mirror of
https://github.com/MarlinFirmware/Marlin.git
synced 2026-01-11 10:22:56 -07:00
Merge branch 'bugfix-2.1.x' into bugfix-2.1.x-April5
This commit is contained in:
commit
91665ea321
361 changed files with 5185 additions and 2854 deletions
0
.gitignore
vendored
Executable file → Normal file
0
.gitignore
vendored
Executable file → Normal file
66
Makefile
66
Makefile
|
|
@ -4,6 +4,31 @@ CONTAINER_RT_OPTS := --rm -v $(PWD):/code -v platformio-cache:/root/.platformio
|
|||
CONTAINER_IMAGE := marlin-dev
|
||||
UNIT_TEST_CONFIG ?= default
|
||||
|
||||
# Find a Python 3 interpreter
|
||||
ifeq ($(OS),Windows_NT)
|
||||
# Windows: use `where` – fall back through the three common names
|
||||
PYTHON := $(shell which python 2>nul || which python3 2>nul || which py 2>nul)
|
||||
# Windows: Use cmd tools to find pins files
|
||||
PINS_RAW := $(shell cmd //c "dir /s /b Marlin\src\pins\*.h 2>nul | findstr /r ".*Marlin\\\\src\\\\pins\\\\.*\\\\pins_.*\.h"")
|
||||
PINS := $(subst \,/,$(PINS_RAW))
|
||||
else
|
||||
# POSIX: use `command -v` – prefer python3 over python
|
||||
PYTHON := $(shell command -v python3 2>/dev/null || command -v python 2>/dev/null)
|
||||
# Unix/Linux: Use find command
|
||||
PINS := $(shell find Marlin/src/pins -mindepth 2 -name 'pins_*.h')
|
||||
endif
|
||||
|
||||
# Check that the found interpreter is Python 3
|
||||
# Error if there's no Python 3 available
|
||||
ifneq ($(strip $(PYTHON)),)
|
||||
PYTHON_VERSION := $(shell $(PYTHON) -c "import sys; print(sys.version_info[0])" 2>/dev/null)
|
||||
ifneq ($(PYTHON_VERSION),3)
|
||||
$(error $(PYTHON) is not Python 3 – install a Python‑3.x interpreter or adjust your PATH)
|
||||
endif
|
||||
else
|
||||
$(error No Python executable found – install Python 3.x and make sure it is in your PATH)
|
||||
endif
|
||||
|
||||
help:
|
||||
@echo "Tasks for local development:"
|
||||
@echo "make marlin : Build Marlin for the configured board"
|
||||
|
|
@ -20,7 +45,7 @@ help:
|
|||
@echo "make unit-test-single-local-docker : Run unit tests for a single config locally, using docker"
|
||||
@echo "make unit-test-all-local : Run all code tests locally"
|
||||
@echo "make unit-test-all-local-docker : Run all code tests locally, using docker"
|
||||
@echo "make setup-local-docker : Setup local docker using buildx"
|
||||
@echo "make setup-local-docker : Setup local docker"
|
||||
@echo ""
|
||||
@echo "Options for testing:"
|
||||
@echo " TEST_TARGET Set when running tests-single-*, to select the"
|
||||
|
|
@ -41,6 +66,9 @@ marlin:
|
|||
./buildroot/bin/mftest -a
|
||||
.PHONY: marlin
|
||||
|
||||
clean:
|
||||
rm -rf .pio/build*
|
||||
|
||||
tests-single-ci:
|
||||
export GIT_RESET_HARD=true
|
||||
$(MAKE) tests-single-local TEST_TARGET=$(TEST_TARGET) PLATFORMIO_BUILD_FLAGS=-DGITHUB_ACTION
|
||||
|
|
@ -57,10 +85,10 @@ tests-single-local-docker:
|
|||
$(CONTAINER_RT_BIN) run $(CONTAINER_RT_OPTS) $(CONTAINER_IMAGE) make tests-single-local TEST_TARGET=$(TEST_TARGET) VERBOSE_PLATFORMIO=$(VERBOSE_PLATFORMIO) GIT_RESET_HARD=$(GIT_RESET_HARD) ONLY_TEST="$(ONLY_TEST)"
|
||||
|
||||
tests-all-local:
|
||||
@python -c "import yaml" 2>/dev/null || (echo 'pyyaml module is not installed. Install it with "python -m pip install pyyaml"' && exit 1)
|
||||
@$(PYTHON) -c "import yaml" 2>/dev/null || (echo 'pyyaml module is not installed. Install it with "$(PYTHON) -m pip install pyyaml"' && exit 1)
|
||||
export PATH="./buildroot/bin/:./buildroot/tests/:${PATH}" \
|
||||
&& export VERBOSE_PLATFORMIO=$(VERBOSE_PLATFORMIO) \
|
||||
&& for TEST_TARGET in $$(python $(SCRIPTS_DIR)/get_test_targets.py) ; do \
|
||||
&& for TEST_TARGET in $$($(PYTHON) $(SCRIPTS_DIR)/get_test_targets.py) ; do \
|
||||
if [ "$$TEST_TARGET" = "linux_native" ] && [ "$$(uname)" = "Darwin" ]; then \
|
||||
echo "Skipping tests for $$TEST_TARGET on macOS" ; \
|
||||
continue ; \
|
||||
|
|
@ -88,18 +116,36 @@ unit-test-all-local-docker:
|
|||
@if ! $(CONTAINER_RT_BIN) images -q $(CONTAINER_IMAGE) > /dev/null ; then $(MAKE) setup-local-docker ; fi
|
||||
$(CONTAINER_RT_BIN) run $(CONTAINER_RT_OPTS) $(CONTAINER_IMAGE) make unit-test-all-local
|
||||
|
||||
setup-local-docker:
|
||||
$(CONTAINER_RT_BIN) buildx build -t $(CONTAINER_IMAGE) -f docker/Dockerfile .
|
||||
USERNAME := $(shell whoami)
|
||||
USER_ID := $(shell id -u)
|
||||
GROUP_ID := $(shell id -g)
|
||||
|
||||
PINS := $(shell find Marlin/src/pins -mindepth 2 -name '*.h')
|
||||
.PHONY: setup-local-docker setup-local-docker-old
|
||||
|
||||
setup-local-docker:
|
||||
@echo "Building marlin-dev Docker image..."
|
||||
$(CONTAINER_RT_BIN) build -t $(CONTAINER_IMAGE) \
|
||||
--build-arg USERNAME=$(USERNAME) \
|
||||
--build-arg USER_ID=$(USER_ID) \
|
||||
--build-arg GROUP_ID=$(GROUP_ID) \
|
||||
-f docker/Dockerfile .
|
||||
@echo
|
||||
@echo "To run all tests in Docker:"
|
||||
@echo " make tests-all-local-docker"
|
||||
@echo "To run a single test in Docker:"
|
||||
@echo " make tests-single-local-docker TEST_TARGET=mega2560"
|
||||
|
||||
setup-local-docker-old:
|
||||
$(CONTAINER_RT_BIN) buildx build -t $(CONTAINER_IMAGE) -f docker/Dockerfile .
|
||||
|
||||
.PHONY: $(PINS) format-pins validate-pins
|
||||
|
||||
$(PINS): %:
|
||||
@echo "Formatting pins $@"
|
||||
@python $(SCRIPTS_DIR)/pinsformat.py $< $@
|
||||
@$(PYTHON) $(SCRIPTS_DIR)/pinsformat.py $< $@
|
||||
|
||||
format-pins: $(PINS)
|
||||
@echo "Processed $(words $(PINS)) pins files"
|
||||
|
||||
validate-pins: format-pins
|
||||
@echo "Validating pins files"
|
||||
|
|
@ -109,8 +155,8 @@ validate-pins: format-pins
|
|||
|
||||
format-lines:
|
||||
@echo "Formatting all sources"
|
||||
@python $(SCRIPTS_DIR)/linesformat.py buildroot
|
||||
@python $(SCRIPTS_DIR)/linesformat.py Marlin
|
||||
@$(PYTHON) $(SCRIPTS_DIR)/linesformat.py buildroot
|
||||
@$(PYTHON) $(SCRIPTS_DIR)/linesformat.py Marlin
|
||||
|
||||
validate-lines:
|
||||
@echo "Validating text formatting"
|
||||
|
|
@ -122,4 +168,4 @@ BOARDS_FILE := Marlin/src/core/boards.h
|
|||
|
||||
validate-boards:
|
||||
@echo "Validating boards.h file"
|
||||
@python $(SCRIPTS_DIR)/validate_boards.py $(BOARDS_FILE) || (echo "\nError: boards.h file is not valid. Please check and correct it.\n" && exit 1)
|
||||
@$(PYTHON) $(SCRIPTS_DIR)/validate_boards.py $(BOARDS_FILE) || (echo "\nError: boards.h file is not valid. Please check and correct it.\n" && exit 1)
|
||||
|
|
|
|||
|
|
@ -942,7 +942,7 @@
|
|||
* protect against a broken or disconnected thermistor wire.
|
||||
*
|
||||
* The issue: If a thermistor falls out, it will report the much lower
|
||||
* temperature of the air in the room, and the the firmware will keep
|
||||
* temperature of the air in the room, and the firmware will keep
|
||||
* the heater on.
|
||||
*
|
||||
* If you get "Thermal Runaway" or "Heating failed" errors the
|
||||
|
|
@ -3469,6 +3469,7 @@
|
|||
* NOTOSANS - Default font with anti-aliasing. Supports Latin Extended and non-Latin characters.
|
||||
* UNIFONT - Lightweight font, no anti-aliasing. Supports Latin Extended and non-Latin characters.
|
||||
* HELVETICA - Lightweight font, no anti-aliasing. Supports Basic Latin (0x0020-0x007F) and Latin-1 Supplement (0x0080-0x00FF) characters only.
|
||||
* :['NOTOSANS', 'UNIFONT', 'HELVETICA']
|
||||
*/
|
||||
#define TFT_FONT NOTOSANS
|
||||
|
||||
|
|
@ -3478,6 +3479,7 @@
|
|||
* BLUE_MARLIN - Default theme with 'midnight blue' background
|
||||
* BLACK_MARLIN - Theme with 'black' background
|
||||
* ANET_BLACK - Theme used for Anet ET4/5
|
||||
* :['BLUE_MARLIN', 'BLACK_MARLIN', 'ANET_BLACK']
|
||||
*/
|
||||
#define TFT_THEME BLACK_MARLIN
|
||||
|
||||
|
|
|
|||
|
|
@ -297,7 +297,7 @@
|
|||
* protect against a broken or disconnected thermistor wire.
|
||||
*
|
||||
* The issue: If a thermistor falls out, it will report the much lower
|
||||
* temperature of the air in the room, and the the firmware will keep
|
||||
* temperature of the air in the room, and the firmware will keep
|
||||
* the heater on.
|
||||
*
|
||||
* The solution: Once the temperature reaches the target, start observing.
|
||||
|
|
@ -778,7 +778,7 @@
|
|||
|
||||
// @section endstops
|
||||
|
||||
// If you want endstops to stay on (by default) even when not homing
|
||||
// If you want endstops to stay on (by default) even when not homing,
|
||||
// enable this option. Override at any time with M120, M121.
|
||||
//#define ENDSTOPS_ALWAYS_ON_DEFAULT
|
||||
|
||||
|
|
@ -1143,47 +1143,83 @@
|
|||
|
||||
/**
|
||||
* Fixed-time-based Motion Control -- BETA FEATURE
|
||||
* Enable/disable and set parameters with G-code M493.
|
||||
* Enable/disable and set parameters with G-code M493 and M494.
|
||||
* See ft_types.h for named values used by FTM options.
|
||||
*/
|
||||
//#define FT_MOTION
|
||||
#if ENABLED(FT_MOTION)
|
||||
//#define FTM_IS_DEFAULT_MOTION // Use FT Motion as the factory default?
|
||||
//#define FTM_IS_DEFAULT_MOTION // Use FT Motion as the factory default?
|
||||
//#define FT_MOTION_MENU // Provide a MarlinUI menu to set M493 and M494 parameters
|
||||
//#define FTM_HOME_AND_PROBE // Use FT Motion for homing / probing. Disable if FT Motion breaks these functions.
|
||||
|
||||
#define FTM_DEFAULT_DYNFREQ_MODE dynFreqMode_DISABLED // Default mode of dynamic frequency calculation. (DISABLED, Z_BASED, MASS_BASED)
|
||||
|
||||
#define FTM_LINEAR_ADV_DEFAULT_ENA false // Default linear advance enable (true) or disable (false)
|
||||
#define FTM_LINEAR_ADV_DEFAULT_K 0.0f // Default linear advance gain. (Acceleration-based scaling factor.)
|
||||
|
||||
#define FTM_DEFAULT_SHAPER_X ftMotionShaper_NONE // Default shaper mode on X axis (NONE, ZV, ZVD, ZVDD, ZVDDD, EI, 2HEI, 3HEI, MZV)
|
||||
#define FTM_SHAPING_DEFAULT_FREQ_X 37.0f // (Hz) Default peak frequency used by input shapers
|
||||
#define FTM_SHAPING_ZETA_X 0.1f // Zeta used by input shapers for X axis
|
||||
#define FTM_SHAPING_V_TOL_X 0.05f // Vibration tolerance used by EI input shapers for X axis
|
||||
|
||||
#define FTM_DEFAULT_SHAPER_Y ftMotionShaper_NONE // Default shaper mode on Y axis
|
||||
#define FTM_SHAPING_DEFAULT_FREQ_X 37.0f // (Hz) Default peak frequency used by input shapers
|
||||
#define FTM_SHAPING_DEFAULT_FREQ_Y 37.0f // (Hz) Default peak frequency used by input shapers
|
||||
#define FTM_LINEAR_ADV_DEFAULT_ENA false // Default linear advance enable (true) or disable (false)
|
||||
#define FTM_LINEAR_ADV_DEFAULT_K 0.0f // Default linear advance gain. (Acceleration-based scaling factor.)
|
||||
#define FTM_SHAPING_ZETA_X 0.1f // Zeta used by input shapers for X axis
|
||||
#define FTM_SHAPING_ZETA_Y 0.1f // Zeta used by input shapers for Y axis
|
||||
#define FTM_SHAPING_DEFAULT_FREQ_Y 37.0f // (Hz) Default peak frequency used by input shapers
|
||||
#define FTM_SHAPING_ZETA_Y 0.1f // Zeta used by input shapers for Y axis
|
||||
#define FTM_SHAPING_V_TOL_Y 0.05f // Vibration tolerance used by EI input shapers for Y axis
|
||||
|
||||
#define FTM_SHAPING_V_TOL_X 0.05f // Vibration tolerance used by EI input shapers for X axis
|
||||
#define FTM_SHAPING_V_TOL_Y 0.05f // Vibration tolerance used by EI input shapers for Y axis
|
||||
//#define FTM_SHAPER_Z // Include Z shaping support
|
||||
#define FTM_DEFAULT_SHAPER_Z ftMotionShaper_NONE // Default shaper mode on Z axis
|
||||
#define FTM_SHAPING_DEFAULT_FREQ_Z 21.0f // (Hz) Default peak frequency used by input shapers
|
||||
#define FTM_SHAPING_ZETA_Z 0.03f // Zeta used by input shapers for Z axis
|
||||
#define FTM_SHAPING_V_TOL_Z 0.05f // Vibration tolerance used by EI input shapers for Z axis
|
||||
|
||||
//#define FT_MOTION_MENU // Provide a MarlinUI menu to set M493 parameters
|
||||
//#define FTM_SHAPER_E // Include E shaping support
|
||||
// Required to synchronize extruder with XYZ (better quality)
|
||||
#define FTM_DEFAULT_SHAPER_E ftMotionShaper_NONE // Default shaper mode on Extruder axis
|
||||
#define FTM_SHAPING_DEFAULT_FREQ_E 21.0f // (Hz) Default peak frequency used by input shapers
|
||||
#define FTM_SHAPING_ZETA_E 0.03f // Zeta used by input shapers for E axis
|
||||
#define FTM_SHAPING_V_TOL_E 0.05f // Vibration tolerance used by EI input shapers for E axis
|
||||
|
||||
//#define FTM_SMOOTHING // Smoothing can reduce artifacts and make steppers quieter
|
||||
// on sharp corners, but too much will round corners.
|
||||
#if ENABLED(FTM_SMOOTHING)
|
||||
#define FTM_MAX_SMOOTHING_TIME 0.10f // (s) Maximum smoothing time. Higher values consume more RAM.
|
||||
// Increase smoothing time to reduce jerky motion, ghosting and noises.
|
||||
#define FTM_SMOOTHING_TIME_X 0.00f // (s) Smoothing time for X axis. Zero means disabled.
|
||||
#define FTM_SMOOTHING_TIME_Y 0.00f // (s) Smoothing time for Y axis
|
||||
#define FTM_SMOOTHING_TIME_Z 0.00f // (s) Smoothing time for Z axis
|
||||
#define FTM_SMOOTHING_TIME_E 0.02f // (s) Smoothing time for E axis. Prevents noise/skipping from LA by
|
||||
// smoothing acceleration peaks, which may also smooth curved surfaces.
|
||||
#endif
|
||||
|
||||
#define FTM_TRAJECTORY_TYPE TRAPEZOIDAL // Block acceleration profile (TRAPEZOIDAL, POLY5, POLY6)
|
||||
// TRAPEZOIDAL: Continuous Velocity. Max acceleration is respected.
|
||||
// POLY5: Like POLY6 with 1.5x but cpu cheaper.
|
||||
// POLY6: Continuous Acceleration (aka S_CURVE).
|
||||
// POLY trajectories not only reduce resonances without rounding corners, but also
|
||||
// reduce extruder strain due to linear advance.
|
||||
|
||||
#define FTM_POLY6_ACCELERATION_OVERSHOOT 1.875f // Max acceleration overshoot factor for POLY6 (1.25 to 1.875)
|
||||
|
||||
/**
|
||||
* Advanced configuration
|
||||
*/
|
||||
#define FTM_UNIFIED_BWS // DON'T DISABLE unless you use Ulendo FBS (not implemented)
|
||||
#define FTM_UNIFIED_BWS // DON'T DISABLE unless you use Ulendo FBS (not implemented)
|
||||
#if ENABLED(FTM_UNIFIED_BWS)
|
||||
#define FTM_BW_SIZE 100 // Unified Window and Batch size with a ratio of 2
|
||||
#define FTM_BW_SIZE 100 // Unified Window and Batch size with a ratio of 2
|
||||
#else
|
||||
#define FTM_WINDOW_SIZE 200 // Custom Window size for trajectory generation needed by Ulendo FBS
|
||||
#define FTM_BATCH_SIZE 100 // Custom Batch size for trajectory generation needed by Ulendo FBS
|
||||
#define FTM_WINDOW_SIZE 200 // Custom Window size for trajectory generation needed by Ulendo FBS
|
||||
#define FTM_BATCH_SIZE 100 // Custom Batch size for trajectory generation needed by Ulendo FBS
|
||||
#endif
|
||||
|
||||
#define FTM_FS 1000 // (Hz) Frequency for trajectory generation. (Reciprocal of FTM_TS)
|
||||
#define FTM_TS 0.001f // (s) Time step for trajectory generation. (Reciprocal of FTM_FS)
|
||||
#define FTM_FS 1000 // (Hz) Frequency for trajectory generation
|
||||
|
||||
#if DISABLED(COREXY)
|
||||
#define FTM_STEPPER_FS 20000 // (Hz) Frequency for stepper I/O update
|
||||
#define FTM_STEPPER_FS 20000 // (Hz) Frequency for stepper I/O update
|
||||
|
||||
// Use this to adjust the time required to consume the command buffer.
|
||||
// Try increasing this value if stepper motion is choppy.
|
||||
#define FTM_STEPPERCMD_BUFF_SIZE 3000 // Size of the stepper command buffers
|
||||
#define FTM_STEPPERCMD_BUFF_SIZE 3000 // Size of the stepper command buffers
|
||||
|
||||
#else
|
||||
// CoreXY motion needs a larger buffer size. These values are based on our testing.
|
||||
|
|
@ -1191,18 +1227,7 @@
|
|||
#define FTM_STEPPERCMD_BUFF_SIZE 6000
|
||||
#endif
|
||||
|
||||
#define FTM_STEPS_PER_UNIT_TIME (FTM_STEPPER_FS / FTM_FS) // Interpolated stepper commands per unit time
|
||||
#define FTM_CTS_COMPARE_VAL (FTM_STEPS_PER_UNIT_TIME / 2) // Comparison value used in interpolation algorithm
|
||||
#define FTM_MIN_TICKS ((STEPPER_TIMER_RATE) / (FTM_STEPPER_FS)) // Minimum stepper ticks between steps
|
||||
|
||||
#define FTM_MIN_SHAPE_FREQ 10 // Minimum shaping frequency
|
||||
#define FTM_RATIO (FTM_FS / FTM_MIN_SHAPE_FREQ) // Factor for use in FTM_ZMAX. DON'T CHANGE.
|
||||
#define FTM_ZMAX (FTM_RATIO * 2) // Maximum delays for shaping functions (even numbers only!)
|
||||
// Calculate as:
|
||||
// ZV : FTM_RATIO / 2
|
||||
// ZVD, MZV : FTM_RATIO
|
||||
// 2HEI : FTM_RATIO * 3 / 2
|
||||
// 3HEI : FTM_RATIO * 2
|
||||
#define FTM_MIN_SHAPE_FREQ 10 // (Hz) Minimum shaping frequency, lower consumes more RAM
|
||||
#endif // FT_MOTION
|
||||
|
||||
/**
|
||||
|
|
@ -1852,6 +1877,7 @@
|
|||
#define SDSORT_DYNAMIC_RAM false // Use dynamic allocation (within SD menus). Least expensive option. Set SDSORT_LIMIT before use!
|
||||
#define SDSORT_CACHE_VFATS 2 // Maximum number of 13-byte VFAT entries to use for sorting.
|
||||
// Note: Only affects SCROLL_LONG_FILENAMES with SDSORT_CACHE_NAMES but not SDSORT_DYNAMIC_RAM.
|
||||
#define SDSORT_QUICK true // Use Quick Sort as a sorting algorithm. Otherwise use Bubble Sort.
|
||||
#endif
|
||||
|
||||
// Allow international symbols in long filenames. To display correctly, the
|
||||
|
|
@ -4260,7 +4286,7 @@
|
|||
//#define I2CPE_ENC_1_TICKS_REV (16 * 200) // Only needed for rotary encoders; number of stepper
|
||||
// steps per full revolution (motor steps/rev * microstepping)
|
||||
//#define I2CPE_ENC_1_INVERT // Invert the direction of axis travel.
