs.i, && j == rs.j, && k == rs.k, && u == rs.u, && v == rs.v, && w == rs.w); }
FI bool operator==(const XYZEval<T> &rs) const { return true LOGICAL_AXIS_GANG(&& e == rs.e, && x == rs.x, && y == rs.y, && z == rs.z, && i == rs.i, && j == rs.j, && k == rs.k, && u == rs.u, && v == rs.v, && w == rs.w); }
FI bool operator==(const XYZval<T> &rs) const { return ENABLED(HAS_X_AXIS) NUM_AXIS_GANG(&& x == rs.x, && y == rs.y, && z == rs.z, && i == rs.i, && j == rs.j, && k == rs.k, && u == rs.u, && v == rs.v, && w == rs.w); }
FI bool operator==(const XYZEval<T> &rs) const { return ANY(HAS_X_AXIS, HAS_EXTRUDERS) LOGICAL_AXIS_GANG(&& e == rs.e, && x == rs.x, && y == rs.y, && z == rs.z, && i == rs.i, && j == rs.j, && k == rs.k, && u == rs.u, && v == rs.v, && w == rs.w); }
FI bool operator!=(const XYZval<T> &rs) const { return !operator==(rs); }
FI bool operator!=(const XYZEval<T> &rs) const { return !operator==(rs); }
// Exact comparison to a single value
FI bool operator==(const T &p) const { return ENABLED(HAS_X_AXIS) LOGICAL_AXIS_GANG(&& e == p, && x == p, && y == p, && z == p, && i == p, && j == p, && k == p, && u == p, && v == p, && w == p); }
FI bool operator!=(const T &p) const { return !operator==(p); }
};
#include <string.h> // for memset
//
// Axis indexed arrays of type T (x[SIZE], y[SIZE], etc.)
//
template<typename T, int SIZE>
struct XYZarray {
typedef T el[SIZE];
@ -1027,6 +1051,9 @@ struct XYZEarray {
FI XYZEval<T> operator[](const int n) const { return XYZval<T>(LOGICAL_AXIS_ARRAY(e[n], x[n], y[n], z[n], i[n], j[n], k[n], u[n], v[n], w[n])); }
};
//
// Axes mapped to bits in a mask of minimum size, bits_t(NUM_AXIS_HEADS)
//
class AxisBits {
public:
typedef bits_t(NUM_AXIS_HEADS) el;

View file

@ -2699,7 +2699,7 @@ hal_timer_t Stepper::block_phase_isr() {
TERN_(HAS_ROUGH_LIN_ADVANCE, la_delta_error = delta_error);
// Calculate Bresenham dividends and divisors
advance_dividend = (current_block->steps << 1).asLong();
advance_dividend = (current_block->steps << 1).asInt32();
advance_divisor = step_event_count << 1;
#if ENABLED(INPUT_SHAPING_X)