|
||||
#define I2CPE_ENC_1_EC_METHOD I2CPE_ECM_MICROSTEP // Type of error error correction.
|
||||
#define I2CPE_ENC_1_EC_METHOD I2CPE_ECM_MICROSTEP // Type of error correction.
|
||||
#define I2CPE_ENC_1_EC_THRESH 0.10 // Threshold size for error (in mm) above which the
|
||||
// printer will attempt to correct the error; errors
|
||||
// smaller than this are ignored to minimize effects of
|
||||
|
|
@ -4692,6 +4718,11 @@
|
|||
//
|
||||
//#define PINS_DEBUGGING
|
||||
|
||||
//
|
||||
// M265 - I2C Scanner
|
||||
//
|
||||
//#define I2C_SCANNER
|
||||
|
||||
// Enable Tests that will run at startup and produce a report
|
||||
//#define MARLIN_TEST_BUILD
|
||||
|
||||
|
|
|
|||
|
|
@ -41,7 +41,7 @@
|
|||
* here we define this default string as the date where the latest release
|
||||
* version was tagged.
|
||||
*/
|
||||
//#define STRING_DISTRIBUTION_DATE "2025-09-09"
|
||||
//#define STRING_DISTRIBUTION_DATE "2025-10-29"
|
||||
|
||||
/**
|
||||
* The protocol for communication to the host. Protocol indicates communication
|
||||
|
|
|
|||
|
|
@ -86,13 +86,14 @@ heater_0_maxtemp = 275
|
|||
pidtemp = on
|
||||
pid_k1 = 0.95
|
||||
pid_max = 255
|
||||
pid_functional_range = 10
|
||||
pid_functional_range = 20
|
||||
|
||||
default_kp = 22.20
|
||||
default_ki = 1.08
|
||||
default_kd = 114.00
|
||||
|
||||
temp_sensor_bed = 1
|
||||
bed_check_interval = 5000
|
||||
bed_mintemp = 5
|
||||
bed_maxtemp = 150
|
||||
|
||||
|
|
@ -163,18 +164,28 @@ min_steps_per_segment = 6
|
|||
default_minsegmenttime = 20000
|
||||
|
||||
[config:basic]
|
||||
hotend_overshoot = 15
|
||||
bed_overshoot = 10
|
||||
max_bed_power = 255
|
||||
|
||||
busy_while_heating = on
|
||||
host_keepalive_feature = on
|
||||
default_keepalive_interval = 2
|
||||
printjob_timer_autostart = on
|
||||
|
||||
jd_handle_small_segments = on
|
||||
validate_homing_endstops = on
|
||||
editable_steps_per_unit = on
|
||||
|
||||
eeprom_boot_silent = on
|
||||
eeprom_chitchat = on
|
||||
|
||||
endstoppullups = on
|
||||
extrude_maxlength = 200
|
||||
|
||||
prevent_cold_extrusion = on
|
||||
extrude_mintemp = 170
|
||||
host_keepalive_feature = on
|
||||
hotend_overshoot = 15
|
||||
jd_handle_small_segments = on
|
||||
max_bed_power = 255
|
||||
prevent_lengthy_extrude = on
|
||||
extrude_maxlength = 200
|
||||
|
||||
min_software_endstops = on
|
||||
max_software_endstops = on
|
||||
|
|
@ -195,21 +206,19 @@ preheat_2_temp_hotend = 240
|
|||
preheat_2_temp_bed = 110
|
||||
preheat_2_fan_speed = 0
|
||||
|
||||
prevent_cold_extrusion = on
|
||||
prevent_lengthy_extrude = on
|
||||
printjob_timer_autostart = on
|
||||
|
||||
temp_bed_hysteresis = 3
|
||||
temp_bed_residency_time = 10
|
||||
temp_bed_window = 1
|
||||
temp_residency_time = 10
|
||||
temp_window = 1
|
||||
validate_homing_endstops = on
|
||||
|
||||
editable_steps_per_unit = on
|
||||
|
||||
[config:advanced]
|
||||
arc_support = on
|
||||
min_arc_segment_mm = 0.1
|
||||
max_arc_segment_mm = 1.0
|
||||
min_circle_segments = 72
|
||||
n_arc_correction = 25
|
||||
|
||||
auto_report_temperatures = on
|
||||
|
||||
autotemp = on
|
||||
|
|
@ -223,22 +232,23 @@ disable_idle_x = on
|
|||
disable_idle_y = on
|
||||
disable_idle_z = on
|
||||
disable_idle_e = on
|
||||
|
||||
e0_auto_fan_pin = -1
|
||||
|
||||
faster_gcode_parser = on
|
||||
debug_flags_gcode = on
|
||||
|
||||
homing_bump_mm = { 5, 5, 2 }
|
||||
max_arc_segment_mm = 1.0
|
||||
min_arc_segment_mm = 0.1
|
||||
min_circle_segments = 72
|
||||
n_arc_correction = 25
|
||||
serial_overrun_protection = on
|
||||
|
||||
slowdown = on
|
||||
slowdown_divisor = 2
|
||||
tx_buffer_size = 0
|
||||
multistepping_limit = 16
|
||||
|
||||
bed_check_interval = 5000
|
||||
watch_bed_temp_increase = 2
|
||||
watch_bed_temp_period = 60
|
||||
serial_overrun_protection = on
|
||||
tx_buffer_size = 0
|
||||
|
||||
watch_temp_increase = 2
|
||||
watch_temp_period = 40
|
||||
|
||||
watch_bed_temp_increase = 2
|
||||
watch_bed_temp_period = 60
|
||||
|
|
|
|||
|
|
@ -241,7 +241,7 @@ uint8_t extDigitalRead(const int8_t pin) {
|
|||
*
|
||||
* DC values -1.0 to 1.0. Negative duty cycle inverts the pulse.
|
||||
*/
|
||||
uint16_t set_pwm_frequency_hz(const_float_t hz, const float dca, const float dcb, const float dcc) {
|
||||
uint16_t set_pwm_frequency_hz(const float hz, const float dca, const float dcb, const float dcc) {
|
||||
float count = 0;
|
||||
if (hz > 0 && (dca || dcb || dcc)) {
|
||||
count = float(F_CPU) / hz; // 1x prescaler, TOP for 16MHz base freq.
|
||||
|
|
@ -254,7 +254,7 @@ uint16_t set_pwm_frequency_hz(const_float_t hz, const float dca, const float dcb
|
|||
else { prescaler = 1; SET_CS(5, PRESCALER_1); }
|
||||
|
||||
count /= float(prescaler);
|
||||
const float pwm_top = round(count); // Get the rounded count
|
||||
const float pwm_top = roundf(count); // Get the rounded count
|
||||
|
||||
ICR5 = (uint16_t)pwm_top - 1; // Subtract 1 for TOP
|
||||
OCR5A = pwm_top * ABS(dca); // Update and scale DCs
|
||||
|
|
@ -280,7 +280,7 @@ uint16_t set_pwm_frequency_hz(const_float_t hz, const float dca, const float dcb
|
|||
SET_CS(5, PRESCALER_64); // 16MHz / 64 = 250kHz
|
||||
OCR5A = OCR5B = OCR5C = 0;
|
||||
}
|
||||
return round(count);
|
||||
return roundf(count);
|
||||
}
|
||||
#endif
|
||||
|
||||
|
|
|
|||
|
|
@ -95,7 +95,7 @@
|
|||
/**
|
||||
* The Trinamic library includes SoftwareSerial.h, leading to a compile error.
|
||||
*/
|
||||
#if ALL(HAS_TRINAMIC_CONFIG, ENDSTOP_INTERRUPTS_FEATURE)
|
||||
#if ALL(HAS_TMC_SW_SERIAL, ENDSTOP_INTERRUPTS_FEATURE)
|
||||
#error "TMCStepper includes SoftwareSerial.h which is incompatible with ENDSTOP_INTERRUPTS_FEATURE. Disable ENDSTOP_INTERRUPTS_FEATURE to continue."
|
||||
#endif
|
||||
|
||||
|
|
|
|||
|
|
@ -93,15 +93,15 @@ namespace AVRHelpers {
|
|||
typedef T type;
|
||||
};
|
||||
template <typename T>
|
||||
struct voltype <T, 1u> {
|
||||
struct voltype <T, 1U> {
|
||||
typedef uint8_t type;
|
||||
};
|
||||
template <typename T>
|
||||
struct voltype <T, 2u> {
|
||||
struct voltype <T, 2U> {
|
||||
typedef uint16_t type;
|
||||
};
|
||||
template <typename T>
|
||||
struct voltype <T, 4u> {
|
||||
struct voltype <T, 4U> {
|
||||
typedef uint32_t type;
|
||||
};
|
||||
|
||||
|
|
@ -2007,7 +2007,7 @@ inline void _ATmega_resetperipherals() {
|
|||
|
||||
#if defined(__AVR_TRM01__) || defined(__AVR_TRM02__) || defined(__AVR_TRM03__) || defined(__AVR_TRM05__)
|
||||
_EEAR._EEAR = 0;
|
||||
dwrite(_EEDR, (uint8_t)0u);
|
||||
dwrite(_EEDR, (uint8_t)0U);
|
||||
#endif
|
||||
|
||||
#if defined(__AVR_TRM01__) || defined(__AVR_TRM02__) || defined(__AVR_TRM03__) || defined(__AVR_TRM04__) || defined(__AVR_TRM05__)
|
||||
|
|
|
|||
|
|
@ -28,7 +28,7 @@
|
|||
// ------------------------
|
||||
|
||||
typedef uint16_t hal_timer_t;
|
||||
#define HAL_TIMER_TYPE_MAX 0xFFFF
|
||||
#define HAL_TIMER_TYPE_MAX 0xFFFFU
|
||||
|
||||
// ------------------------
|
||||
// Defines
|
||||
|
|
|
|||
|
|
@ -34,7 +34,7 @@
|
|||
#define FORCE_INLINE __attribute__((always_inline)) inline
|
||||
|
||||
typedef uint32_t hal_timer_t;
|
||||
#define HAL_TIMER_TYPE_MAX 0xFFFFFFFF
|
||||
#define HAL_TIMER_TYPE_MAX 0xFFFFFFFFUL
|
||||
|
||||
#define HAL_TIMER_PRESCALER 2
|
||||
#define HAL_TIMER_RATE ((F_CPU) / (HAL_TIMER_PRESCALER)) // frequency of timers peripherals
|
||||
|
|
|
|||
|
|
@ -64,10 +64,10 @@
|
|||
#define CRITICAL_SECTION_END() portEXIT_CRITICAL(&hal.spinlock)
|
||||
|
||||
#define HAL_CAN_SET_PWM_FREQ // This HAL supports PWM Frequency adjustment
|
||||
#define PWM_FREQUENCY 1000u // Default PWM frequency when set_pwm_duty() is called without set_pwm_frequency()
|
||||
#define PWM_RESOLUTION 10u // Default PWM bit resolution
|
||||
#define CHANNEL_MAX_NUM 15u // max PWM channel # to allocate (7 to only use low speed, 15 to use low & high)
|
||||
#define MAX_PWM_IOPIN 33u // hardware pwm pins < 34
|
||||
#define PWM_FREQUENCY 1000U // Default PWM frequency when set_pwm_duty() is called without set_pwm_frequency()
|
||||
#define PWM_RESOLUTION 10U // Default PWM bit resolution
|
||||
#define CHANNEL_MAX_NUM 15U // max PWM channel # to allocate (7 to only use low speed, 15 to use low & high)
|
||||
#define MAX_PWM_IOPIN 33U // hardware pwm pins < 34
|
||||
#ifndef MAX_EXPANDER_BITS
|
||||
#define MAX_EXPANDER_BITS 32 // I2S expander bit width (max 32)
|
||||
#endif
|
||||
|
|
|
|||
|
|
@ -35,7 +35,7 @@ Servo::Servo() {}
|
|||
|
||||
int8_t Servo::attach(const int inPin) {
|
||||
if (inPin > 0) pin = inPin;
|
||||
channel = get_pwm_channel(pin, 50u, 16u);
|
||||
channel = get_pwm_channel(pin, 50U, 16U);
|
||||
return channel; // -1 if no PWM avail.
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -78,8 +78,8 @@ void IRAM_ATTR timer_isr(void *para) {
|
|||
|
||||
/**
|
||||
* Enable and initialize the timer
|
||||
* @param timer_num timer number to initialize
|
||||
* @param frequency frequency of the timer
|
||||
* @param timer_num timer number to initialize
|
||||
* @param frequency frequency of the timer
|
||||
*/
|
||||
void HAL_timer_start(const uint8_t timer_num, const uint32_t frequency) {
|
||||
const tTimerConfig timer = timer_config[timer_num];
|
||||
|
|
|
|||
|
|
@ -30,7 +30,7 @@
|
|||
#define FORCE_INLINE __attribute__((always_inline)) inline
|
||||
|
||||
typedef uint64_t hal_timer_t;
|
||||
#define HAL_TIMER_TYPE_MAX 0xFFFFFFFFFFFFFFFFULL
|
||||
#define HAL_TIMER_TYPE_MAX 0xFFFF'FFFF'FFFF'FFFFULL
|
||||
|
||||
#ifndef MF_TIMER_STEP
|
||||
#define MF_TIMER_STEP 0 // Timer Index for Stepper
|
||||
|
|
@ -52,12 +52,12 @@ typedef uint64_t hal_timer_t;
|
|||
|
||||
#if ENABLED(I2S_STEPPER_STREAM)
|
||||
#define STEPPER_TIMER_PRESCALE 1
|
||||
#define STEPPER_TIMER_RATE 250000 // 250khz, 4µs pulses of i2s word clock
|
||||
#define STEPPER_TIMER_RATE 250'000 // 250khz, 4µs pulses of i2s word clock
|
||||
#else
|
||||
#define STEPPER_TIMER_PRESCALE 40
|
||||
#define STEPPER_TIMER_RATE ((HAL_TIMER_RATE) / (STEPPER_TIMER_PRESCALE)) // frequency of stepper timer, 2MHz
|
||||
#endif
|
||||
#define STEPPER_TIMER_TICKS_PER_US ((STEPPER_TIMER_RATE) / 1000000) // stepper timer ticks per µs
|
||||
#define STEPPER_TIMER_TICKS_PER_US ((STEPPER_TIMER_RATE) / 1'000'000) // stepper timer ticks per µs
|
||||
|
||||
#define STEP_TIMER_MIN_INTERVAL 8 // minimum time in µs between stepper interrupts
|
||||
|
||||
|
|
|
|||
|
|
@ -26,4 +26,4 @@
|
|||
#define TS_TYPICAL_SLOPE 4.5
|
||||
|
||||
// TODO: Implement voltage scaling (calibrated Vrefint) and ADC resolution scaling (when applicable)
|
||||
#define TEMP_SOC_SENSOR(RAW) ((TS_TYPICAL_V - (RAW) / float(OVERSAMPLENR) / float(HAL_ADC_RANGE) * (float(ADC_VREF_MV) / 1000.0f)) / ((TS_TYPICAL_SLOPE) / 1000.0f) + TS_TYPICAL_TEMP)
|
||||
#define TEMP_SOC_SENSOR(RAW) ((TS_TYPICAL_V - (RAW) / float(OVERSAMPLENR) / float(HAL_ADC_RANGE) * (float(ADC_VREF_MV) * 0.001f)) / ((TS_TYPICAL_SLOPE) * 0.001f) + TS_TYPICAL_TEMP)
|
||||
|
|
|
|||
|
|
@ -37,9 +37,9 @@ public:
|
|||
MarlinServo();
|
||||
|
||||
/**
|
||||
* @brief attach the pin to the servo, set pin mode, return channel number
|
||||
* @param pin pin to attach to
|
||||
* @return channel number, -1 if failed
|
||||
* @brief attach the pin to the servo, set pin mode, return channel number
|
||||
* @param pin pin to attach to
|
||||
* @return channel number, -1 if failed
|
||||
*/
|
||||
int8_t attach(const pin_t apin);
|
||||
|
||||
|
|
|
|||
|
|
@ -27,7 +27,7 @@
|
|||
//
|
||||
typedef Timer0 *timer_channel_t;
|
||||
typedef uint16_t hal_timer_t;
|
||||
#define HAL_TIMER_TYPE_MAX 0xFFFF
|
||||
#define HAL_TIMER_TYPE_MAX 0xFFFFU
|
||||
|
||||
//
|
||||
// Timer instances
|
||||
|
|
|
|||
|
|
@ -34,7 +34,7 @@
|
|||
#define FORCE_INLINE __attribute__((always_inline)) inline
|
||||
|
||||
typedef uint32_t hal_timer_t;
|
||||
#define HAL_TIMER_TYPE_MAX 0xFFFFFFFF
|
||||
#define HAL_TIMER_TYPE_MAX 0xFFFFFFFFUL
|
||||
|
||||
#define HAL_TIMER_RATE ((SystemCoreClock) / 4) // frequency of timers peripherals
|
||||
|
||||
|
|
|
|||
|
|
@ -29,6 +29,6 @@
|
|||
|
||||
// LPC1768 boards seem to lose steps when saving to EEPROM during print (issue #20785)
|
||||
// TODO: Which other boards are incompatible?
|
||||
#if defined(MCU_LPC1768) && ENABLED(FLASH_EEPROM_EMULATION) && PRINTCOUNTER_SAVE_INTERVAL > 0
|
||||
#if ALL(MCU_LPC1768, FLASH_EEPROM_EMULATION) && PRINTCOUNTER_SAVE_INTERVAL > 0
|
||||
#define PRINTCOUNTER_SYNC
|
||||
#endif
|
||||
|
|
|
|||
|
|
@ -57,7 +57,7 @@
|
|||
#define _HAL_TIMER_ISR(T) __HAL_TIMER_ISR(T)
|
||||
|
||||
typedef uint32_t hal_timer_t;
|
||||
#define HAL_TIMER_TYPE_MAX 0xFFFFFFFF
|
||||
#define HAL_TIMER_TYPE_MAX 0xFFFFFFFFUL
|
||||
|
||||
#define HAL_TIMER_RATE ((F_CPU) / 4) // frequency of timers peripherals
|
||||
|
||||
|
|
|
|||
|
|
@ -27,7 +27,7 @@
|
|||
*
|
||||
* Couldn't just call exact copies because the overhead killed the LCD update speed
|
||||
* With an intermediate level the softspi was running in the 10-20kHz range which
|
||||
* resulted in using about about 25% of the CPU's time.
|
||||
* resulted in using about 25% of the CPU's time.
|
||||
*/
|
||||
|
||||
#ifdef TARGET_LPC1768
|
||||
|
|
|
|||
|
|
@ -28,7 +28,7 @@
|
|||
*
|
||||
* Couldn't just call exact copies because the overhead killed the LCD update speed
|
||||
* With an intermediate level the softspi was running in the 10-20kHz range which
|
||||
* resulted in using about about 25% of the CPU's time.
|
||||
* resulted in using about 25% of the CPU's time.
|
||||
*/
|
||||
|
||||
void u8g_SetPinOutput(uint8_t internal_pin_number);
|
||||
|
|
|
|||
|
|
@ -34,7 +34,7 @@
|
|||
#define FORCE_INLINE __attribute__((always_inline)) inline
|
||||
|
||||
typedef uint64_t hal_timer_t;
|
||||
#define HAL_TIMER_TYPE_MAX 0xFFFFFFFFFFFFFFFF
|
||||
#define HAL_TIMER_TYPE_MAX 0xFFFF'FFFF'FFFF'FFFFULL
|
||||
|
||||
#define HAL_TIMER_RATE ((SystemCoreClock) / 4) // frequency of timers peripherals
|
||||
|
||||
|
|
@ -52,11 +52,11 @@ typedef uint64_t hal_timer_t;
|
|||
#endif
|
||||
#define SYSTICK_TIMER_FREQUENCY 1000
|
||||
|
||||
#define TEMP_TIMER_RATE 1000000
|
||||
#define TEMP_TIMER_FREQUENCY 1000 // temperature interrupt frequency
|
||||
#define TEMP_TIMER_RATE 1'000'000
|
||||
#define TEMP_TIMER_FREQUENCY 1000 // temperature interrupt frequency
|
||||
|
||||
#define STEPPER_TIMER_RATE HAL_TIMER_RATE // frequency of stepper timer (HAL_TIMER_RATE / STEPPER_TIMER_PRESCALE)
|
||||
#define STEPPER_TIMER_TICKS_PER_US ((STEPPER_TIMER_RATE) / 1000000) // stepper timer ticks per µs
|
||||
#define STEPPER_TIMER_TICKS_PER_US ((STEPPER_TIMER_RATE) / 1'000'000) // stepper timer ticks per µs
|
||||
#define STEPPER_TIMER_PRESCALE (CYCLES_PER_MICROSECOND / STEPPER_TIMER_TICKS_PER_US)
|
||||
|
||||
#define PULSE_TIMER_RATE STEPPER_TIMER_RATE // frequency of pulse timer
|
||||
|
|
|
|||
|
|
@ -27,7 +27,7 @@
|
|||
*
|
||||
* Couldn't just call exact copies because the overhead killed the LCD update speed
|
||||
* With an intermediate level the softspi was running in the 10-20kHz range which
|
||||
* resulted in using about about 25% of the CPU's time.
|
||||
* resulted in using about 25% of the CPU's time.
|
||||
*/
|
||||
|
||||
#ifdef __PLAT_NATIVE_SIM__
|
||||
|
|
|
|||
|
|
@ -28,7 +28,7 @@
|
|||
*
|
||||
* Couldn't just call exact copies because the overhead killed the LCD update speed
|
||||
* With an intermediate level the softspi was running in the 10-20kHz range which
|
||||
* resulted in using about about 25% of the CPU's time.
|
||||
* resulted in using about 25% of the CPU's time.
|
||||
*/
|
||||
|
||||
#ifdef __cplusplus
|
||||
|
|
|
|||
|
|
@ -71,13 +71,13 @@ static uint8_t SPI_speed = 0;
|
|||
|
||||
static uint8_t swSpiTransfer(uint8_t b, const uint8_t spi_speed, const pin_t sck_pin, const pin_t miso_pin, const pin_t mosi_pin) {
|
||||
for (uint8_t i = 0; i < 8; i++) {
|
||||
WRITE_PIN(mosi_pin, !!(b & 0x80));
|
||||
WRITE_PIN(sck_pin, TERN(U8G_SPI_USE_MODE_3, LOW, HIGH));
|
||||
DELAY_CYCLES(SPI_SPEED);
|
||||
WRITE_PIN(sck_pin, HIGH);
|
||||
WRITE_PIN(mosi_pin, !!(b & 0x80));
|
||||
DELAY_CYCLES(SPI_SPEED);
|
||||
b <<= 1;
|
||||
if (miso_pin >= 0 && READ_PIN(miso_pin)) b |= 1;
|
||||
WRITE_PIN(sck_pin, LOW);
|
||||
WRITE_PIN(sck_pin, TERN(U8G_SPI_USE_MODE_3, HIGH, LOW));
|
||||
DELAY_CYCLES(SPI_SPEED);
|
||||
}
|
||||
return b;
|
||||
|
|
@ -85,7 +85,7 @@ static uint8_t swSpiTransfer(uint8_t b, const uint8_t spi_speed, const pin_t sck
|
|||
|
||||
static uint8_t swSpiInit(const uint8_t spiRate, const pin_t sck_pin, const pin_t mosi_pin) {
|
||||
WRITE_PIN(mosi_pin, HIGH);
|
||||
WRITE_PIN(sck_pin, LOW);
|
||||
WRITE_PIN(sck_pin, TERN(U8G_SPI_USE_MODE_3, HIGH, LOW));
|
||||
return spiRate;
|
||||
}
|
||||
|
||||
|
|
@ -93,11 +93,11 @@ static void u8g_com_st7920_write_byte_sw_spi(uint8_t rs, uint8_t val) {
|
|||
static uint8_t rs_last_state = 255;
|
||||
if (rs != rs_last_state) {
|
||||
// Transfer Data (FA) or Command (F8)
|
||||
swSpiTransfer(rs ? 0x0FA : 0x0F8, SPI_speed, SCK_pin_ST7920_HAL, -1, MOSI_pin_ST7920_HAL_HAL);
|
||||
swSpiTransfer(rs ? 0xFA : 0xF8, SPI_speed, SCK_pin_ST7920_HAL, -1, MOSI_pin_ST7920_HAL_HAL);
|
||||
rs_last_state = rs;
|
||||
DELAY_US(40); // Give the controller time to process the data: 20 is bad, 30 is OK, 40 is safe
|
||||
}
|
||||
swSpiTransfer(val & 0x0F0, SPI_speed, SCK_pin_ST7920_HAL, -1, MOSI_pin_ST7920_HAL_HAL);
|
||||
swSpiTransfer(val & 0xF0, SPI_speed, SCK_pin_ST7920_HAL, -1, MOSI_pin_ST7920_HAL_HAL);
|
||||
swSpiTransfer(val << 4, SPI_speed, SCK_pin_ST7920_HAL, -1, MOSI_pin_ST7920_HAL_HAL);
|
||||
}
|
||||
|
||||
|
|
@ -169,5 +169,32 @@ uint8_t u8g_com_ST7920_sw_spi_fn(u8g_t *u8g, uint8_t msg, uint8_t arg_val, void
|
|||
}
|
||||
#endif
|
||||
|
||||
#if ENABLED(LIGHTWEIGHT_UI)
|
||||
|
||||
#define ST7920_CS() { WRITE(LCD_PINS_RS, HIGH); }
|
||||
#define ST7920_NCS() { WRITE(LCD_PINS_RS, LOW); }
|
||||
#define ST7920_SET_CMD() { ST7920_SWSPI_SND_8BIT(0xF8); }
|
||||
#define ST7920_SET_DAT() { ST7920_SWSPI_SND_8BIT(0xFA); }
|
||||
#define ST7920_WRITE_BYTE(a) { ST7920_SWSPI_SND_8BIT((uint8_t)((a)&0xF0u)); ST7920_SWSPI_SND_8BIT((uint8_t)((a)<<4U)); }
|
||||
|
||||
#define ST7920_DAT(V) !!((V) & 0x80)
|
||||
|
||||
#define ST7920_SND_BIT(...) do{ \
|
||||
WRITE(LCD_PINS_D4, LOW); \
|
||||
WRITE(LCD_PINS_EN, ST7920_DAT(val)); \
|
||||
WRITE(LCD_PINS_D4, HIGH); \
|
||||
val <<= 1; }while(0);
|
||||
|
||||
void ST7920_SWSPI_SND_8BIT(uint8_t val) {
|
||||
REPEAT(8, ST7920_SND_BIT);
|
||||
}
|
||||
|
||||
void ST7920_cs() { ST7920_CS(); }
|
||||
void ST7920_ncs() { ST7920_NCS(); }
|
||||
void ST7920_set_cmd() { ST7920_SET_CMD(); }
|
||||
void ST7920_set_dat() { ST7920_SET_DAT(); }
|
||||
void ST7920_write_byte(const uint8_t val) { ST7920_WRITE_BYTE(val); }
|
||||
#endif // LIGHTWEIGHT_UI
|
||||
|
||||
#endif // IS_U8GLIB_ST7920
|
||||
#endif // __PLAT_NATIVE_SIM__
|
||||
|
|
|
|||
|
|
@ -127,7 +127,7 @@ uint8_t swSpiTransfer_mode_3(uint8_t b, const uint8_t spi_speed, const pin_t sck
|
|||
static uint8_t SPI_speed = 0;
|
||||
|
||||
static uint8_t swSpiInit(const uint8_t spi_speed, const uint8_t clk_pin, const uint8_t mosi_pin) {
|
||||
return spi_speed;
|
||||
return spi_speed;
|
||||
}
|
||||
|
||||
static void u8g_sw_spi_shift_out(uint8_t dataPin, uint8_t clockPin, uint8_t val) {
|
||||
|
|
|
|||
|
|
@ -41,9 +41,9 @@
|
|||
#define _HAL_TIMER_ISR(T) __HAL_TIMER_ISR(T)
|
||||
|
||||
typedef uint64_t hal_timer_t;
|
||||
#define HAL_TIMER_TYPE_MAX 0xFFFFFFFFFFFFFFFF
|
||||
#define HAL_TIMER_TYPE_MAX 0xFFFF'FFFF'FFFF'FFFFULL
|
||||
|
||||
#define HAL_TIMER_RATE (1000000ull) // fixed value as we use a microsecond timesource
|
||||
#define HAL_TIMER_RATE (1'000'000ULL) // fixed value as we use a microsecond timesource
|
||||
#ifndef MF_TIMER_STEP
|
||||
#define MF_TIMER_STEP 0 // Timer Index for Stepper
|
||||
#endif
|
||||
|
|
|
|||
|
|
@ -83,7 +83,7 @@ bool PersistentStore::access_start() {
|
|||
NVMCTRL->CTRLA.reg = NVMCTRL_CTRLA_CMDEX_KEY | NVMCTRL_CTRLA_CMD_PBC;
|
||||
while (NVMCTRL->INTFLAG.bit.READY == 0) { }
|
||||
|
||||
PAGE_SIZE = pow(2,3 + NVMCTRL->PARAM.bit.PSZ);
|
||||
PAGE_SIZE = POW(2, 3 + NVMCTRL->PARAM.bit.PSZ);
|
||||
ROW_SIZE= PAGE_SIZE * 4;
|
||||
/*NVMCTRL->SEECFG.reg = NVMCTRL_SEECFG_WMODE_BUFFERED; // Buffered mode and segment reallocation active
|
||||
if (NVMCTRL->SEESTAT.bit.RLOCK)
|
||||
|
|
|
|||
|
|
@ -33,7 +33,7 @@
|
|||
// --------------------------------------------------------------------------
|
||||
|
||||
typedef uint32_t hal_timer_t;
|
||||
#define HAL_TIMER_TYPE_MAX 0xFFFFFFFF
|
||||
#define HAL_TIMER_TYPE_MAX 0xFFFFFFFFUL
|
||||
|
||||
#define HAL_TIMER_RATE F_CPU // frequency of timers peripherals
|
||||
|
||||
|
|
|
|||
|
|
@ -32,7 +32,7 @@
|
|||
*
|
||||
* Couldn't just call exact copies because the overhead killed the LCD update speed
|
||||
* With an intermediate level the softspi was running in the 10-20kHz range which
|
||||
* resulted in using about about 25% of the CPU's time.
|
||||
* resulted in using about 25% of the CPU's time.
|
||||
*/
|
||||
|
||||
#ifdef __SAMD21__
|
||||
|
|
|
|||
|
|
@ -33,7 +33,7 @@
|
|||
*
|
||||
* Couldn't just call exact copies because the overhead killed the LCD update speed
|
||||
* With an intermediate level the softspi was running in the 10-20kHz range which
|
||||
* resulted in using about about 25% of the CPU's time.
|
||||
* resulted in using about 25% of the CPU's time.
|
||||
*/
|
||||
|
||||
void u8g_SetPinOutput(uint8_t internal_pin_number);
|
||||
|
|
|
|||
|
|
@ -32,7 +32,7 @@
|
|||
// --------------------------------------------------------------------------
|
||||
|
||||
typedef uint32_t hal_timer_t;
|
||||
#define HAL_TIMER_TYPE_MAX 0xFFFFFFFF
|
||||
#define HAL_TIMER_TYPE_MAX 0xFFFFFFFFUL
|
||||
|
||||
#define HAL_TIMER_RATE F_CPU // frequency of timers peripherals
|
||||
|
||||
|
|
|
|||
|
|
@ -39,8 +39,8 @@ static_assert(COUNT(servoDelay) == NUM_SERVOS, "SERVO_DELAY must be an array NUM
|
|||
static uint32_t servo_interrupt_priority = NVIC_EncodePriority(NVIC_GetPriorityGrouping(), TIM_IRQ_PRIO, TIM_IRQ_SUBPRIO);
|
||||
|
||||
// This must be called after the STM32 Servo class has initialized the timer.
|
||||
// It may only be needed after the first call to attach(), but it is possible
|
||||
// that is is necessary after every detach() call. To be safe this is currently
|
||||
// It may only be needed after the first call to attach(), but it's possible
|
||||
// that this is needed after every detach() call. To be safe this is currently
|
||||
// called after every call to attach().
|
||||
static void fixServoTimerInterruptPriority() {
|
||||
NVIC_SetPriority(getTimerUpIrq(TIMER_SERVO), servo_interrupt_priority);
|
||||
|
|
|
|||
|
|
@ -29,6 +29,6 @@
|
|||
#endif
|
||||
|
||||
// Some STM32F4 boards may lose steps when saving to EEPROM during print (PR #17946)
|
||||
#if defined(STM32F4xx) && ENABLED(FLASH_EEPROM_EMULATION) && PRINTCOUNTER_SAVE_INTERVAL > 0
|
||||
#if ALL(STM32F4xx, FLASH_EEPROM_EMULATION) && PRINTCOUNTER_SAVE_INTERVAL > 0
|
||||
#define PRINTCOUNTER_SYNC
|
||||
#endif
|
||||
|
|
|
|||
|
|
@ -132,6 +132,9 @@ void TFT_FSMC::init() {
|
|||
DMAtx.Init.Priority = DMA_PRIORITY_HIGH;
|
||||
|
||||
LCD = (LCD_CONTROLLER_TypeDef *)controllerAddress;
|
||||
|
||||
DMAtx.Init.PeriphInc = DMA_PINC_DISABLE;
|
||||
HAL_DMA_Init(&DMAtx);
|
||||
}
|
||||
|
||||
uint32_t TFT_FSMC::getID() {
|
||||
|
|
@ -179,15 +182,19 @@ void TFT_FSMC::abort() {
|
|||
}
|
||||
|
||||
void TFT_FSMC::transmitDMA(uint32_t memoryIncrease, uint16_t *data, uint16_t count) {
|
||||
DMAtx.Init.PeriphInc = memoryIncrease;
|
||||
HAL_DMA_Init(&DMAtx);
|
||||
if (!__IS_DMA_CONFIGURED(&DMAtx) || DMAtx.Init.PeriphInc != memoryIncrease) {
|
||||
DMAtx.Init.PeriphInc = memoryIncrease;
|
||||
HAL_DMA_Init(&DMAtx);
|
||||
}
|
||||
HAL_DMA_Start(&DMAtx, (uint32_t)data, (uint32_t)&(LCD->RAM), count);
|
||||
TERN_(TFT_SHARED_IO, while (isBusy()));
|
||||
}
|
||||
|
||||
void TFT_FSMC::transmit(uint32_t memoryIncrease, uint16_t *data, uint16_t count) {
|
||||
DMAtx.Init.PeriphInc = memoryIncrease;
|
||||
HAL_DMA_Init(&DMAtx);
|
||||
if (!__IS_DMA_CONFIGURED(&DMAtx) || DMAtx.Init.PeriphInc != memoryIncrease) {
|
||||
DMAtx.Init.PeriphInc = memoryIncrease;
|
||||
HAL_DMA_Init(&DMAtx);
|
||||
}
|
||||
dataTransferBegin();
|
||||
HAL_DMA_Start(&DMAtx, (uint32_t)data, (uint32_t)&(LCD->RAM), count);
|
||||
HAL_DMA_PollForTransfer(&DMAtx, HAL_DMA_FULL_TRANSFER, HAL_MAX_DELAY);
|
||||
|
|
|
|||
|
|
@ -30,3 +30,6 @@ uint8_t u8g_com_HAL_STM32_sw_spi_fn(u8g_t *u8g, uint8_t msg, uint8_t arg_val, vo
|
|||
|
||||
uint8_t u8g_com_stm32duino_hw_spi_fn(u8g_t *u8g, uint8_t msg, uint8_t arg_val, void *arg_ptr); // See U8glib-HAL
|
||||
#define U8G_COM_HAL_HW_SPI_FN u8g_com_stm32duino_hw_spi_fn
|
||||
|
||||
uint8_t u8g_com_stm32duino_ssd_i2c_fn(u8g_t *u8g, uint8_t msg, uint8_t arg_val, void *arg_ptr); // u8g_com_stm32duino_ssd_i2c.cpp
|
||||
#define U8G_COM_SSD_I2C_HAL u8g_com_stm32duino_ssd_i2c_fn
|
||||
|
|
|
|||
194
Marlin/src/HAL/STM32/u8g/u8g_com_stm32duino_ssd_i2c.cpp
Normal file
194
Marlin/src/HAL/STM32/u8g/u8g_com_stm32duino_ssd_i2c.cpp
Normal file
|
|
@ -0,0 +1,194 @@
|
|||
/**
|
||||
* Marlin 3D Printer Firmware
|
||||
* Copyright (c) 2025 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
||||
*
|
||||
* Based on Sprinter and grbl.
|
||||
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
|
||||
*
|
||||
* This program is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
*
|
||||
*/
|
||||
|
||||
/**
|
||||
* 2-Wire I2C COM Driver
|
||||
*
|
||||
* Handles both Hardware and Software I2C so any pins can be used as SDA and SLC.
|
||||
* Wire library is used for Hardware I2C.
|
||||
* SlowSoftWire is used for Software I2C.
|
||||
*
|
||||
* Wire / SoftWire library selection can be done automatically at runtime.
|
||||
*
|
||||
* SDA and SLC pins must be named DOGLCD_SDA_PIN, DOGLCD_SCL_PIN to distinguish
|
||||
* from other I2C devices (e.g., EEPROM) that use I2C_SDA_PIN, I2C_SLC_PIN.
|
||||
*/
|
||||
#ifdef ARDUINO_ARCH_STM32
|
||||
|
||||
#include "../../../inc/MarlinConfig.h"
|
||||
|
||||
#if HAS_U8GLIB_I2C_OLED
|
||||
|
||||
#include <U8glib-HAL.h>
|
||||
|
||||
#if ENABLED(U8G_USES_HW_I2C)
|
||||
#include <Wire.h>
|
||||
#ifndef MASTER_ADDRESS
|
||||
#define MASTER_ADDRESS 0x01
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if ENABLED(U8G_USES_SW_I2C)
|
||||
#include <SlowSoftI2CMaster.h>
|
||||
#include <SlowSoftWire.h>
|
||||
#endif
|
||||
|
||||
/**
|
||||
* BUFFER_LENGTH is defined in libraries\Wire\utility\WireBase.h
|
||||
* Default value is 32
|
||||
* Increase this value to 144 to send U8G_COM_MSG_WRITE_SEQ in single block
|
||||
*/
|
||||
#ifndef BUFFER_LENGTH
|
||||
#define BUFFER_LENGTH 32
|
||||
#endif
|
||||
#if BUFFER_LENGTH > 144
|
||||
#error "BUFFER_LENGTH should not be greater than 144."
|
||||
#endif
|
||||
#define I2C_MAX_LENGTH (BUFFER_LENGTH - 1)
|
||||
|
||||
uint8_t u8g_com_stm32duino_ssd_i2c_fn(u8g_t *u8g, uint8_t msg, uint8_t arg_val, void *arg_ptr) {
|
||||
// Hardware I2C flag
|
||||
#ifdef COMPILE_TIME_I2C_IS_HARDWARE
|
||||
constexpr bool isHardI2C = ENABLED(COMPILE_TIME_I2C_IS_HARDWARE);
|
||||
#else
|
||||
static bool isHardI2C = false;
|
||||
static bool i2c_initialized = false; // Flag to only run init/linking code once
|
||||
if (!i2c_initialized) { // Init runtime linkages
|
||||
i2c_initialized = true; // Only do this once
|
||||
I2C_TypeDef *i2cInstance1 = (I2C_TypeDef *)pinmap_peripheral(digitalPinToPinName(DOGLCD_SDA_PIN), PinMap_I2C_SDA);
|
||||
I2C_TypeDef *i2cInstance2 = (I2C_TypeDef *)pinmap_peripheral(digitalPinToPinName(DOGLCD_SCL_PIN), PinMap_I2C_SCL);
|
||||
isHardI2C = (i2cInstance1 && (i2cInstance1 == i2cInstance2)); // Found hardware I2C controller
|
||||
}
|
||||
#endif
|
||||
|
||||
static uint8_t msgInitCount = 0; // Ignore all messages until 2nd U8G_COM_MSG_INIT
|
||||
if (msgInitCount) {
|
||||
if (msg == U8G_COM_MSG_INIT) msgInitCount--;
|
||||
if (msgInitCount) return -1;
|
||||
}
|
||||
|
||||
static uint8_t control;
|
||||
if (isHardI2C) { // Found hardware I2C controller
|
||||
#if ENABLED(U8G_USES_HW_I2C)
|
||||
static TwoWire wire2; // A TwoWire object for use below
|
||||
switch (msg) {
|
||||
case U8G_COM_MSG_INIT:
|
||||
wire2.setClock(400000);
|
||||
wire2.setSCL(DOGLCD_SCL_PIN);
|
||||
wire2.setSDA(DOGLCD_SDA_PIN);
|
||||
wire2.begin(MASTER_ADDRESS, 0); // Start as master
|
||||
break;
|
||||
|
||||
case U8G_COM_MSG_ADDRESS: // Define cmd (arg_val = 0) or data mode (arg_val = 1)
|
||||
control = arg_val ? 0x40 : 0x00;
|
||||
break;
|
||||
|
||||
case U8G_COM_MSG_WRITE_BYTE:
|
||||
wire2.beginTransmission(0x3C);
|
||||
wire2.write(control);
|
||||
wire2.write(arg_val);
|
||||
wire2.endTransmission();
|
||||
break;
|
||||
|
||||
case U8G_COM_MSG_WRITE_SEQ: {
|
||||
uint8_t* dataptr = (uint8_t*)arg_ptr;
|
||||
#ifdef I2C_MAX_LENGTH
|
||||
while (arg_val > 0) {
|
||||
wire2.beginTransmission(0x3C);
|
||||
wire2.write(control);
|
||||
if (arg_val <= I2C_MAX_LENGTH) {
|
||||
wire2.write(dataptr, arg_val);
|
||||
arg_val = 0;
|
||||
}
|
||||
else {
|
||||
wire2.write(dataptr, I2C_MAX_LENGTH);
|
||||
arg_val -= I2C_MAX_LENGTH;
|
||||
dataptr += I2C_MAX_LENGTH;
|
||||
}
|
||||
wire2.endTransmission();
|
||||
}
|
||||
#else
|
||||
wire2.beginTransmission(0x3C);
|
||||
wire2.write(control);
|
||||
wire2.write(dataptr, arg_val);
|
||||
wire2.endTransmission();
|
||||
#endif // I2C_MAX_LENGTH
|
||||
break;
|
||||
}
|
||||
}
|
||||
#endif // U8G_USES_HW_I2C
|
||||
}
|
||||
else { // Software I2C
|
||||
#if ENABLED(U8G_USES_SW_I2C)
|
||||
static SlowSoftWire sWire = SlowSoftWire(DOGLCD_SDA_PIN, DOGLCD_SCL_PIN);
|
||||
|
||||
switch (msg) {
|
||||
case U8G_COM_MSG_INIT:
|
||||
sWire.setClock(400000);
|
||||
sWire.begin(); // Start as master
|
||||
break;
|
||||
|
||||
case U8G_COM_MSG_ADDRESS: // Define cmd (arg_val = 0) or data mode (arg_val = 1)
|
||||
control = arg_val ? 0x40 : 0x00;
|
||||
break;
|
||||
|
||||
case U8G_COM_MSG_WRITE_BYTE:
|
||||
sWire.beginTransmission((uint8_t)0x3C);
|
||||
sWire.write((uint8_t)control);
|
||||
sWire.write((uint8_t)arg_val);
|
||||
sWire.endTransmission();
|
||||
break;
|
||||
|
||||
case U8G_COM_MSG_WRITE_SEQ: {
|
||||
uint8_t* dataptr = (uint8_t*)arg_ptr;
|
||||
#ifdef I2C_MAX_LENGTH
|
||||
while (arg_val > 0) {
|
||||
sWire.beginTransmission((uint8_t)0x3C);
|
||||
sWire.write((uint8_t)control);
|
||||
if (arg_val <= I2C_MAX_LENGTH) {
|
||||
sWire.write((const uint8_t *)dataptr, (size_t)arg_val);
|
||||
arg_val = 0;
|
||||
}
|
||||
else {
|
||||
sWire.write((const uint8_t *)dataptr, I2C_MAX_LENGTH);
|
||||
arg_val -= I2C_MAX_LENGTH;
|
||||
dataptr += I2C_MAX_LENGTH;
|
||||
}
|
||||
sWire.endTransmission();
|
||||
}
|
||||
#else
|
||||
sWire.beginTransmission((uint8_t)0x3C);
|
||||
sWire.write((uint8_t)control);
|
||||
sWire.write((const uint8_t *)dataptr, (size_t)arg_val);
|
||||
sWire.endTransmission();
|
||||
#endif // I2C_MAX_LENGTH
|
||||
break;
|
||||
}
|
||||
}
|
||||
#endif // U8G_USES_SW_I2C
|
||||
}
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
#endif // HAS_U8GLIB_I2C_OLED
|
||||
#endif // ARDUINO_ARCH_STM32
|
||||
|
|
@ -800,7 +800,7 @@ void ADC_StartCalibration(ADC_Module* NS_ADCx);
|
|||
void ADC_EnableDMA(ADC_Module* NS_ADCx, uint32_t Cmd);
|
||||
|
||||
/**================================================================
|
||||
* Configure ADC interrupt enable enable
|
||||
* Configure ADC interrupt enable
|
||||
================================================================*/
|
||||
void ADC_ConfigInt(ADC_Module* NS_ADCx, uint16_t ADC_IT, uint32_t Cmd);
|
||||
|
||||
|
|
|
|||
|
|
@ -92,7 +92,7 @@ void install_min_serial() {
|
|||
HAL_min_serial_out = &TX;
|
||||
}
|
||||
|
||||
#if DISABLED(DYNAMIC_VECTORTABLE) && DISABLED(STM32F0xx) // Cortex M0 can't branch to a symbol that's too far, so we have a specific hack for them
|
||||
#if NONE(DYNAMIC_VECTORTABLE, STM32F0xx) // Cortex M0 can't branch to a symbol that's too far, so we have a specific hack for them
|
||||
extern "C" {
|
||||
__attribute__((naked)) void JumpHandler_ASM() {
|
||||
__asm__ __volatile__ (
|
||||
|
|
|
|||
|
|
@ -86,7 +86,6 @@ __attribute__((always_inline)) __STATIC_INLINE void __DSB() {
|
|||
#define FSMC_ADDRESS_SETUP_TIME 15 // AddressSetupTime
|
||||
#define FSMC_DATA_SETUP_TIME 15 // DataSetupTime
|
||||
|
||||
static uint8_t fsmcInit = 0;
|
||||
void TFT_FSMC::init() {
|
||||
uint8_t cs = FSMC_CS_PIN, rs = FSMC_RS_PIN;
|
||||
uint32_t controllerAddress;
|
||||
|
|
@ -99,8 +98,9 @@ void TFT_FSMC::init() {
|
|||
|
||||
struct fsmc_nor_psram_reg_map* fsmcPsramRegion;
|
||||
|
||||
static bool fsmcInit = false;
|
||||
if (fsmcInit) return;
|
||||
fsmcInit = 1;
|
||||
fsmcInit = true;
|
||||
|
||||
switch (cs) {
|
||||
case FSMC_CS_NE1: controllerAddress = (uint32_t)FSMC_NOR_PSRAM_REGION1; fsmcPsramRegion = FSMC_NOR_PSRAM1_BASE; break;
|
||||
|
|
|
|||
|
|
@ -40,7 +40,7 @@
|
|||
*/
|
||||
|
||||
typedef uint16_t hal_timer_t;
|
||||
#define HAL_TIMER_TYPE_MAX 0xFFFF
|
||||
#define HAL_TIMER_TYPE_MAX 0xFFFFU
|
||||
|
||||
#define HAL_TIMER_RATE uint32_t(F_CPU) // frequency of timers peripherals
|
||||
|
||||
|
|
|
|||
|
|
@ -34,7 +34,7 @@
|
|||
#define FORCE_INLINE __attribute__((always_inline)) inline
|
||||
|
||||
typedef uint32_t hal_timer_t;
|
||||
#define HAL_TIMER_TYPE_MAX 0xFFFFFFFF
|
||||
#define HAL_TIMER_TYPE_MAX 0xFFFFFFFFUL
|
||||
|
||||
#define FTM0_TIMER_PRESCALE 8
|
||||
#define FTM1_TIMER_PRESCALE 4
|
||||
|
|
|
|||
|
|
@ -34,7 +34,7 @@
|
|||
#define FORCE_INLINE __attribute__((always_inline)) inline
|
||||
|
||||
typedef uint32_t hal_timer_t;
|
||||
#define HAL_TIMER_TYPE_MAX 0xFFFFFFFF
|
||||
#define HAL_TIMER_TYPE_MAX 0xFFFFFFFFUL
|
||||
|
||||
#define FTM0_TIMER_PRESCALE 8
|
||||
#define FTM1_TIMER_PRESCALE 4
|
||||
|
|
|
|||
|
|
@ -98,7 +98,7 @@ void MarlinHAL::clear_reset_source() {
|
|||
|
||||
#define WDT_TIMEOUT TERN(WATCHDOG_DURATION_8S, 8, 4) // 4 or 8 second timeout
|
||||
|
||||
constexpr uint8_t timeoutval = (WDT_TIMEOUT - 0.5f) / 0.5f;
|
||||
constexpr uint8_t timeoutval = (WDT_TIMEOUT - 0.5f) * 2.0f;
|
||||
|
||||
void MarlinHAL::watchdog_init() {
|
||||
CCM_CCGR3 |= CCM_CCGR3_WDOG1(3); // enable WDOG1 clocks
|
||||
|
|
|
|||
|
|
@ -34,7 +34,7 @@
|
|||
#define FORCE_INLINE __attribute__((always_inline)) inline
|
||||
|
||||
typedef uint32_t hal_timer_t;
|
||||
#define HAL_TIMER_TYPE_MAX 0xFFFFFFFE
|
||||
#define HAL_TIMER_TYPE_MAX 0xFFFFFFFEUL
|
||||
|
||||
#define GPT_TIMER_RATE (F_CPU / 4) // 150MHz (Can't use F_BUS_ACTUAL because it's extern volatile)
|
||||
|
||||
|
|
|
|||
|
|
@ -414,7 +414,7 @@ UnwResult UnwStartArm(UnwState * const state) {
|
|||
|
||||
/* S indicates that banked registers (untracked) are used, unless
|
||||
* this is a load including the PC when the S-bit indicates that
|
||||
* that CPSR is loaded from SPSR (also untracked, but ignored).
|
||||
* CPSR is loaded from SPSR (also untracked, but ignored).
|
||||
*/
|
||||
if (S && (!L || (regList & (0x01 << 15)) == 0)) {
|
||||
UnwPrintd1("\nError:S-bit set requiring banked registers\n");
|
||||
|
|
@ -431,7 +431,7 @@ UnwResult UnwStartArm(UnwState * const state) {
|
|||
|
||||
/* Check if ascending or descending.
|
||||
* Registers are loaded/stored in order of address.
|
||||
* i.e. r0 is at the lowest address, r15 at the highest.
|
||||
* i.e., r0 is at the lowest address, r15 at the highest.
|
||||
*/
|
||||
r = U ? 0 : 15;
|
||||
do {
|
||||
|
|
|
|||
|
|
@ -28,6 +28,7 @@
|
|||
|
||||
#include "macros.h"
|
||||
|
||||
#define BOARD_ERROR -2
|
||||
#define BOARD_UNKNOWN -1
|
||||
|
||||
//
|
||||
|
|
@ -175,16 +176,17 @@
|
|||
#define BOARD_GT2560_V41B 1322 // Geeetech GT2560 V4.1B for A10(M/T/D)
|
||||
#define BOARD_EINSTART_S 1323 // Einstart retrofit
|
||||
#define BOARD_WANHAO_ONEPLUS 1324 // Wanhao 0ne+ i3 Mini
|
||||
#define BOARD_OVERLORD 1325 // Overlord/Overlord Pro
|
||||
#define BOARD_HJC2560C_REV1 1326 // ADIMLab Gantry v1
|
||||
#define BOARD_HJC2560C_REV2 1327 // ADIMLab Gantry v2
|
||||
#define BOARD_LEAPFROG_XEED2015 1328 // Leapfrog Xeed 2015
|
||||
#define BOARD_PICA_REVB 1329 // PICA Shield (original version)
|
||||
#define BOARD_PICA 1330 // PICA Shield (rev C or later)
|
||||
#define BOARD_INTAMSYS40 1331 // Intamsys 4.0 (Funmat HT)
|
||||
#define BOARD_MALYAN_M180 1332 // Malyan M180 Mainboard Version 2 (no display function, direct G-code only)
|
||||
#define BOARD_PROTONEER_CNC_SHIELD_V3 1333 // Mega controller & Protoneer CNC Shield V3.00
|
||||
#define BOARD_WEEDO_62A 1334 // WEEDO 62A board (TINA2, Monoprice Cadet, etc.)
|
||||
#define BOARD_WANHAO_D9 1325 // Wanhao D9 MK2
|
||||
#define BOARD_OVERLORD 1326 // Overlord/Overlord Pro
|
||||
#define BOARD_HJC2560C_REV1 1327 // ADIMLab Gantry v1
|
||||
#define BOARD_HJC2560C_REV2 1328 // ADIMLab Gantry v2
|
||||
#define BOARD_LEAPFROG_XEED2015 1329 // Leapfrog Xeed 2015
|
||||
#define BOARD_PICA_REVB 1330 // PICA Shield (original version)
|
||||
#define BOARD_PICA 1331 // PICA Shield (rev C or later)
|
||||
#define BOARD_INTAMSYS40 1332 // Intamsys 4.0 (Funmat HT)
|
||||
#define BOARD_MALYAN_M180 1333 // Malyan M180 Mainboard Version 2 (no display function, direct G-code only)
|
||||
#define BOARD_PROTONEER_CNC_SHIELD_V3 1334 // Mega controller & Protoneer CNC Shield V3.00
|
||||
#define BOARD_WEEDO_62A 1335 // WEEDO 62A board (TINA2, Monoprice Cadet, etc.)
|
||||
|
||||
//
|
||||
// ATmega1281, ATmega2561
|
||||
|
|
@ -511,10 +513,11 @@
|
|||
#define BOARD_BTT_OCTOPUS_PRO_V1_1 6008 // BigTreeTech Octopus Pro v1.1 (STM32H723ZE)
|
||||
#define BOARD_BTT_MANTA_M8P_V2_0 6009 // BigTreeTech Manta M8P V2.0 (STM32H723ZE)
|
||||
#define BOARD_BTT_KRAKEN_V1_0 6010 // BigTreeTech Kraken v1.0 (STM32H723ZG)
|
||||
#define BOARD_TEENSY41 6011 // Teensy 4.1
|
||||
#define BOARD_T41U5XBB 6012 // T41U5XBB Teensy 4.1 breakout board
|
||||
#define BOARD_FLY_D8_PRO 6013 // FLY_D8_PRO (STM32H723VG)
|
||||
#define BOARD_FLY_SUPER8_PRO 6014 // FLY SUPER8 PRO (STM32H723ZG)
|
||||
#define BOARD_TEENSY40 6011 // Teensy 4.0
|
||||
#define BOARD_TEENSY41 6012 // Teensy 4.1
|
||||
#define BOARD_T41U5XBB 6013 // T41U5XBB Teensy 4.1 breakout board
|
||||
#define BOARD_FLY_D8_PRO 6014 // FLY_D8_PRO (STM32H723VG)
|
||||
#define BOARD_FLY_SUPER8_PRO 6015 // FLY SUPER8 PRO (STM32H723ZG)
|
||||
|
||||
//
|
||||
// Espressif ESP32 WiFi
|
||||
|
|
|
|||
|
|
@ -358,6 +358,21 @@
|
|||
#define STR_Z2 STR_C "2"
|
||||
#define STR_Z3 STR_C "3"
|
||||
#define STR_Z4 STR_C "4"
|
||||
#if CORE_IS_XY || CORE_IS_XZ
|
||||
#define STEPPER_A_NAME 'A'
|
||||
#else
|
||||
#define STEPPER_A_NAME 'X'
|
||||
#endif
|
||||
#if CORE_IS_XY || CORE_IS_YZ
|
||||
#define STEPPER_B_NAME 'B'
|
||||
#else
|
||||
#define STEPPER_B_NAME 'Y'
|
||||
#endif
|
||||
#if CORE_IS_XZ || CORE_IS_YZ
|
||||
#define STEPPER_C_NAME 'C'
|
||||
#else
|
||||
#define STEPPER_C_NAME 'Z'
|
||||
#endif
|
||||
|
||||
//
|
||||
// Endstop Names used by Endstops::report_states
|
||||
|
|
|
|||
|
|
@ -58,6 +58,7 @@
|
|||
// Macros to make a string from a macro
|
||||
#define STRINGIFY_(M) #M
|
||||
#define STRINGIFY(M) STRINGIFY_(M)
|
||||
#define CHARIFY(M) STRINGIFY(M)[0]
|
||||
|
||||
#define A(CODE) " " CODE "\n\t"
|
||||
#define L(CODE) CODE ":\n\t"
|
||||
|
|
|
|||
|
|
@ -99,7 +99,7 @@ void SERIAL_WARN_START() { SERIAL_ECHO(F("Warning:")); }
|
|||
|
||||
void SERIAL_ECHO_SP(uint8_t count) { count *= (PROPORTIONAL_FONT_RATIO); while (count--) SERIAL_CHAR(' '); }
|
||||
|
||||
void serial_offset(const_float_t v, const uint8_t sp/*=0*/) {
|
||||
void serial_offset(const float v, const uint8_t sp/*=0*/) {
|
||||
if (v == 0 && sp == 1)
|
||||
SERIAL_CHAR(' ');
|
||||
else if (v > 0 || (v == 0 && sp == 2))
|
||||
|
|
@ -121,7 +121,7 @@ void print_bin(uint16_t val) {
|
|||
}
|
||||
}
|
||||
|
||||
void _print_xyz(NUM_AXIS_ARGS_(const_float_t) FSTR_P const prefix) {
|
||||
void _print_xyz(NUM_AXIS_ARGS_(const float) FSTR_P const prefix) {
|
||||
if (prefix) SERIAL_ECHO(prefix);
|
||||
#if NUM_AXES
|
||||
SERIAL_ECHOPGM_P(NUM_AXIS_PAIRED_LIST(
|
||||
|
|
@ -132,12 +132,12 @@ void _print_xyz(NUM_AXIS_ARGS_(const_float_t) FSTR_P const prefix) {
|
|||
#endif
|
||||
}
|
||||
|
||||
void print_xyz(NUM_AXIS_ARGS_(const_float_t) FSTR_P const prefix/*=nullptr*/, FSTR_P const suffix/*=nullptr*/) {
|
||||
void print_xyz(NUM_AXIS_ARGS_(const float) FSTR_P const prefix/*=nullptr*/, FSTR_P const suffix/*=nullptr*/) {
|
||||
_print_xyz(NUM_AXIS_LIST_(x, y, z, i, j, k, u, v, w) prefix);
|
||||
if (suffix) SERIAL_ECHO(suffix); else SERIAL_EOL();
|
||||
}
|
||||
|
||||
void print_xyze(LOGICAL_AXIS_ARGS_(const_float_t) FSTR_P const prefix/*=nullptr*/, FSTR_P const suffix/*=nullptr*/) {
|
||||
void print_xyze(LOGICAL_AXIS_ARGS_(const float) FSTR_P const prefix/*=nullptr*/, FSTR_P const suffix/*=nullptr*/) {
|
||||
_print_xyz(NUM_AXIS_LIST_(x, y, z, i, j, k, u, v, w) prefix);
|
||||
#if HAS_EXTRUDERS
|
||||
SERIAL_ECHOPGM_P(SP_E_STR, e);
|
||||
|
|
|
|||
|
|
@ -236,16 +236,16 @@ void SERIAL_ECHO_SP(uint8_t count);
|
|||
inline FSTR_P const ON_OFF(const bool onoff) { return onoff ? F("ON") : F("OFF"); }
|
||||
inline FSTR_P const TRUE_FALSE(const bool tf) { return tf ? F("true") : F("false"); }
|
||||
|
||||
void serial_offset(const_float_t v, const uint8_t sp=0); // For v==0 draw space (sp==1) or plus (sp==2)
|
||||
void serial_offset(const float v, const uint8_t sp=0); // For v==0 draw space (sp==1) or plus (sp==2)
|
||||
|
||||
void print_bin(const uint16_t val);
|
||||
|
||||
void print_xyz(NUM_AXIS_ARGS_(const_float_t) FSTR_P const prefix=nullptr, FSTR_P const suffix=nullptr);
|
||||
void print_xyz(NUM_AXIS_ARGS_(const float) FSTR_P const prefix=nullptr, FSTR_P const suffix=nullptr);
|
||||
inline void print_xyz(const xyz_pos_t &xyz, FSTR_P const prefix=nullptr, FSTR_P const suffix=nullptr) {
|
||||
print_xyz(NUM_AXIS_ELEM_(xyz) prefix, suffix);
|
||||
}
|
||||
|
||||
void print_xyze(LOGICAL_AXIS_ARGS_(const_float_t) FSTR_P const prefix=nullptr, FSTR_P const suffix=nullptr);
|
||||
void print_xyze(LOGICAL_AXIS_ARGS_(const float) FSTR_P const prefix=nullptr, FSTR_P const suffix=nullptr);
|
||||
inline void print_xyze(const xyze_pos_t &xyze, FSTR_P const prefix=nullptr, FSTR_P const suffix=nullptr) {
|
||||
print_xyze(LOGICAL_AXIS_ELEM_LC_(xyze) prefix, suffix);
|
||||
}
|
||||
|
|
|
|||
|
|
@ -228,7 +228,7 @@ struct SerialBase {
|
|||
// Handle negative numbers
|
||||
if (number < 0.0) {
|
||||
write('-');
|
||||
number = -number;
|
||||
number *= -1;
|
||||
}
|
||||
|
||||
// Round correctly so that print(1.999, 2) prints as "2.00"
|
||||
|
|
|
|||
|
|
@ -167,6 +167,21 @@ template <class L, class R> struct IF<true, L, R> { typedef L type; };
|
|||
#define GANG_ITEM_E(N)
|
||||
#endif
|
||||
|
||||
// Emitters for code that only cares about XYZE and not IJKUVW
|
||||
#define CARTES_COUNT TERN(HAS_EXTRUDERS, INCREMENT(XYZ_COUNT), XYZ_COUNT)
|
||||
#define CARTES_LIST(x,y,z,e) XYZ_LIST(x,y,z) LIST_ITEM_E(e)
|
||||
#define CARTES_PAIRED_LIST(V...) LIST_N(DOUBLE(CARTES_COUNT), V)
|
||||
#define CARTES_ARRAY(x,y,z,e) { CARTES_LIST(x,y,z,e) }
|
||||
#define CARTES_CODE(x,y,z,e) XYZ_CODE(x,y,z) CODE_ITEM_E(e)
|
||||
#define CARTES_GANG(x,y,z,e) XYZ_GANG(x,y,z) GANG_ITEM_E(e)
|
||||
#define CARTES_AXIS_NAMES CARTES_LIST(X,Y,Z,E)
|
||||
#define CARTES_MAP(F) MAP(F, CARTES_AXIS_NAMES)
|
||||
#if CARTES_COUNT
|
||||
#define CARTES_COMMA ,
|
||||
#else
|
||||
#define CARTES_COMMA
|
||||
#endif
|
||||
|
||||
#define AXIS_COLLISION(L) (AXIS4_NAME == L || AXIS5_NAME == L || AXIS6_NAME == L || AXIS7_NAME == L || AXIS8_NAME == L || AXIS9_NAME == L)
|
||||
|
||||
// Helpers
|
||||
|
|
@ -363,17 +378,6 @@ typedef uint16_t raw_adc_t;
|
|||
typedef int16_t celsius_t;
|
||||
typedef float celsius_float_t;
|
||||
|
||||
//
|
||||
// On AVR pointers are only 2 bytes so use 'const float &' for 'const float'
|
||||
//
|
||||
#ifdef __AVR__
|
||||
typedef const float & const_float_t;
|
||||
#else
|
||||
typedef const float const_float_t;
|
||||
#endif
|
||||
typedef const_float_t const_feedRate_t;
|
||||
typedef const_float_t const_celsius_float_t;
|
||||
|
||||
// Type large enough to count leveling grid points
|
||||
typedef IF<TERN0(ABL_USES_GRID, (GRID_MAX_POINTS > 255)), uint16_t, uint8_t>::type grid_count_t;
|
||||
|
||||
|
|
@ -382,7 +386,7 @@ typedef IF<TERN0(ABL_USES_GRID, (GRID_MAX_POINTS > 255)), uint16_t, uint8_t>::ty
|
|||
#define MMS_TO_MMM(MM_S) (static_cast<float>(MM_S) * 60.0f)
|
||||
|
||||
// Packaged character for C macro and other usage
|
||||
typedef struct SerialChar { char c; SerialChar(char n) : c(n) { } } serial_char_t;
|
||||
typedef struct SerialChar { char c; SerialChar(const char n) : c(n) { } } serial_char_t;
|
||||
#define C(c) serial_char_t(c)
|
||||
|
||||
// Packaged types: float with precision and/or width; a repeated space/character
|
||||
|
|
@ -543,13 +547,18 @@ struct XYval {
|
|||
FI constexpr T large() const { return _MAX(x, y); }
|
||||
|
||||
// Explicit copy and copies with conversion
|
||||
FI constexpr XYval<T> copy() const { return *this; }
|
||||
FI constexpr XYval<T> ABS() const { return { T(_ABS(x)), T(_ABS(y)) }; }
|
||||
FI constexpr XYval<int16_t> asInt() const { return { int16_t(x), int16_t(y) }; }
|
||||
FI constexpr XYval<int32_t> asLong() const { return { int32_t(x), int32_t(y) }; }
|
||||
FI constexpr XYval<int32_t> ROUNDL() const { return { int32_t(LROUND(x)), int32_t(LROUND(y)) }; }
|
||||
FI constexpr XYval<float> asFloat() const { return { static_cast<float>(x), static_cast<float>(y) }; }
|
||||
FI constexpr XYval<float> reciprocal() const { return { _RECIP(x), _RECIP(y) }; }
|
||||
FI constexpr XYval<T> copy() const { return *this; }
|
||||
FI constexpr XYval<T> ABS() const { return { T(_ABS(x)), T(_ABS(y)) }; }
|
||||
FI constexpr XYval<int32_t> ROUNDL() const { return { int32_t(LROUND(x)), int32_t(LROUND(y)) }; }
|
||||
FI constexpr XYval<float> reciprocal() const { return { _RECIP(x), _RECIP(y) }; }
|
||||
|
||||
// Conversion to other types
|
||||
FI constexpr XYval<int16_t> asInt16() const { return { int16_t(x), int16_t(y) }; }
|
||||
FI constexpr XYval<int32_t> asInt32() const { return { int32_t(x), int32_t(y) }; }
|
||||
FI constexpr XYval<uint32_t> asUInt32() const { return { uint32_t(x), uint32_t(y) }; }
|
||||
FI constexpr XYval<int64_t> asInt64() const { return { int64_t(x), int64_t(y) }; }
|
||||
FI constexpr XYval<uint64_t> asUInt64() const { return { uint64_t(x), uint64_t(y) }; }
|
||||
FI constexpr XYval<float> asFloat() const { return { static_cast<float>(x), static_cast<float>(y) }; }
|
||||
|
||||
// Marlin workspace shifting is done with G92 and M206
|
||||
FI XYval<float> asLogical() const { XYval<float> o = asFloat(); toLogical(o); return o; }
|
||||
|
|
@ -621,6 +630,11 @@ struct XYval {
|
|||
FI bool operator!=(const XYval<T> &rs) const { return !operator==(rs); }
|
||||
FI bool operator!=(const XYZval<T> &rs) const { return !operator==(rs); }
|
||||
FI bool operator!=(const XYZEval<T> &rs) const { return !operator==(rs); }
|
||||
|
||||
// Exact comparison to a single value
|
||||
FI bool operator==(const T &p) const { return x == p && y == p; }
|
||||
FI bool operator!=(const T &p) const { return !operator==(p); }
|
||||
|
||||
};
|
||||
|
||||
//
|
||||
|
|
@ -697,12 +711,17 @@ struct XYZval {
|
|||
// Explicit copy and copies with conversion
|
||||
FI constexpr XYZval<T> copy() const { XYZval<T> o = *this; return o; }
|
||||
FI constexpr XYZval<T> ABS() const { return NUM_AXIS_ARRAY(T(_ABS(x)), T(_ABS(y)), T(_ABS(z)), T(_ABS(i)), T(_ABS(j)), T(_ABS(k)), T(_ABS(u)), T(_ABS(v)), T(_ABS(w))); }
|
||||
FI constexpr XYZval<int16_t> asInt() const { return NUM_AXIS_ARRAY(int16_t(x), int16_t(y), int16_t(z), int16_t(i), int16_t(j), int16_t(k), int16_t(u), int16_t(v), int16_t(w)); }
|
||||
FI constexpr XYZval<int32_t> asLong() const { return NUM_AXIS_ARRAY(int32_t(x), int32_t(y), int32_t(z), int32_t(i), int32_t(j), int32_t(k), int32_t(u), int32_t(v), int32_t(w)); }
|
||||
FI constexpr XYZval<int32_t> ROUNDL() const { return NUM_AXIS_ARRAY(int32_t(LROUND(x)), int32_t(LROUND(y)), int32_t(LROUND(z)), int32_t(LROUND(i)), int32_t(LROUND(j)), int32_t(LROUND(k)), int32_t(LROUND(u)), int32_t(LROUND(v)), int32_t(LROUND(w))); }
|
||||
FI constexpr XYZval<float> asFloat() const { return NUM_AXIS_ARRAY(static_cast<float>(x), static_cast<float>(y), static_cast<float>(z), static_cast<float>(i), static_cast<float>(j), static_cast<float>(k), static_cast<float>(u), static_cast<float>(v), static_cast<float>(w)); }
|
||||
FI constexpr XYZval<float> reciprocal() const { return NUM_AXIS_ARRAY(_RECIP(x), _RECIP(y), _RECIP(z), _RECIP(i), _RECIP(j), _RECIP(k), _RECIP(u), _RECIP(v), _RECIP(w)); }
|
||||
|
||||
// Conversion to other types
|
||||
FI constexpr XYZval<int16_t> asInt16() const { return NUM_AXIS_ARRAY(int16_t(x), int16_t(y), int16_t(z), int16_t(i), int16_t(j), int16_t(k), int16_t(u), int16_t(v), int16_t(w)); }
|
||||
FI constexpr XYZval<int32_t> asInt32() const { return NUM_AXIS_ARRAY(int32_t(x), int32_t(y), int32_t(z), int32_t(i), int32_t(j), int32_t(k), int32_t(u), int32_t(v), int32_t(w)); }
|
||||
FI constexpr XYZval<uint32_t> asUInt32() const { return NUM_AXIS_ARRAY(uint32_t(x), uint32_t(y), uint32_t(z), uint32_t(i), uint32_t(j), uint32_t(k), uint32_t(u), uint32_t(v), uint32_t(w)); }
|
||||
FI constexpr XYZval<int64_t> asInt64() const { return NUM_AXIS_ARRAY(int64_t(x), int64_t(y), int64_t(z), int64_t(i), int64_t(j), int64_t(k), int64_t(u), int64_t(v), int64_t(w)); }
|
||||
FI constexpr XYZval<uint64_t> asUInt64() const { return NUM_AXIS_ARRAY(uint64_t(x), uint64_t(y), uint64_t(z), uint64_t(i), uint64_t(j), uint64_t(k), uint64_t(u), uint64_t(v), uint64_t(w)); }
|
||||
FI constexpr XYZval<float> asFloat() const { return NUM_AXIS_ARRAY(static_cast<float>(x), static_cast<float>(y), static_cast<float>(z), static_cast<float>(i), static_cast<float>(j), static_cast<float>(k), static_cast<float>(u), static_cast<float>(v), static_cast<float>(w)); }
|
||||
|
||||
// Marlin workspace shifting is done with G92 and M206
|
||||
FI XYZval<float> asLogical() const { XYZval<float> o = asFloat(); toLogical(o); return o; }
|
||||
FI XYZval<float> asNative() const { XYZval<float> o = asFloat(); toNative(o); return o; }
|
||||
|
|
@ -768,8 +787,13 @@ struct XYZval {
|
|||
FI XYZval<T>& operator<<=(const int &p) { NUM_AXIS_CODE(_LSE(x), _LSE(y), _LSE(z), _LSE(i), _LSE(j), _LSE(k), _LSE(u), _LSE(v), _LSE(w)); return *this; }
|
||||
|
||||
// Exact comparisons. For floats a "NEAR" operation may be better.
|
||||
FI bool operator==(const XYZEval<T> &rs) const { return true NUM_AXIS_GANG(&& x == rs.x, && y == rs.y, && z == rs.z, && i == rs.i, && j == rs.j, && k == rs.k, && u == rs.u, && v == rs.v, && w == rs.w); }
|
||||
FI bool operator==(const XYZEval<T> &rs) const { return ENABLED(HAS_X_AXIS) NUM_AXIS_GANG(&& x == rs.x, && y == rs.y, && z == rs.z, && i == rs.i, && j == rs.j, && k == rs.k, && u == rs.u, && v == rs.v, && w == rs.w); }
|
||||
FI bool operator!=(const XYZEval<T> &rs) const { return !operator==(rs); }
|
||||
|
||||
// Exact comparison to a single value
|
||||
FI bool operator==(const T &p) const { return ENABLED(HAS_X_AXIS) NUM_AXIS_GANG(&& x == p, && y == p, && z == p, && i == p, && j == p, && k == p, && u == p, && v == p, && w == p); }
|
||||
FI bool operator!=(const T &p) const { return !operator==(p); }
|
||||
|
||||
};
|
||||
|
||||
//
|
||||
|
|
@ -845,13 +869,18 @@ struct XYZEval {
|
|||
FI constexpr T large() const { return _MAX(LOGICAL_AXIS_LIST(e, x, y, z, i, j, k, u, v, w)); }
|
||||
|
||||
// Explicit copy and copies with conversion
|
||||
FI constexpr XYZEval<T> copy() const { XYZEval<T> v = *this; return v; }
|
||||
FI constexpr XYZEval<T> ABS() const { return LOGICAL_AXIS_ARRAY(T(_ABS(e)), T(_ABS(x)), T(_ABS(y)), T(_ABS(z)), T(_ABS(i)), T(_ABS(j)), T(_ABS(k)), T(_ABS(u)), T(_ABS(v)), T(_ABS(w))); }
|
||||
FI constexpr XYZEval<int16_t> asInt() const { return LOGICAL_AXIS_ARRAY(int16_t(e), int16_t(x), int16_t(y), int16_t(z), int16_t(i), int16_t(j), int16_t(k), int16_t(u), int16_t(v), int16_t(w)); }
|
||||
FI constexpr XYZEval<int32_t> asLong() const { return LOGICAL_AXIS_ARRAY(int32_t(e), int32_t(x), int32_t(y), int32_t(z), int32_t(i), int32_t(j), int32_t(k), int32_t(u), int32_t(v), int32_t(w)); }
|
||||
FI constexpr XYZEval<int32_t> ROUNDL() const { return LOGICAL_AXIS_ARRAY(int32_t(LROUND(e)), int32_t(LROUND(x)), int32_t(LROUND(y)), int32_t(LROUND(z)), int32_t(LROUND(i)), int32_t(LROUND(j)), int32_t(LROUND(k)), int32_t(LROUND(u)), int32_t(LROUND(v)), int32_t(LROUND(w))); }
|
||||
FI constexpr XYZEval<float> asFloat() const { return LOGICAL_AXIS_ARRAY(static_cast<float>(e), static_cast<float>(x), static_cast<float>(y), static_cast<float>(z), static_cast<float>(i), static_cast<float>(j), static_cast<float>(k), static_cast<float>(u), static_cast<float>(v), static_cast<float>(w)); }
|
||||
FI constexpr XYZEval<float> reciprocal() const { return LOGICAL_AXIS_ARRAY(_RECIP(e), _RECIP(x), _RECIP(y), _RECIP(z), _RECIP(i), _RECIP(j), _RECIP(k), _RECIP(u), _RECIP(v), _RECIP(w)); }
|
||||
FI constexpr XYZEval<T> copy() const { XYZEval<T> v = *this; return v; }
|
||||
FI constexpr XYZEval<T> ABS() const { return LOGICAL_AXIS_ARRAY(T(_ABS(e)), T(_ABS(x)), T(_ABS(y)), T(_ABS(z)), T(_ABS(i)), T(_ABS(j)), T(_ABS(k)), T(_ABS(u)), T(_ABS(v)), T(_ABS(w))); }
|
||||
FI constexpr XYZEval<int32_t> ROUNDL() const { return LOGICAL_AXIS_ARRAY(int32_t(LROUND(e)), int32_t(LROUND(x)), int32_t(LROUND(y)), int32_t(LROUND(z)), int32_t(LROUND(i)), int32_t(LROUND(j)), int32_t(LROUND(k)), int32_t(LROUND(u)), int32_t(LROUND(v)), int32_t(LROUND(w))); }
|
||||
FI constexpr XYZEval<float> reciprocal() const { return LOGICAL_AXIS_ARRAY(_RECIP(e), _RECIP(x), _RECIP(y), _RECIP(z), _RECIP(i), _RECIP(j), _RECIP(k), _RECIP(u), _RECIP(v), _RECIP(w)); }
|
||||
|
||||
// Conversion to other types
|
||||
FI constexpr XYZEval<int16_t> asInt16() const { return LOGICAL_AXIS_ARRAY(int16_t(e), int16_t(x), int16_t(y), int16_t(z), int16_t(i), int16_t(j), int16_t(k), int16_t(u), int16_t(v), int16_t(w)); }
|
||||
FI constexpr XYZEval<int32_t> asInt32() const { return LOGICAL_AXIS_ARRAY(int32_t(e), int32_t(x), int32_t(y), int32_t(z), int32_t(i), int32_t(j), int32_t(k), int32_t(u), int32_t(v), int32_t(w)); }
|
||||
FI constexpr XYZEval<uint32_t> asUInt32() const { return LOGICAL_AXIS_ARRAY(uint32_t(e), uint32_t(x), uint32_t(y), uint32_t(z), uint32_t(i), uint32_t(j), uint32_t(k), uint32_t(u), uint32_t(v), uint32_t(w)); }
|
||||
FI constexpr XYZEval<int64_t> asInt64() const { return LOGICAL_AXIS_ARRAY(int64_t(e), int64_t(x), int64_t(y), int64_t(z), int64_t(i), int64_t(j), int64_t(k), int64_t(u), int64_t(v), int64_t(w)); }
|
||||
FI constexpr XYZEval<uint64_t> asUInt64() const { return LOGICAL_AXIS_ARRAY(uint64_t(e), uint64_t(x), uint64_t(y), uint64_t(z), uint64_t(i), uint64_t(j), uint64_t(k), uint64_t(u), uint64_t(v), uint64_t(w)); }
|
||||
FI constexpr XYZEval<float> asFloat() const { return LOGICAL_AXIS_ARRAY(static_cast<float>(e), static_cast<float>(x), static_cast<float>(y), static_cast<float>(z), static_cast<float>(i), static_cast<float>(j), static_cast<float>(k), static_cast<float>(u), static_cast<float>(v), static_cast<float>(w)); }
|
||||
|
||||
// Marlin workspace shifting is done with G92 and M206
|
||||
FI XYZEval<float> asLogical() const { XYZEval<float> o = asFloat(); toLogical(o); return o; }
|
||||
|
|
@ -885,7 +914,10 @@ struct XYZEval {
|
|||
FI constexpr XYZEval<T> operator- (const XYZEval<T> &rs) const { return LOGICAL_AXIS_ARRAY(T(e - rs.e), T(x - rs.x), T(y - rs.y), T(z - rs.z), T(i - rs.i), T(j - rs.j), T(k - rs.k), T(u - rs.u), T(v - rs.v), T(w - rs.w)); }
|
||||
FI constexpr XYZEval<T> operator* (const XYZEval<T> &rs) const { return LOGICAL_AXIS_ARRAY(T(e * rs.e), T(x * rs.x), T(y * rs.y), T(z * rs.z), T(i * rs.i), T(j * rs.j), T(k * rs.k), T(u * rs.u), T(v * rs.v), T(w * rs.w)); }
|
||||
FI constexpr XYZEval<T> operator/ (const XYZEval<T> &rs) const { return LOGICAL_AXIS_ARRAY(T(e / rs.e), T(x / rs.x), T(y / rs.y), T(z / rs.z), T(i / rs.i), T(j / rs.j), T(k / rs.k), T(u / rs.u), T(v / rs.v), T(w / rs.w)); }
|
||||
FI constexpr XYZEval<T> operator+ (const uint32_t &p) const { return LOGICAL_AXIS_ARRAY(T(e + p), T(x + p), T(y + p), T(z + p), T(i + p), T(j + p), T(k + p), T(u + p), T(v + p), T(w + p)); }
|
||||
FI constexpr XYZEval<T> operator* (const float &p) const { return LOGICAL_AXIS_ARRAY(T(e * p), T(x * p), T(y * p), T(z * p), T(i * p), T(j * p), T(k * p), T(u * p), T(v * p), T(w * p)); }
|
||||
FI constexpr XYZEval<T> operator* (const uint32_t &p) const { return LOGICAL_AXIS_ARRAY(T(e * p), T(x * p), T(y * p), T(z * p), T(i * p), T(j * p), T(k * p), T(u * p), T(v * p), T(w * p)); }
|
||||
FI constexpr XYZEval<T> operator& (const int64_t &p) const { return LOGICAL_AXIS_ARRAY(T(e & p), T(x & p), T(y & p), T(z & p), T(i & p), T(j & p), T(k & p), T(u & p), T(v & p), T(w & p)); }
|
||||
FI constexpr XYZEval<T> operator* (const int &p) const { return LOGICAL_AXIS_ARRAY(e * p, x * p, y * p, z * p, i * p, j * p, k * p, u * p, v * p, w * p); }
|
||||
FI constexpr XYZEval<T> operator/ (const float &p) const { return LOGICAL_AXIS_ARRAY(T(e / p), T(x / p), T(y / p), T(z / p), T(i / p), T(j / p), T(k / p), T(u / p), T(v / p), T(w / p)); }
|
||||
FI constexpr XYZEval<T> operator/ (const int &p) const { return LOGICAL_AXIS_ARRAY(e / p, x / p, y / p, z / p, i / p, j / p, k / p, u / p, v / p, w / p); }
|
||||
|
|
@ -916,14 +948,22 @@ struct XYZEval {
|
|||
FI XYZEval<T>& operator<<=(const int &p) { LOGICAL_AXIS_CODE(_LSE(e), _LSE(x), _LSE(y), _LSE(z), _LSE(i), _LSE(j), _LSE(k), _LSE(u), _LSE(v), _LSE(w)); return *this; }
|
||||
|
||||
// Exact comparisons. For floats a "NEAR" operation may be better.
|
||||
FI bool operator==(const XYZval<T> &rs) const { return true NUM_AXIS_GANG(&& x == rs.x, && y == rs.y, && z == rs.z, && i == rs.i, && j == rs.j, && k == rs.k, && u == rs.u, && v == rs.v, && w == rs.w); }
|
||||
FI bool operator==(const XYZEval<T> &rs) const { return true LOGICAL_AXIS_GANG(&& e == rs.e, && x == rs.x, && y == rs.y, && z == rs.z, && i == rs.i, && j == rs.j, && k == rs.k, && u == rs.u, && v == rs.v, && w == rs.w); }
|
||||
FI bool operator==(const XYZval<T> &rs) const { return ENABLED(HAS_X_AXIS) NUM_AXIS_GANG(&& x == rs.x, && y == rs.y, && z == rs.z, && i == rs.i, && j == rs.j, && k == rs.k, && u == rs.u, && v == rs.v, && w == rs.w); }
|
||||
FI bool operator==(const XYZEval<T> &rs) const { return ANY(HAS_X_AXIS, HAS_EXTRUDERS) LOGICAL_AXIS_GANG(&& e == rs.e, && x == rs.x, && y == rs.y, && z == rs.z, && i == rs.i, && j == rs.j, && k == rs.k, && u == rs.u, && v == rs.v, && w == rs.w); }
|
||||
FI bool operator!=(const XYZval<T> &rs) const { return !operator==(rs); }
|
||||
FI bool operator!=(const XYZEval<T> &rs) const { return !operator==(rs); }
|
||||
|
||||
// Exact comparison to a single value
|
||||
FI bool operator==(const T &p) const { return ENABLED(HAS_X_AXIS) LOGICAL_AXIS_GANG(&& e == p, && x == p, && y == p, && z == p, && i == p, && j == p, && k == p, && u == p, && v == p, && w == p); }
|
||||
FI bool operator!=(const T &p) const { return !operator==(p); }
|
||||
|
||||
};
|
||||
|
||||
#include <string.h> // for memset
|
||||
|
||||
//
|
||||
// Axis indexed arrays of type T (x[SIZE], y[SIZE], etc.)
|
||||
//
|
||||
template<typename T, int SIZE>
|
||||
struct XYZarray {
|
||||
typedef T el[SIZE];
|
||||
|
|
@ -1023,6 +1063,9 @@ struct XYZEarray {
|
|||
FI XYZEval<T> operator[](const int n) const { return XYZval<T>(LOGICAL_AXIS_ARRAY(e[n], x[n], y[n], z[n], i[n], j[n], k[n], u[n], v[n], w[n])); }
|
||||
};
|
||||
|
||||
//
|
||||
// Axes mapped to bits in a mask of minimum size, bits_t(NUM_AXIS_HEADS)
|
||||
//
|
||||
class AxisBits {
|
||||
public:
|
||||
typedef bits_t(NUM_AXIS_HEADS) el;
|
||||
|
|
|
|||
|
|
@ -54,12 +54,12 @@ void Babystep::step_axis(const AxisEnum axis) {
|
|||
}
|
||||
}
|
||||
|
||||
void Babystep::add_mm(const AxisEnum axis, const_float_t mm) {
|
||||
void Babystep::add_mm(const AxisEnum axis, const float mm) {
|
||||
add_steps(axis, mm * planner.settings.axis_steps_per_mm[axis]);
|
||||
}
|
||||
|
||||
#if ENABLED(BD_SENSOR)
|
||||
void Babystep::set_mm(const AxisEnum axis, const_float_t mm) {
|
||||
void Babystep::set_mm(const AxisEnum axis, const float mm) {
|
||||
//if (DISABLED(BABYSTEP_WITHOUT_HOMING) && axis_should_home(axis)) return;
|
||||
const int16_t distance = mm * planner.settings.axis_steps_per_mm[axis];
|
||||
accum = distance; // Count up babysteps for the UI
|
||||
|
|
|
|||
|
|
@ -61,7 +61,7 @@ public:
|
|||
|
||||
static bool can_babystep(const AxisEnum axis);
|
||||
static void add_steps(const AxisEnum axis, const int16_t distance);
|
||||
static void add_mm(const AxisEnum axis, const_float_t mm);
|
||||
static void add_mm(const AxisEnum axis, const float mm);
|
||||
|
||||
#if ENABLED(EP_BABYSTEPPING)
|
||||
// Step Z for M293 / M294
|
||||
|
|
@ -79,7 +79,7 @@ public:
|
|||
#endif // EP_BABYSTEPPING
|
||||
|
||||
#if ENABLED(BD_SENSOR)
|
||||
static void set_mm(const AxisEnum axis, const_float_t mm);
|
||||
static void set_mm(const AxisEnum axis, const float mm);
|
||||
#endif
|
||||
|
||||
static bool has_steps() {
|
||||
|
|
|
|||
|
|
@ -81,10 +81,10 @@ public:
|
|||
static void set_correction(const float v) { set_correction_uint8(_MAX(0, _MIN(1.0, v)) * all_on + 0.5f); }
|
||||
static float get_correction() { return float(get_correction_uint8()) / all_on; }
|
||||
static void set_distance_mm(const AxisEnum axis, const float v);
|
||||
static float get_distance_mm(const AxisEnum axis) {return distance_mm[axis];}
|
||||
static float get_distance_mm(const AxisEnum axis) { return distance_mm[axis]; }
|
||||
#ifdef BACKLASH_SMOOTHING_MM
|
||||
static void set_smoothing_mm(const float v);
|
||||
static float get_smoothing_mm() {return smoothing_mm;}
|
||||
static float get_smoothing_mm() { return smoothing_mm; }
|
||||
#endif
|
||||
#endif
|
||||
|
||||
|
|
|
|||
|
|
@ -229,7 +229,7 @@ void LevelingBilinear::print_leveling_grid(const bed_mesh_t* _z_values/*=nullptr
|
|||
) * 0.5f;
|
||||
}
|
||||
|
||||
float LevelingBilinear::virt_2cmr(const uint8_t x, const uint8_t y, const_float_t tx, const_float_t ty) {
|
||||
float LevelingBilinear::virt_2cmr(const uint8_t x, const uint8_t y, const float tx, const float ty) {
|
||||
float row[4], column[4];
|
||||
for (uint8_t i = 0; i < 4; ++i) {
|
||||
for (uint8_t j = 0; j < 4; ++j) {
|
||||
|
|
@ -369,7 +369,7 @@ float LevelingBilinear::get_z_correction(const xy_pos_t &raw) {
|
|||
* Prepare a bilinear-leveled linear move on Cartesian,
|
||||
* splitting the move where it crosses grid borders.
|
||||
*/
|
||||
void LevelingBilinear::line_to_destination(const_feedRate_t scaled_fr_mm_s, uint16_t x_splits, uint16_t y_splits) {
|
||||
void LevelingBilinear::line_to_destination(const feedRate_t scaled_fr_mm_s, uint16_t x_splits, uint16_t y_splits) {
|
||||
// Get current and destination cells for this line
|
||||
xy_int_t c1 { CELL_INDEX(x, current_position.x), CELL_INDEX(y, current_position.y) },
|
||||
c2 { CELL_INDEX(x, destination.x), CELL_INDEX(y, destination.y) };
|
||||
|
|
|
|||
|
|
@ -45,7 +45,7 @@ private:
|
|||
|
||||
static float virt_coord(const uint8_t x, const uint8_t y);
|
||||
static float virt_cmr(const float p[4], const uint8_t i, const float t);
|
||||
static float virt_2cmr(const uint8_t x, const uint8_t y, const_float_t tx, const_float_t ty);
|
||||
static float virt_2cmr(const uint8_t x, const uint8_t y, const float tx, const float ty);
|
||||
static void subdivide_mesh();
|
||||
#endif
|
||||
|
||||
|
|
@ -63,7 +63,7 @@ public:
|
|||
static constexpr float get_z_offset() { return 0.0f; }
|
||||
|
||||
#if IS_CARTESIAN && DISABLED(SEGMENT_LEVELED_MOVES)
|
||||
static void line_to_destination(const_feedRate_t scaled_fr_mm_s, uint16_t x_splits=0xFFFF, uint16_t y_splits=0xFFFF);
|
||||
static void line_to_destination(const feedRate_t scaled_fr_mm_s, uint16_t x_splits=0xFFFF, uint16_t y_splits=0xFFFF);
|
||||
#endif
|
||||
};
|
||||
|
||||
|
|
|
|||
|
|
@ -101,7 +101,7 @@ bool BDS_Leveling::check(const uint16_t data, const bool raw_data/*=false*/, con
|
|||
}
|
||||
|
||||
float BDS_Leveling::interpret(const uint16_t data) {
|
||||
return (data & 0x3FF) / 100.0f;
|
||||
return (data & 0x3FF) * 0.01f;
|
||||
}
|
||||
|
||||
float BDS_Leveling::read() {
|
||||
|
|
|
|||
|
|
@ -91,7 +91,7 @@ TemporaryBedLevelingState::TemporaryBedLevelingState(const bool enable) : saved(
|
|||
|
||||
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
||||
|
||||
void set_z_fade_height(const_float_t zfh, const bool do_report/*=true*/) {
|
||||
void set_z_fade_height(const float zfh, const bool do_report/*=true*/) {
|
||||
|
||||
if (planner.z_fade_height == zfh) return;
|
||||
|
||||
|
|
|
|||
|
|
@ -38,7 +38,7 @@ void set_bed_leveling_enabled(const bool enable=true);
|
|||
void reset_bed_level();
|
||||
|
||||
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
||||
void set_z_fade_height(const_float_t zfh, const bool do_report=true);
|
||||
void set_z_fade_height(const float zfh, const bool do_report=true);
|
||||
#endif
|
||||
|
||||
#if ANY(MESH_BED_LEVELING, PROBE_MANUALLY)
|
||||
|
|
|
|||
|
|
@ -61,7 +61,7 @@
|
|||
* Prepare a mesh-leveled linear move in a Cartesian setup,
|
||||
* splitting the move where it crosses mesh borders.
|
||||
*/
|
||||
void mesh_bed_leveling::line_to_destination(const_feedRate_t scaled_fr_mm_s, uint8_t x_splits, uint8_t y_splits) {
|
||||
void mesh_bed_leveling::line_to_destination(const feedRate_t scaled_fr_mm_s, uint8_t x_splits, uint8_t y_splits) {
|
||||
// Get current and destination cells for this line
|
||||
xy_uint8_t scel = cell_indexes(current_position), ecel = cell_indexes(destination);
|
||||
NOMORE(scel.x, GRID_MAX_CELLS_X - 1);
|
||||
|
|
|
|||
|
|
@ -55,7 +55,7 @@ public:
|
|||
|
||||
static bool mesh_is_valid() { return has_mesh(); }
|
||||
|
||||
static void set_z(const int8_t px, const int8_t py, const_float_t z) { z_values[px][py] = z; }
|
||||
static void set_z(const int8_t px, const int8_t py, const float z) { z_values[px][py] = z; }
|
||||
|
||||
static void zigzag(const int8_t index, int8_t &px, int8_t &py) {
|
||||
px = index % (GRID_MAX_POINTS_X);
|
||||
|
|
@ -63,7 +63,7 @@ public:
|
|||
if (py & 1) px = (GRID_MAX_POINTS_X) - 1 - px; // Zig zag
|
||||
}
|
||||
|
||||
static void set_zigzag_z(const int8_t index, const_float_t z) {
|
||||
static void set_zigzag_z(const int8_t index, const float z) {
|
||||
int8_t px, py;
|
||||
zigzag(index, px, py);
|
||||
set_z(px, py, z);
|
||||
|
|
@ -72,33 +72,33 @@ public:
|
|||
static float get_mesh_x(const uint8_t i) { return index_to_xpos[i]; }
|
||||
static float get_mesh_y(const uint8_t i) { return index_to_ypos[i]; }
|
||||
|
||||
static uint8_t cell_index_x(const_float_t x) {
|
||||
static uint8_t cell_index_x(const float x) {
|
||||
int8_t cx = (x - (MESH_MIN_X)) * RECIPROCAL(MESH_X_DIST);
|
||||
return constrain(cx, 0, GRID_MAX_CELLS_X - 1);
|
||||
}
|
||||
static uint8_t cell_index_y(const_float_t y) {
|
||||
static uint8_t cell_index_y(const float y) {
|
||||
int8_t cy = (y - (MESH_MIN_Y)) * RECIPROCAL(MESH_Y_DIST);
|
||||
return constrain(cy, 0, GRID_MAX_CELLS_Y - 1);
|
||||
}
|
||||
static xy_uint8_t cell_indexes(const_float_t x, const_float_t y) {
|
||||
static xy_uint8_t cell_indexes(const float x, const float y) {
|
||||
return { cell_index_x(x), cell_index_y(y) };
|
||||
}
|
||||
static xy_uint8_t cell_indexes(const xy_pos_t &xy) { return cell_indexes(xy.x, xy.y); }
|
||||
|
||||
static int8_t probe_index_x(const_float_t x) {
|
||||
static int8_t probe_index_x(const float x) {
|
||||
int8_t px = (x - (MESH_MIN_X) + 0.5f * (MESH_X_DIST)) * RECIPROCAL(MESH_X_DIST);
|
||||
return WITHIN(px, 0, (GRID_MAX_POINTS_X) - 1) ? px : -1;
|
||||
}
|
||||
static int8_t probe_index_y(const_float_t y) {
|
||||
static int8_t probe_index_y(const float y) {
|
||||
int8_t py = (y - (MESH_MIN_Y) + 0.5f * (MESH_Y_DIST)) * RECIPROCAL(MESH_Y_DIST);
|
||||
return WITHIN(py, 0, (GRID_MAX_POINTS_Y) - 1) ? py : -1;
|
||||
}
|
||||
static xy_int8_t probe_indexes(const_float_t x, const_float_t y) {
|
||||
static xy_int8_t probe_indexes(const float x, const float y) {
|
||||
return { probe_index_x(x), probe_index_y(y) };
|
||||
}
|
||||
static xy_int8_t probe_indexes(const xy_pos_t &xy) { return probe_indexes(xy.x, xy.y); }
|
||||
|
||||
static float calc_z0(const_float_t a0, const_float_t a1, const_float_t z1, const_float_t a2, const_float_t z2) {
|
||||
static float calc_z0(const float a0, const float a1, const float z1, const float a2, const float z2) {
|
||||
const float delta_z = (z2 - z1) / (a2 - a1),
|
||||
delta_a = a0 - a1;
|
||||
return z1 + delta_a * delta_z;
|
||||
|
|
@ -118,7 +118,7 @@ public:
|
|||
}
|
||||
|
||||
#if IS_CARTESIAN && DISABLED(SEGMENT_LEVELED_MOVES)
|
||||
static void line_to_destination(const_feedRate_t scaled_fr_mm_s, uint8_t x_splits=0xFF, uint8_t y_splits=0xFF);
|
||||
static void line_to_destination(const feedRate_t scaled_fr_mm_s, uint8_t x_splits=0xFF, uint8_t y_splits=0xFF);
|
||||
#endif
|
||||
};
|
||||
|
||||
|
|
|
|||
|
|
@ -102,7 +102,7 @@ void unified_bed_leveling::invalidate() {
|
|||
set_all_mesh_points_to_value(NAN);
|
||||
}
|
||||
|
||||
void unified_bed_leveling::set_all_mesh_points_to_value(const_float_t value) {
|
||||
void unified_bed_leveling::set_all_mesh_points_to_value(const float value) {
|
||||
GRID_LOOP(x, y) {
|
||||
z_values[x][y] = value;
|
||||
TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(x, y, value));
|
||||
|
|
@ -115,7 +115,7 @@ void unified_bed_leveling::set_all_mesh_points_to_value(const_float_t value) {
|
|||
constexpr int16_t Z_STEPS_NAN = INT16_MAX;
|
||||
|
||||
void unified_bed_leveling::set_store_from_mesh(const bed_mesh_t &in_values, mesh_store_t &stored_values) {
|
||||
auto z_to_store = [](const_float_t z) {
|
||||
auto z_to_store = [](const float z) {
|
||||
if (isnan(z)) return Z_STEPS_NAN;
|
||||
const int32_t z_scaled = TRUNC(z * mesh_store_scaling);
|
||||
if (z_scaled == Z_STEPS_NAN || !WITHIN(z_scaled, INT16_MIN, INT16_MAX))
|
||||
|
|
|
|||
|
|
@ -67,15 +67,15 @@ private:
|
|||
static G29_parameters_t param;
|
||||
|
||||
#if IS_NEWPANEL
|
||||
static void move_z_with_encoder(const_float_t multiplier);
|
||||
static void move_z_with_encoder(const float multiplier);
|
||||
static float measure_point_with_encoder();
|
||||
static float measure_business_card_thickness();
|
||||
static void manually_probe_remaining_mesh(const xy_pos_t&, const_float_t, const_float_t, const bool) __O0;
|
||||
static void manually_probe_remaining_mesh(const xy_pos_t&, const float, const float, const bool) __O0;
|
||||
static void fine_tune_mesh(const xy_pos_t &pos, const bool do_ubl_mesh_map) __O0;
|
||||
#endif
|
||||
|
||||
static bool G29_parse_parameters() __O0;
|
||||
static void shift_mesh_height();
|
||||
static void shift_mesh_height(const float zoffs);
|
||||
static void probe_entire_mesh(const xy_pos_t &near, const bool do_ubl_mesh_map, const bool stow_probe, const bool do_furthest) __O0;
|
||||
static void tilt_mesh_based_on_probed_grid(const bool do_ubl_mesh_map);
|
||||
static bool smart_fill_one(const uint8_t x, const uint8_t y, const int8_t xdir, const int8_t ydir);
|
||||
|
|
@ -101,13 +101,13 @@ public:
|
|||
static mesh_index_pair find_furthest_invalid_mesh_point() __O0;
|
||||
static void reset();
|
||||
static void invalidate();
|
||||
static void set_all_mesh_points_to_value(const_float_t value);
|
||||
static void adjust_mesh_to_mean(const bool cflag, const_float_t value);
|
||||
static void set_all_mesh_points_to_value(const float value);
|
||||
static void adjust_mesh_to_mean(const bool cflag, const float value);
|
||||
static bool sanity_check();
|
||||
static void smart_fill_mesh();
|
||||
|
||||
static void G29() __O0; // O0 for no optimization
|
||||
static void smart_fill_wlsf(const_float_t ) __O2; // O2 gives smaller code than Os on A2560
|
||||
static void smart_fill_wlsf(const float ) __O2; // O2 gives smaller code than Os on A2560
|
||||
|
||||
static int8_t storage_slot;
|
||||
|
||||
|
|
@ -130,42 +130,42 @@ public:
|
|||
|
||||
unified_bed_leveling();
|
||||
|
||||
FORCE_INLINE static void set_z(const int8_t px, const int8_t py, const_float_t z) { z_values[px][py] = z; }
|
||||
FORCE_INLINE static void set_z(const int8_t px, const int8_t py, const float z) { z_values[px][py] = z; }
|
||||
|
||||
static int8_t cell_index_x_raw(const_float_t x) {
|
||||
static int8_t cell_index_x_raw(const float x) {
|
||||
return FLOOR((x - (MESH_MIN_X)) * RECIPROCAL(MESH_X_DIST));
|
||||
}
|
||||
|
||||
static int8_t cell_index_y_raw(const_float_t y) {
|
||||
static int8_t cell_index_y_raw(const float y) {
|
||||
return FLOOR((y - (MESH_MIN_Y)) * RECIPROCAL(MESH_Y_DIST));
|
||||
}
|
||||
|
||||
static bool cell_index_x_valid(const_float_t x) {
|
||||
static bool cell_index_x_valid(const float x) {
|
||||
return WITHIN(cell_index_x_raw(x), 0, GRID_MAX_CELLS_X - 1);
|
||||
}
|
||||
|
||||
static bool cell_index_y_valid(const_float_t y) {
|
||||
static bool cell_index_y_valid(const float y) {
|
||||
return WITHIN(cell_index_y_raw(y), 0, GRID_MAX_CELLS_Y - 1);
|
||||
}
|
||||
|
||||
static uint8_t cell_index_x(const_float_t x) {
|
||||
static uint8_t cell_index_x(const float x) {
|
||||
return constrain(cell_index_x_raw(x), 0, GRID_MAX_CELLS_X - 1);
|
||||
}
|
||||
|
||||
static uint8_t cell_index_y(const_float_t y) {
|
||||
static uint8_t cell_index_y(const float y) {
|
||||
return constrain(cell_index_y_raw(y), 0, GRID_MAX_CELLS_Y - 1);
|
||||
}
|
||||
|
||||
static xy_uint8_t cell_indexes(const_float_t x, const_float_t y) {
|
||||
static xy_uint8_t cell_indexes(const float x, const float y) {
|
||||
return { cell_index_x(x), cell_index_y(y) };
|
||||
}
|
||||
static xy_uint8_t cell_indexes(const xy_pos_t &xy) { return cell_indexes(xy.x, xy.y); }
|
||||
|
||||
static int8_t closest_x_index(const_float_t x) {
|
||||
static int8_t closest_x_index(const float x) {
|
||||
const int8_t px = (x - (MESH_MIN_X) + (MESH_X_DIST) * 0.5) * RECIPROCAL(MESH_X_DIST);
|
||||
return WITHIN(px, 0, (GRID_MAX_POINTS_X) - 1) ? px : -1;
|
||||
}
|
||||
static int8_t closest_y_index(const_float_t y) {
|
||||
static int8_t closest_y_index(const float y) {
|
||||
const int8_t py = (y - (MESH_MIN_Y) + (MESH_Y_DIST) * 0.5) * RECIPROCAL(MESH_Y_DIST);
|
||||
return WITHIN(py, 0, (GRID_MAX_POINTS_Y) - 1) ? py : -1;
|
||||
}
|
||||
|
|
@ -188,7 +188,7 @@ public:
|
|||
* It is fairly expensive with its 4 floating point additions and 2 floating point
|
||||
* multiplications.
|
||||
*/
|
||||
FORCE_INLINE static float calc_z0(const_float_t a0, const_float_t a1, const_float_t z1, const_float_t a2, const_float_t z2) {
|
||||
FORCE_INLINE static float calc_z0(const float a0, const float a1, const float z1, const float a2, const float z2) {
|
||||
return z1 + (z2 - z1) * (a0 - a1) / (a2 - a1);
|
||||
}
|
||||
|
||||
|
|
@ -202,7 +202,7 @@ public:
|
|||
* z_correction_for_x_on_horizontal_mesh_line is an optimization for
|
||||
* the case where the printer is making a vertical line that only crosses horizontal mesh lines.
|
||||
*/
|
||||
static float z_correction_for_x_on_horizontal_mesh_line(const_float_t rx0, const int x1_i, const int yi) {
|
||||
static float z_correction_for_x_on_horizontal_mesh_line(const float rx0, const int x1_i, const int yi) {
|
||||
if (!WITHIN(x1_i, 0, (GRID_MAX_POINTS_X) - 1) || !WITHIN(yi, 0, (GRID_MAX_POINTS_Y) - 1)) {
|
||||
|
||||
if (DEBUGGING(LEVELING)) {
|
||||
|
|
@ -225,7 +225,7 @@ public:
|
|||
//
|
||||
// See comments above for z_correction_for_x_on_horizontal_mesh_line
|
||||
//
|
||||
static float z_correction_for_y_on_vertical_mesh_line(const_float_t ry0, const int xi, const int y1_i) {
|
||||
static float z_correction_for_y_on_vertical_mesh_line(const float ry0, const int xi, const int y1_i) {
|
||||
if (!WITHIN(xi, 0, (GRID_MAX_POINTS_X) - 1) || !WITHIN(y1_i, 0, (GRID_MAX_POINTS_Y) - 1)) {
|
||||
|
||||
if (DEBUGGING(LEVELING)) {
|
||||
|
|
@ -251,7 +251,7 @@ public:
|
|||
* Z-Height at both ends. Then it does a linear interpolation of these heights based
|
||||
* on the Y position within the cell.
|
||||
*/
|
||||
static float get_z_correction(const_float_t rx0, const_float_t ry0) {
|
||||
static float get_z_correction(const float rx0, const float ry0) {
|
||||
const int8_t cx = cell_index_x(rx0), cy = cell_index_y(ry0); // return values are clamped
|
||||
|
||||
/**
|
||||
|
|
@ -295,9 +295,9 @@ public:
|
|||
}
|
||||
|
||||
#if UBL_SEGMENTED
|
||||
static bool line_to_destination_segmented(const_feedRate_t scaled_fr_mm_s);
|
||||
static bool line_to_destination_segmented(const feedRate_t scaled_fr_mm_s);
|
||||
#else
|
||||
static void line_to_destination_cartesian(const_feedRate_t scaled_fr_mm_s, const uint8_t e);
|
||||
static void line_to_destination_cartesian(const feedRate_t scaled_fr_mm_s, const uint8_t e);
|
||||
#endif
|
||||
|
||||
static bool mesh_is_valid() {
|
||||
|
|
|
|||
|
|
@ -48,7 +48,7 @@
|
|||
#include "../hilbert_curve.h"
|
||||
#endif
|
||||
|
||||
#if FT_MOTION_DISABLE_FOR_PROBING
|
||||
#if ENABLED(FT_MOTION)
|
||||
#include "../../../module/ft_motion.h"
|
||||
#endif
|
||||
|
||||
|
|
@ -313,9 +313,8 @@ void unified_bed_leveling::G29() {
|
|||
const uint8_t p_val = parser.byteval('P');
|
||||
const bool may_move = p_val == 1 || p_val == 2 || p_val == 4 || parser.seen_test('J');
|
||||
|
||||
#if FT_MOTION_DISABLE_FOR_PROBING
|
||||
FTMotionDisableInScope FT_Disabler; // Disable Fixed-Time Motion for probing
|
||||
#endif
|
||||
// Potentially disable Fixed-Time Motion for probing
|
||||
TERN_(FT_MOTION, FTMotionDisableInScope FT_Disabler);
|
||||
|
||||
// Check for commands that require the printer to be homed
|
||||
if (may_move) {
|
||||
|
|
@ -612,7 +611,7 @@ void unified_bed_leveling::G29() {
|
|||
|
||||
case 5: adjust_mesh_to_mean(param.C_seen, param.C_constant); break;
|
||||
|
||||
case 6: shift_mesh_height(); break;
|
||||
case 6: shift_mesh_height(param.C_constant); break;
|
||||
}
|
||||
}
|
||||
|
||||
|
|
@ -716,7 +715,7 @@ void unified_bed_leveling::G29() {
|
|||
* G29 P5 C<value> : Adjust Mesh To Mean (and subtract the given offset).
|
||||
* Find the mean average and shift the mesh to center on that value.
|
||||
*/
|
||||
void unified_bed_leveling::adjust_mesh_to_mean(const bool cflag, const_float_t offset) {
|
||||
void unified_bed_leveling::adjust_mesh_to_mean(const bool cflag, const float offset) {
|
||||
float sum = 0;
|
||||
uint8_t n = 0;
|
||||
GRID_LOOP(x, y)
|
||||
|
|
@ -752,10 +751,10 @@ void unified_bed_leveling::adjust_mesh_to_mean(const bool cflag, const_float_t o
|
|||
/**
|
||||
* G29 P6 C<offset> : Shift Mesh Height by a uniform constant.
|
||||
*/
|
||||
void unified_bed_leveling::shift_mesh_height() {
|
||||
void unified_bed_leveling::shift_mesh_height(const float zoffs) {
|
||||
GRID_LOOP(x, y)
|
||||
if (!isnan(z_values[x][y])) {
|
||||
z_values[x][y] += param.C_constant;
|
||||
z_values[x][y] += zoffs;
|
||||
TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(x, y, z_values[x][y]));
|
||||
}
|
||||
}
|
||||
|
|
@ -782,7 +781,7 @@ void unified_bed_leveling::shift_mesh_height() {
|
|||
|
||||
const grid_count_t point_num = (GRID_MAX_POINTS - count) + 1;
|
||||
SERIAL_ECHOLNPGM("Probing mesh point ", point_num, "/", GRID_MAX_POINTS, ".");
|
||||
TERN_(HAS_STATUS_MESSAGE, ui.status_printf(0, F(S_FMT " %i/%i"), GET_TEXT_F(MSG_PROBING_POINT), point_num, int(GRID_MAX_POINTS)));
|
||||
TERN_(HAS_STATUS_MESSAGE, ui.status_printf(0, F(S_FMT " %i/%i"), GET_TEXT(MSG_PROBING_POINT), point_num, int(GRID_MAX_POINTS)));
|
||||
TERN_(HAS_BACKLIGHT_TIMEOUT, ui.refresh_backlight_timeout());
|
||||
|
||||
#if HAS_MARLINUI_MENU
|
||||
|
|
@ -870,7 +869,7 @@ void set_message_with_feedback(FSTR_P const fstr) {
|
|||
return false;
|
||||
}
|
||||
|
||||
void unified_bed_leveling::move_z_with_encoder(const_float_t multiplier) {
|
||||
void unified_bed_leveling::move_z_with_encoder(const float multiplier) {
|
||||
ui.wait_for_release();
|
||||
while (!ui.button_pressed()) {
|
||||
idle();
|
||||
|
|
@ -953,7 +952,7 @@ void set_message_with_feedback(FSTR_P const fstr) {
|
|||
* Move to INVALID points and
|
||||
* NOTE: Blocks the G-code queue and captures Marlin UI during use.
|
||||
*/
|
||||
void unified_bed_leveling::manually_probe_remaining_mesh(const xy_pos_t &pos, const_float_t z_clearance, const_float_t thick, const bool do_ubl_mesh_map) {
|
||||
void unified_bed_leveling::manually_probe_remaining_mesh(const xy_pos_t &pos, const float z_clearance, const float thick, const bool do_ubl_mesh_map) {
|
||||
ui.capture();
|
||||
TERN_(EXTENSIBLE_UI, ExtUI::onLevelingStart());
|
||||
|
||||
|
|
@ -1511,7 +1510,7 @@ void unified_bed_leveling::smart_fill_mesh() {
|
|||
|
||||
for (uint8_t i = 0; i < 3; ++i) {
|
||||
SERIAL_ECHOLNPGM("Tilting mesh (", i + 1, "/3)");
|
||||
TERN_(HAS_STATUS_MESSAGE, ui.status_printf(0, F(S_FMT " %i/3"), GET_TEXT_F(MSG_LCD_TILTING_MESH), i + 1));
|
||||
TERN_(HAS_STATUS_MESSAGE, ui.status_printf(0, F(S_FMT " %i/3"), GET_TEXT(MSG_LCD_TILTING_MESH), i + 1));
|
||||
|
||||
measured_z = probe.probe_at_point(points[i], i < 2 ? PROBE_PT_RAISE : PROBE_PT_LAST_STOW, param.V_verbosity);
|
||||
if ((abort_flag = isnan(measured_z))) break;
|
||||
|
|
@ -1567,7 +1566,7 @@ void unified_bed_leveling::smart_fill_mesh() {
|
|||
#endif
|
||||
|
||||
SERIAL_ECHOLNPGM("Tilting mesh point ", point_num, "/", total_points, "\n");
|
||||
TERN_(HAS_STATUS_MESSAGE, ui.status_printf(0, F(S_FMT " %i/%i"), GET_TEXT_F(MSG_LCD_TILTING_MESH), point_num, total_points));
|
||||
TERN_(HAS_STATUS_MESSAGE, ui.status_printf(0, F(S_FMT " %i/%i"), GET_TEXT(MSG_LCD_TILTING_MESH), point_num, total_points));
|
||||
|
||||
measured_z = probe.probe_at_point(rpos, parser.seen_test('E') ? PROBE_PT_STOW : PROBE_PT_RAISE, param.V_verbosity); // TODO: Needs error handling
|
||||
|
||||
|
|
@ -1661,10 +1660,10 @@ void unified_bed_leveling::smart_fill_mesh() {
|
|||
*/
|
||||
#if ENABLED(VALIDATE_MESH_TILT)
|
||||
auto d_from = []{ DEBUG_ECHOPGM("D from "); };
|
||||
auto normed = [&](const xy_pos_t &pos, const_float_t zadd) {
|
||||
auto normed = [&](const xy_pos_t &pos, const float zadd) {
|
||||
return normal.x * pos.x + normal.y * pos.y + zadd;
|
||||
};
|
||||
auto debug_pt = [](const int num, const xy_pos_t &pos, const_float_t zadd) {
|
||||
auto debug_pt = [](const int num, const xy_pos_t &pos, const float zadd) {
|
||||
d_from();
|
||||
DEBUG_ECHOLN(F("Point "), num, C(':'), p_float_t(normed(pos, zadd), 6), F(" Z error = "), p_float_t(zadd - get_z_correction(pos), 6));
|
||||
};
|
||||
|
|
@ -1685,7 +1684,7 @@ void unified_bed_leveling::smart_fill_mesh() {
|
|||
#endif // HAS_BED_PROBE
|
||||
|
||||
#if ENABLED(UBL_G29_P31)
|
||||
void unified_bed_leveling::smart_fill_wlsf(const_float_t weight_factor) {
|
||||
void unified_bed_leveling::smart_fill_wlsf(const float weight_factor) {
|
||||
|
||||
// For each undefined mesh point, compute a distance-weighted least squares fit
|
||||
// from all the originally populated mesh points, weighted toward the point
|
||||
|
|
|
|||
|
|
@ -47,7 +47,7 @@
|
|||
// corners of cells. To fix the issue, simply check if the start/end of the line
|
||||
// is very close to a cell boundary in advance and don't split the line there.
|
||||
|
||||
void unified_bed_leveling::line_to_destination_cartesian(const_feedRate_t scaled_fr_mm_s, const uint8_t extruder) {
|
||||
void unified_bed_leveling::line_to_destination_cartesian(const feedRate_t scaled_fr_mm_s, const uint8_t extruder) {
|
||||
/**
|
||||
* Much of the nozzle movement will be within the same cell. So we will do as little computation
|
||||
* as possible to determine if this is the case. If this move is within the same cell, we will
|
||||
|
|
@ -351,7 +351,7 @@
|
|||
* Returns true if did NOT move, false if moved (requires current_position update).
|
||||
*/
|
||||
|
||||
bool __O2 unified_bed_leveling::line_to_destination_segmented(const_feedRate_t scaled_fr_mm_s) {
|
||||
bool __O2 unified_bed_leveling::line_to_destination_segmented(const feedRate_t scaled_fr_mm_s) {
|
||||
|
||||
if (!position_is_reachable(destination)) // fail if moving outside reachable boundary
|
||||
return true; // did not move, so current_position still accurate
|
||||
|
|
|
|||
|
|
@ -68,7 +68,7 @@ void StepperDAC::set_current_value(const uint8_t channel, uint16_t val) {
|
|||
}
|
||||
|
||||
void StepperDAC::set_current_percent(const uint8_t channel, float val) {
|
||||
set_current_value(channel, _MIN(val, 100.0f) * (DAC_STEPPER_MAX) / 100.0f);
|
||||
set_current_value(channel, _MIN(val, 100.0f) * (DAC_STEPPER_MAX) * 0.01f);
|
||||
}
|
||||
|
||||
static float dac_perc(int8_t n) { return mcp4728.getDrvPct(dac_order[n]); }
|
||||
|
|
|
|||
|
|
@ -188,7 +188,7 @@ class I2CPositionEncoder {
|
|||
FORCE_INLINE void set_ec_method(const byte method) { ecMethod = method; }
|
||||
|
||||
FORCE_INLINE float get_ec_threshold() { return ecThreshold; }
|
||||
FORCE_INLINE void set_ec_threshold(const_float_t newThreshold) { ecThreshold = newThreshold; }
|
||||
FORCE_INLINE void set_ec_threshold(const float newThreshold) { ecThreshold = newThreshold; }
|
||||
|
||||
FORCE_INLINE int get_encoder_ticks_mm() {
|
||||
switch (type) {
|
||||
|
|
|
|||
|
|
@ -67,7 +67,7 @@ public:
|
|||
}
|
||||
|
||||
// Convert raw measurement to mm
|
||||
static float raw_to_mm(const uint16_t v) { return v * (float(ADC_VREF_MV) / 1000.0f) * RECIPROCAL(float(MAX_RAW_THERMISTOR_VALUE)); }
|
||||
static float raw_to_mm(const uint16_t v) { return v * (float(ADC_VREF_MV) * 0.001f) * RECIPROCAL(float(MAX_RAW_THERMISTOR_VALUE)); }
|
||||
static float raw_to_mm() { return raw_to_mm(raw); }
|
||||
|
||||
// A scaled reading is ready
|
||||
|
|
@ -78,7 +78,7 @@ public:
|
|||
static void update_measured_mm() { measured_mm = raw_to_mm(); }
|
||||
|
||||
// Update ring buffer used to delay filament measurements
|
||||
static void advance_e(const_float_t e_move) {
|
||||
static void advance_e(const float e_move) {
|
||||
|
||||
// Increment counters with the E distance
|
||||
e_count += e_move;
|
||||
|
|
|
|||
|
|
@ -283,7 +283,7 @@ void Max7219::set(const uint8_t line, const uint8_t bits) {
|
|||
}
|
||||
|
||||
// Draw a float with a decimal point and optional digits
|
||||
void Max7219::print(const uint8_t start, const_float_t value, const uint8_t pre_size, const uint8_t post_size, const bool leadzero=false) {
|
||||
void Max7219::print(const uint8_t start, const float value, const uint8_t pre_size, const uint8_t post_size, const bool leadzero=false) {
|
||||
if (pre_size) print(start, value, pre_size, leadzero, !!post_size);
|
||||
if (post_size) {
|
||||
const int16_t after = ABS(value) * (10 ^ post_size);
|
||||
|
|
|
|||
|
|
@ -166,7 +166,7 @@ public:
|
|||
// Draw an integer with optional leading zeros and optional decimal point
|
||||
void print(const uint8_t start, int16_t value, uint8_t size, const bool leadzero=false, bool dec=false);
|
||||
// Draw a float with a decimal point and optional digits
|
||||
void print(const uint8_t start, const_float_t value, const uint8_t pre_size, const uint8_t post_size, const bool leadzero=false);
|
||||
void print(const uint8_t start, const float value, const uint8_t pre_size, const uint8_t post_size, const bool leadzero=false);
|
||||
#endif
|
||||
|
||||
// Set a single LED by XY coordinate
|
||||
|
|
|
|||
|
|
@ -166,7 +166,7 @@ void Mixer::refresh_collector(const float proportion/*=1.0*/, const uint8_t t/*=
|
|||
|
||||
float Mixer::prev_z; // = 0
|
||||
|
||||
void Mixer::update_gradient_for_z(const_float_t z) {
|
||||
void Mixer::update_gradient_for_z(const float z) {
|
||||
if (z == prev_z) return;
|
||||
prev_z = z;
|
||||
|
||||
|
|
|
|||
|
|
@ -174,9 +174,9 @@ class Mixer {
|
|||
static float prev_z;
|
||||
|
||||
// Update the current mix from the gradient for a given Z
|
||||
static void update_gradient_for_z(const_float_t z);
|
||||
static void update_gradient_for_z(const float z);
|
||||
static void update_gradient_for_planner_z();
|
||||
static void gradient_control(const_float_t z) {
|
||||
static void gradient_control(const float z) {
|
||||
if (gradient.enabled) {
|
||||
if (z >= gradient.end_z)
|
||||
T(gradient.end_vtool);
|
||||
|
|
|
|||
|
|
@ -7,9 +7,9 @@ When initialized, MMU sends
|
|||
We follow with
|
||||
|
||||
- MMU <= 'S1\n'
|
||||
- MMU => 'ok*Firmware version*\n'
|
||||
- MMU => 'ok<_Firmware version_>\n'
|
||||
- MMU <= 'S2\n'
|
||||
- MMU => 'ok*Build number*\n'
|
||||
- MMU => 'ok<_Build number_>\n'
|
||||
|
||||
#if (12V_mode)
|
||||
|
||||
|
|
@ -19,25 +19,25 @@ We follow with
|
|||
#endif
|
||||
|
||||
- MMU <= 'P0\n'
|
||||
- MMU => '_FINDA status_\n'
|
||||
- MMU => '<_FINDA status_>\n'
|
||||
|
||||
Now we are sure MMU is available and ready. If there was a timeout or other communication problem somewhere, printer will be killed.
|
||||
|
||||
- _Firmware version_ is an integer value, but we don't care about it
|
||||
- _Build number_ is an integer value and has to be >=126, or =>132 if 12V mode is enabled
|
||||
- _FINDA status_ is 1 if the filament is loaded to the extruder, 0 otherwise
|
||||
- <_Firmware version_> is an integer value, but we don't care about it.
|
||||
- <_Build number_> is an integer value and has to be >=126, or =>132 if 12V mode is enabled.
|
||||
- <_FINDA status_> is 1 if the filament is loaded to the extruder, 0 otherwise.
|
||||
|
||||
_Build number_ is checked against the required value, if it does not match, printer is halted.
|
||||
<_Build number_> is checked against the required value, if it does not match, printer is halted.
|
||||
|
||||
# Toolchange
|
||||
|
||||
- MMU <= 'T*Filament index*\n'
|
||||
- MMU <= 'T<_Filament index_>\n'
|
||||
|
||||
MMU sends
|
||||
|
||||
- MMU => 'ok\n'
|
||||
|
||||
as soon as the filament is fed down to the extruder. We follow with
|
||||
as soon as the filament is fed down to the extruder. We follow with:
|
||||
|
||||
- MMU <= 'C0\n'
|
||||
|
||||
|
|
@ -52,15 +52,15 @@ be one or more extruder moves to feed the filament into the hotend.
|
|||
# FINDA status
|
||||
|
||||
- MMU <= 'P0\n'
|
||||
- MMU => '_FINDA status_\n'
|
||||
- MMU => '<_FINDA status_>\n'
|
||||
|
||||
_FINDA status_ is 1 if the is filament loaded to the extruder, 0 otherwise. This could be used as filament runout sensor if probed regularly.
|
||||
|
||||
# Load filament
|
||||
|
||||
- MMU <= 'L*Filament index*\n'
|
||||
- MMU <= 'L<_Filament index_>\n'
|
||||
|
||||
MMU will feed filament down to the extruder, when done
|
||||
MMU will feed filament down to the extruder, when done:
|
||||
|
||||
- MMU => 'ok\n'
|
||||
|
||||
|
|
@ -68,11 +68,11 @@ MMU will feed filament down to the extruder, when done
|
|||
|
||||
- MMU <= 'U0\n'
|
||||
|
||||
MMU will retract current filament from the extruder, when done
|
||||
MMU will retract current filament from the extruder, when done:
|
||||
|
||||
- MMU => 'ok\n'
|
||||
|
||||
# Eject filament
|
||||
|
||||
- MMU <= 'E*Filament index*\n'
|
||||
- MMU <= 'E<_Filament index_>\n'
|
||||
- MMU => 'ok\n'
|
||||
|
|
|
|||
|
|
@ -96,7 +96,7 @@ struct E_Step {
|
|||
feedRate_t feedRate; //!< feed rate in mm/s
|
||||
};
|
||||
|
||||
inline void unscaled_mmu2_e_move(const float &dist, const feedRate_t fr_mm_s, const bool sync=true) {
|
||||
inline void unscaled_mmu2_e_move(const float dist, const feedRate_t fr_mm_s, const bool sync=true) {
|
||||
current_position.e += dist / planner.e_factor[active_extruder];
|
||||
line_to_current_position(fr_mm_s);
|
||||
if (sync) planner.synchronize();
|
||||
|
|
|
|||
|
|
@ -867,7 +867,7 @@ namespace MMU3 {
|
|||
nozzle_timer.start();
|
||||
LogEchoEvent(F("Cooling Timeout started"));
|
||||
}
|
||||
else if (nozzle_timer.duration() > (PAUSE_PARK_NOZZLE_TIMEOUT * 1000ul)) { // mins->msec.
|
||||
else if (nozzle_timer.duration() > (PAUSE_PARK_NOZZLE_TIMEOUT * 1000UL)) { // mins->msec.
|
||||
mmu_print_saved &= ~(SavedState::CooldownPending);
|
||||
mmu_print_saved |= SavedState::Cooldown;
|
||||
thermal_setTargetHotend(0);
|
||||
|
|
|
|||
|
|
@ -33,10 +33,10 @@ namespace MMU3 {
|
|||
// - Unify implementation among MK3 and Buddy FW
|
||||
// - Enable unit testing of MMU top layer
|
||||
|
||||
void extruder_move(const_float_t distance, const_float_t feedRate_mm_s, const bool sync=true);
|
||||
void extruder_schedule_turning(const_float_t feedRate_mm_s);
|
||||
void extruder_move(const float distance, const float feedRate_mm_s, const bool sync=true);
|
||||
void extruder_schedule_turning(const float feedRate_mm_s);
|
||||
|
||||
float move_raise_z(const_float_t delta);
|
||||
float move_raise_z(const float delta);
|
||||
|
||||
void planner_abort_queued_moves();
|
||||
void planner_synchronize();
|
||||
|
|
|
|||
|
|
@ -49,13 +49,13 @@ namespace MMU3 {
|
|||
planner_synchronize();
|
||||
}
|
||||
|
||||
void extruder_move(const_float_t delta, const_float_t feedRate_mm_s, const bool sync/*=true*/) {
|
||||
void extruder_move(const float delta, const float feedRate_mm_s, const bool sync/*=true*/) {
|
||||
current_position.e += delta / planner.e_factor[active_extruder];
|
||||
planner_line_to_current_position(feedRate_mm_s);
|
||||
if (sync) planner.synchronize();
|
||||
}
|
||||
|
||||
float move_raise_z(const_float_t delta) {
|
||||
float move_raise_z(const float delta) {
|
||||
//return raise_z(delta);
|
||||
xyze_pos_t current_position_before = current_position;
|
||||
do_z_clearance_by(delta);
|
||||
|
|
|
|||
|
|
@ -707,7 +707,7 @@ namespace MMU3 {
|
|||
}
|
||||
|
||||
bool ProtocolLogic::Elapsed(uint32_t timeout) const {
|
||||
return _millis() >= (lastUARTActivityMs + timeout);
|
||||
return ELAPSED(_millis(), lastUARTActivityMs + timeout);
|
||||
}
|
||||
|
||||
void ProtocolLogic::RecordUARTActivity() {
|
||||
|
|
@ -716,7 +716,7 @@ namespace MMU3 {
|
|||
|
||||
void ProtocolLogic::RecordReceivedByte(uint8_t c) {
|
||||
lastReceivedBytes[lrb] = c;
|
||||
lrb = (lrb + 1) % lastReceivedBytes.size();
|
||||
lrb = (lrb + 1) % COUNT(lastReceivedBytes);
|
||||
}
|
||||
|
||||
constexpr char NibbleToChar(uint8_t c) {
|
||||
|
|
@ -728,13 +728,13 @@ namespace MMU3 {
|
|||
}
|
||||
|
||||
void ProtocolLogic::FormatLastReceivedBytes(char *dst) {
|
||||
for (uint8_t i = 0; i < lastReceivedBytes.size(); ++i) {
|
||||
uint8_t b = lastReceivedBytes[(lrb - i - 1) % lastReceivedBytes.size()];
|
||||
for (uint8_t i = 0; i < COUNT(lastReceivedBytes); ++i) {
|
||||
uint8_t b = lastReceivedBytes[(COUNT(lastReceivedBytes) - 1 + (lrb - i)) % COUNT(lastReceivedBytes)];
|
||||
dst[i * 3] = NibbleToChar(b >> 4);
|
||||
dst[i * 3 + 1] = NibbleToChar(b & 0xf);
|
||||
dst[i * 3 + 2] = ' ';
|
||||
}
|
||||
dst[(lastReceivedBytes.size() - 1) * 3 + 2] = 0; // terminate properly
|
||||
dst[(COUNT(lastReceivedBytes) - 1) * 3 + 2] = 0; // terminate properly
|
||||
}
|
||||
|
||||
void ProtocolLogic::FormatLastResponseMsgAndClearLRB(char *dst) {
|
||||
|
|
@ -777,18 +777,18 @@ namespace MMU3 {
|
|||
}
|
||||
|
||||
void ProtocolLogic::LogError(const char *reason_P) {
|
||||
char lrb[lastReceivedBytes.size() * 3];
|
||||
FormatLastReceivedBytes(lrb);
|
||||
char _lrb[COUNT(lastReceivedBytes) * 3];
|
||||
FormatLastReceivedBytes(_lrb);
|
||||
|
||||
MMU2_ERROR_MSGRPGM(reason_P);
|
||||
SERIAL_ECHOPGM(", last bytes: ");
|
||||
SERIAL_ECHOLN(lrb);
|
||||
SERIAL_ECHOLN(_lrb);
|
||||
}
|
||||
|
||||
void ProtocolLogic::LogResponse() {
|
||||
char lrb[lastReceivedBytes.size()];
|
||||
FormatLastResponseMsgAndClearLRB(lrb);
|
||||
MMU2_ECHO_MSGLN(lrb);
|
||||
char _lrb[COUNT(lastReceivedBytes)];
|
||||
FormatLastResponseMsgAndClearLRB(_lrb);
|
||||
MMU2_ECHO_MSGLN(_lrb);
|
||||
}
|
||||
|
||||
StepStatus ProtocolLogic::SuppressShortDropOuts(const char *msg_P, StepStatus ss) {
|
||||
|
|
|
|||
|
|
@ -36,24 +36,8 @@
|
|||
#include "mmu_hw/buttons.h"
|
||||
#include "mmu_hw/registers.h"
|
||||
#include "mmu3_protocol.h"
|
||||
|
||||
// #include <array> std array is not available on AVR ... we need to "fake" it
|
||||
namespace std {
|
||||
template <typename T, uint8_t N>
|
||||
class array {
|
||||
T data[N];
|
||||
public:
|
||||
array() = default;
|
||||
inline constexpr T *begin() const { return data; }
|
||||
inline constexpr T *end() const { return data + N; }
|
||||
static constexpr uint8_t size() { return N; }
|
||||
inline T &operator[](uint8_t i) { return data[i]; }
|
||||
};
|
||||
} // std
|
||||
|
||||
#else // !__AVR__
|
||||
|
||||
#include <array>
|
||||
#include "mmu_hw/error_codes.h"
|
||||
#include "mmu_hw/progress_codes.h"
|
||||
|
||||
|
|
@ -351,8 +335,7 @@ namespace MMU3 {
|
|||
|
||||
Protocol protocol; //!< protocol codec
|
||||
|
||||
std::array<uint8_t, 16> lastReceivedBytes; //!< remembers the last few bytes of incoming communication for diagnostic purposes
|
||||
uint8_t lrb;
|
||||
uint8_t lrb, lastReceivedBytes[16]; //!< keep the last few bytes of incoming communication for diagnostic purposes
|
||||
|
||||
ErrorCode errorCode; //!< last received error code from the MMU
|
||||
ProgressCode progressCode; //!< last received progress code from the MMU
|
||||
|
|
|
|||
|
|
@ -188,10 +188,8 @@ static bool ensure_safe_temperature(const bool wait=true, const PauseMode mode=P
|
|||
*
|
||||
* Returns 'true' if load was completed, 'false' for abort
|
||||
*/
|
||||
bool load_filament(const_float_t slow_load_length/*=0*/, const_float_t fast_load_length/*=0*/, const_float_t purge_length/*=0*/, const int8_t max_beep_count/*=0*/,
|
||||
const bool show_lcd/*=false*/, const bool pause_for_user/*=false*/,
|
||||
const PauseMode mode/*=PAUSE_MODE_PAUSE_PRINT*/
|
||||
DXC_ARGS
|
||||
bool load_filament(const float slow_load_length/*=0*/, const float fast_load_length/*=0*/, const float purge_length/*=0*/, const int8_t max_beep_count/*=0*/,
|
||||
const bool show_lcd/*=false*/, const bool pause_for_user/*=false*/, const PauseMode mode/*=PAUSE_MODE_PAUSE_PRINT*/ DXC_ARGS
|
||||
) {
|
||||
DEBUG_SECTION(lf, "load_filament", true);
|
||||
DEBUG_ECHOLNPGM("... slowlen:", slow_load_length, " fastlen:", fast_load_length, " purgelen:", purge_length, " maxbeep:", max_beep_count, " showlcd:", show_lcd, " pauseforuser:", pause_for_user, " pausemode:", mode DXC_SAY);
|
||||
|
|
@ -344,10 +342,10 @@ inline void disable_active_extruder() {
|
|||
*
|
||||
* Returns 'true' if unload was completed, 'false' for abort
|
||||
*/
|
||||
bool unload_filament(const_float_t unload_length, const bool show_lcd/*=false*/,
|
||||
bool unload_filament(const float unload_length, const bool show_lcd/*=false*/,
|
||||
const PauseMode mode/*=PAUSE_MODE_PAUSE_PRINT*/
|
||||
#if ALL(FILAMENT_UNLOAD_ALL_EXTRUDERS, MIXING_EXTRUDER)
|
||||
, const_float_t mix_multiplier/*=1.0*/
|
||||
, const float mix_multiplier/*=1.0*/
|
||||
#endif
|
||||
) {
|
||||
DEBUG_SECTION(uf, "unload_filament", true);
|
||||
|
|
@ -418,7 +416,7 @@ bool unload_filament(const_float_t unload_length, const bool show_lcd/*=false*/,
|
|||
*/
|
||||
uint8_t did_pause_print = 0;
|
||||
|
||||
bool pause_print(const_float_t retract, const xyz_pos_t &park_point, const bool show_lcd/*=false*/, const_float_t unload_length/*=0*/ DXC_ARGS) {
|
||||
bool pause_print(const float retract, const xyz_pos_t &park_point, const bool show_lcd/*=false*/, const float unload_length/*=0*/ DXC_ARGS) {
|
||||
DEBUG_SECTION(pp, "pause_print", true);
|
||||
DEBUG_ECHOLNPGM("... park.x:", park_point.x, " y:", park_point.y, " z:", park_point.z, " unloadlen:", unload_length, " showlcd:", show_lcd DXC_SAY);
|
||||
|
||||
|
|
@ -639,9 +637,9 @@ void wait_for_confirmation(const bool is_reload/*=false*/, const int8_t max_beep
|
|||
* - Resume the current SD print job, if any
|
||||
*/
|
||||
void resume_print(
|
||||
const_float_t slow_load_length/*=0*/,
|
||||
const_float_t fast_load_length/*=0*/,
|
||||
const_float_t purge_length/*=ADVANCED_PAUSE_PURGE_LENGTH*/,
|
||||
const float slow_load_length/*=0*/,
|
||||
const float fast_load_length/*=0*/,
|
||||
const float purge_length/*=ADVANCED_PAUSE_PURGE_LENGTH*/,
|
||||
const int8_t max_beep_count/*=0*/,
|
||||
const celsius_t targetTemp/*=0*/,
|
||||
const bool show_lcd/*=true*/,
|
||||
|
|
|
|||
|
|
@ -91,10 +91,10 @@ extern uint8_t did_pause_print;
|
|||
|
||||
// Pause the print. If unload_length is set, do a Filament Unload
|
||||
bool pause_print(
|
||||
const_float_t retract, // (mm) Retraction length
|
||||
const float retract, // (mm) Retraction length
|
||||
const xyz_pos_t &park_point, // Parking XY Position and Z Raise
|
||||
const bool show_lcd=false, // Set LCD status messages?
|
||||
const_float_t unload_length=0 // (mm) Filament Change Unload Length - 0 to skip
|
||||
const float unload_length=0 // (mm) Filament Change Unload Length - 0 to skip
|
||||
DXC_PARAMS // Dual-X-Carriage extruder index
|
||||
);
|
||||
|
||||
|
|
@ -105,9 +105,9 @@ void wait_for_confirmation(
|
|||
);
|
||||
|
||||
void resume_print(
|
||||
const_float_t slow_load_length=0, // (mm) Slow Load Length for finishing move
|
||||
const_float_t fast_load_length=0, // (mm) Fast Load Length for initial move
|
||||
const_float_t purge_length=ADVANCED_PAUSE_PURGE_LENGTH, // (mm) Purge length
|
||||
const float slow_load_length=0, // (mm) Slow Load Length for finishing move
|
||||
const float fast_load_length=0, // (mm) Fast Load Length for initial move
|
||||
const float purge_length=ADVANCED_PAUSE_PURGE_LENGTH, // (mm) Purge length
|
||||
const int8_t max_beep_count=0, // Beep alert for attention
|
||||
const celsius_t targetTemp=0, // (°C) A target temperature for the hotend
|
||||
const bool show_lcd=true, // Set LCD status messages?
|
||||
|
|
@ -116,9 +116,9 @@ void resume_print(
|
|||
);
|
||||
|
||||
bool load_filament(
|
||||
const_float_t slow_load_length=0, // (mm) Slow Load Length for finishing move
|
||||
const_float_t fast_load_length=0, // (mm) Fast Load Length for initial move
|
||||
const_float_t purge_length=0, // (mm) Purge length
|
||||
const float slow_load_length=0, // (mm) Slow Load Length for finishing move
|
||||
const float fast_load_length=0, // (mm) Fast Load Length for initial move
|
||||
const float purge_length=0, // (mm) Purge length
|
||||
const int8_t max_beep_count=0, // Beep alert for attention
|
||||
const bool show_lcd=false, // Set LCD status messages?
|
||||
const bool pause_for_user=false, // Pause for user before returning?
|
||||
|
|
@ -127,11 +127,11 @@ bool load_filament(
|
|||
);
|
||||
|
||||
bool unload_filament(
|
||||
const_float_t unload_length, // (mm) Filament Unload Length - 0 to skip
|
||||
const float unload_length, // (mm) Filament Unload Length - 0 to skip
|
||||
const bool show_lcd=false, // Set LCD status messages?
|
||||
const PauseMode mode=PAUSE_MODE_PAUSE_PRINT // Pause Mode to apply
|
||||
#if ALL(FILAMENT_UNLOAD_ALL_EXTRUDERS, MIXING_EXTRUDER)
|
||||
, const_float_t mix_multiplier=1.0f // Extrusion multiplier (for a Mixing Extruder)
|
||||
, const float mix_multiplier=1.0f // Extrusion multiplier (for a Mixing Extruder)
|
||||
#endif
|
||||
);
|
||||
|
||||
|
|
|
|||
|
|
@ -270,7 +270,7 @@ void PrintJobRecovery::save(const bool force/*=false*/, const float zraise/*=POW
|
|||
|
||||
#if ENABLED(BACKUP_POWER_SUPPLY)
|
||||
|
||||
void PrintJobRecovery::retract_and_lift(const_float_t zraise) {
|
||||
void PrintJobRecovery::retract_and_lift(const float zraise) {
|
||||
#if POWER_LOSS_RETRACT_LEN || POWER_LOSS_ZRAISE
|
||||
|
||||
gcode.set_relative_mode(true); // Use relative coordinates
|
||||
|
|
|
|||
|
|
@ -237,7 +237,7 @@ class PrintJobRecovery {
|
|||
static void write();
|
||||
|
||||
#if ENABLED(BACKUP_POWER_SUPPLY)
|
||||
static void retract_and_lift(const_float_t zraise);
|
||||
static void retract_and_lift(const float zraise);
|
||||
#endif
|
||||
|
||||
#if PIN_EXISTS(POWER_LOSS) || ENABLED(DEBUG_POWER_LOSS_RECOVERY)
|
||||
|
|
|
|||
|
|
@ -104,12 +104,12 @@ void ProbeTempComp::print_offsets() {
|
|||
#endif
|
||||
}
|
||||
|
||||
void ProbeTempComp::prepare_new_calibration(const_float_t init_meas_z) {
|
||||
void ProbeTempComp::prepare_new_calibration(const float init_meas_z) {
|
||||
calib_idx = 0;
|
||||
init_measurement = init_meas_z;
|
||||
}
|
||||
|
||||
void ProbeTempComp::push_back_new_measurement(const TempSensorID tsi, const_float_t meas_z) {
|
||||
void ProbeTempComp::push_back_new_measurement(const TempSensorID tsi, const float meas_z) {
|
||||
if (calib_idx >= cali_info[tsi].measurements) return;
|
||||
sensor_z_offsets[tsi][calib_idx++] = static_cast<int16_t>((meas_z - init_measurement) * 1000.0f);
|
||||
}
|
||||
|
|
@ -186,7 +186,7 @@ void ProbeTempComp::compensate_measurement(const TempSensorID tsi, const celsius
|
|||
};
|
||||
|
||||
// Interpolate Z based on a temperature being within a given range
|
||||
auto linear_interp = [](const_float_t x, xy_float_t p1, xy_float_t p2) {
|
||||
auto linear_interp = [](const float x, xy_float_t p1, xy_float_t p2) {
|
||||
// zoffs1 + zoffset_per_toffset * toffset
|
||||
return p1.y + (p2.y - p1.y) / (p2.x - p1.x) * (x - p1.x);
|
||||
};
|
||||
|
|
@ -212,7 +212,7 @@ void ProbeTempComp::compensate_measurement(const TempSensorID tsi, const celsius
|
|||
}
|
||||
|
||||
// convert offset to mm and apply it
|
||||
meas_z -= offset / 1000.0f;
|
||||
meas_z -= offset * 0.001f;
|
||||
}
|
||||
|
||||
bool ProbeTempComp::linear_regression(const TempSensorID tsi, float &k, float &d) {
|
||||
|
|
|
|||
|
|
@ -84,8 +84,8 @@ class ProbeTempComp {
|
|||
}
|
||||
static bool set_offset(const TempSensorID tsi, const uint8_t idx, const int16_t offset);
|
||||
static void print_offsets();
|
||||
static void prepare_new_calibration(const_float_t init_meas_z);
|
||||
static void push_back_new_measurement(const TempSensorID tsi, const_float_t meas_z);
|
||||
static void prepare_new_calibration(const float init_meas_z);
|
||||
static void push_back_new_measurement(const TempSensorID tsi, const float meas_z);
|
||||
static bool finish_calibration(const TempSensorID tsi);
|
||||
static void set_enabled(const bool ena) { enabled = ena; }
|
||||
|
||||
|
|
|
|||
|
|
@ -51,7 +51,6 @@ bool FilamentMonitorBase::enabled = true,
|
|||
#if ENABLED(FILAMENT_MOTION_SENSOR)
|
||||
uint8_t FilamentSensorEncoder::motion_detected;
|
||||
#endif
|
||||
|
||||
#if ENABLED(FILAMENT_SWITCH_AND_MOTION)
|
||||
bool RunoutResponseDelayed::ignore_motion = false;
|
||||
float RunoutResponseDelayed::motion_distance_mm = FILAMENT_MOTION_DISTANCE_MM;
|
||||
|
|
|
|||
|
|
@ -123,12 +123,12 @@ class TFilamentMonitor : public FilamentMonitorBase {
|
|||
response.filament_motion_present(extruder);
|
||||
}
|
||||
static float& motion_distance() { return response.motion_distance_mm; }
|
||||
static void set_motion_distance(const_float_t mm) { response.motion_distance_mm = mm; }
|
||||
static void set_motion_distance(const float mm) { response.motion_distance_mm = mm; }
|
||||
#endif
|
||||
|
||||
#if HAS_FILAMENT_RUNOUT_DISTANCE
|
||||
static float& runout_distance() { return response.runout_distance_mm; }
|
||||
static void set_runout_distance(const_float_t mm) { response.runout_distance_mm = mm; }
|
||||
static void set_runout_distance(const float mm) { response.runout_distance_mm = mm; }
|
||||
#endif
|
||||
|
||||
// Handle a block completion. RunoutResponseDelayed uses this to
|
||||
|
|
@ -143,38 +143,37 @@ class TFilamentMonitor : public FilamentMonitorBase {
|
|||
|
||||
// Give the response a chance to update its counter.
|
||||
static void run() {
|
||||
if (enabled && !filament_ran_out && should_monitor_runout()) {
|
||||
TERN_(HAS_FILAMENT_RUNOUT_DISTANCE, cli()); // Prevent RunoutResponseDelayed::block_completed from accumulating here
|
||||
response.run();
|
||||
sensor.run();
|
||||
const runout_flags_t runout_flags = response.has_run_out();
|
||||
TERN_(HAS_FILAMENT_RUNOUT_DISTANCE, sei());
|
||||
#if MULTI_FILAMENT_SENSOR
|
||||
#if ENABLED(WATCH_ALL_RUNOUT_SENSORS)
|
||||
const bool ran_out = bool(runout_flags); // any sensor triggers
|
||||
uint8_t extruder = 0;
|
||||
if (ran_out) while (!runout_flags.test(extruder)) extruder++;
|
||||
#else
|
||||
const bool ran_out = runout_flags[active_extruder]; // suppress non active extruders
|
||||
uint8_t extruder = active_extruder;
|
||||
#endif
|
||||
if (!enabled || filament_ran_out || !should_monitor_runout()) return;
|
||||
TERN_(HAS_FILAMENT_RUNOUT_DISTANCE, cli()); // Prevent RunoutResponseDelayed::block_completed from accumulating here
|
||||
response.run();
|
||||
sensor.run();
|
||||
const runout_flags_t runout_flags = response.has_run_out();
|
||||
TERN_(HAS_FILAMENT_RUNOUT_DISTANCE, sei());
|
||||
#if MULTI_FILAMENT_SENSOR
|
||||
#if ENABLED(WATCH_ALL_RUNOUT_SENSORS)
|
||||
const bool ran_out = bool(runout_flags); // any sensor triggers
|
||||
uint8_t extruder = 0;
|
||||
if (ran_out) while (!runout_flags.test(extruder)) extruder++;
|
||||
#else
|
||||
const bool ran_out = bool(runout_flags);
|
||||
const bool ran_out = runout_flags[active_extruder]; // suppress non active extruders
|
||||
uint8_t extruder = active_extruder;
|
||||
#endif
|
||||
#else
|
||||
const bool ran_out = bool(runout_flags);
|
||||
uint8_t extruder = active_extruder;
|
||||
#endif
|
||||
|
||||
if (ran_out) {
|
||||
#if ENABLED(FILAMENT_RUNOUT_SENSOR_DEBUG)
|
||||
SERIAL_ECHOPGM("Runout Sensors: ");
|
||||
for (uint8_t i = 0; i < 8; ++i) SERIAL_CHAR('0' + char(runout_flags[i]));
|
||||
SERIAL_ECHOLNPGM(" -> ", extruder, " RUN OUT");
|
||||
#endif
|
||||
if (!ran_out) return;
|
||||
|
||||
filament_ran_out = true;
|
||||
event_filament_runout(extruder);
|
||||
planner.synchronize();
|
||||
}
|
||||
}
|
||||
#if ENABLED(FILAMENT_RUNOUT_SENSOR_DEBUG)
|
||||
SERIAL_ECHOPGM("Runout Sensors: ");
|
||||
for (uint8_t i = 0; i < 8; ++i) SERIAL_CHAR('0' + char(runout_flags[i]));
|
||||
SERIAL_ECHOLNPGM(" -> ", extruder, " RUN OUT");
|
||||
#endif
|
||||
|
||||
filament_ran_out = true;
|
||||
event_filament_runout(extruder);
|
||||
planner.synchronize();
|
||||
}
|
||||
|
||||
// Reset after a filament runout or upon resuming a job
|
||||
|
|
@ -376,7 +375,9 @@ class FilamentSensorBase {
|
|||
class RunoutResponseDelayed {
|
||||
private:
|
||||
static countdown_t mm_countdown;
|
||||
static bool ignore_motion; // Flag to ignore the encoder
|
||||
#if ENABLED(FILAMENT_SWITCH_AND_MOTION)
|
||||
static bool ignore_motion; // Flag to ignore the encoder
|
||||
#endif
|
||||
|
||||
public:
|
||||
static float runout_distance_mm;
|
||||
|
|
@ -385,13 +386,17 @@ class FilamentSensorBase {
|
|||
static float motion_distance_mm;
|
||||
#endif
|
||||
|
||||
static void set_ignore_motion(const bool ignore=true) { ignore_motion = ignore; }
|
||||
static void set_ignore_motion(const bool ignore=true) {
|
||||
UNUSED(ignore);
|
||||
TERN_(FILAMENT_SWITCH_AND_MOTION, ignore_motion = ignore);
|
||||
}
|
||||
|
||||
static void reset() {
|
||||
for (uint8_t i = 0; i < NUM_RUNOUT_SENSORS; ++i) filament_present(i);
|
||||
#if ENABLED(FILAMENT_SWITCH_AND_MOTION)
|
||||
for (uint8_t i = 0; i < NUM_MOTION_SENSORS; ++i) filament_motion_present(i);
|
||||
#endif
|
||||
set_ignore_motion(false);
|
||||
}
|
||||
|
||||
static void run() {
|
||||
|
|
@ -413,13 +418,24 @@ class FilamentSensorBase {
|
|||
// Get runout status for all presence sensors and motion sensors
|
||||
static runout_flags_t has_run_out() {
|
||||
runout_flags_t runout_flags{0};
|
||||
// Runout based on filament presence
|
||||
for (uint8_t i = 0; i < NUM_RUNOUT_SENSORS; ++i) if (mm_countdown.runout[i] < 0) runout_flags.set(i);
|
||||
// Runout based on filament motion
|
||||
|
||||
#if ENABLED(FILAMENT_SWITCH_AND_MOTION)
|
||||
if (!ignore_motion)
|
||||
for (uint8_t i = 0; i < NUM_MOTION_SENSORS; ++i) if (mm_countdown.motion[i] < 0) runout_flags.set(i);
|
||||
// Runout based on filament motion
|
||||
if (!ignore_motion) {
|
||||
for (uint8_t i = 0; i < NUM_MOTION_SENSORS; ++i) {
|
||||
if (mm_countdown.motion[i] < 0) {
|
||||
runout_flags.set(i);
|
||||
mm_countdown.runout[i] = -1; // For a filament jam don't wait for runout_distance_mm!
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
// Runout based on filament presence
|
||||
for (uint8_t i = 0; i < NUM_RUNOUT_SENSORS; ++i)
|
||||
if (mm_countdown.runout[i] < 0)
|
||||
runout_flags.set(i);
|
||||
|
||||
return runout_flags;
|
||||
}
|
||||
|
||||
|
|
@ -471,8 +487,8 @@ class FilamentSensorBase {
|
|||
if (mm_countdown.runout_reset[e]) filament_present(e); // Reset pending. Try to reset.
|
||||
}
|
||||
|
||||
// Apply E distance to motion countdown, reset if flagged
|
||||
#if ENABLED(FILAMENT_SWITCH_AND_MOTION)
|
||||
// Apply E distance to motion countdown, reset if flagged
|
||||
if (!ignore_motion && e < NUM_MOTION_SENSORS) {
|
||||
mm_countdown.motion[e] -= mm;
|
||||
if (mm_countdown.motion_reset[e]) filament_motion_present(e); // Reset pending. Try to reset.
|
||||
|
|
@ -484,7 +500,7 @@ class FilamentSensorBase {
|
|||
static void init_for_restart(const bool onoff=true) {
|
||||
UNUSED(onoff);
|
||||
#if ENABLED(FILAMENT_SWITCH_AND_MOTION)
|
||||
reset();
|
||||
reset(); // also calls set_ignore_motion(false)
|
||||
set_ignore_motion(!onoff);
|
||||
#endif
|
||||
}
|
||||
|
|
|
|||
|
|
@ -54,13 +54,13 @@ class SpindleLaser {
|
|||
public:
|
||||
static CutterMode cutter_mode;
|
||||
|
||||
static constexpr uint8_t pct_to_ocr(const_float_t pct) { return uint8_t(PCT_TO_PWM(pct)); }
|
||||
static constexpr uint8_t pct_to_ocr(const float pct) { return uint8_t(PCT_TO_PWM(pct)); }
|
||||
|
||||
// cpower = configured values (e.g., SPEED_POWER_MAX)
|
||||
// Convert configured power range to a percentage
|
||||
static constexpr cutter_cpower_t power_floor = TERN(CUTTER_POWER_RELATIVE, SPEED_POWER_MIN, 0);
|
||||
static constexpr uint8_t cpwr_to_pct(const cutter_cpower_t cpwr) {
|
||||
return cpwr ? round(100.0f * (cpwr - power_floor) / (SPEED_POWER_MAX - power_floor)) : 0;
|
||||
return cpwr ? LROUND(100.0f * (cpwr - power_floor) / (SPEED_POWER_MAX - power_floor)) : 0;
|
||||
}
|
||||
|
||||
// Convert config defines from RPM to %, angle or PWM when in Spindle mode
|
||||
|
|
@ -164,7 +164,7 @@ public:
|
|||
*/
|
||||
static cutter_power_t power_to_range(const cutter_power_t pwr, const uint8_t pwrUnit=_CUTTER_POWER(CUTTER_POWER_UNIT)) {
|
||||
static constexpr float
|
||||
min_pct = TERN(CUTTER_POWER_RELATIVE, 0, TERN(SPINDLE_FEATURE, round(100.0f * (SPEED_POWER_MIN) / (SPEED_POWER_MAX)), SPEED_POWER_MIN)),
|
||||
min_pct = TERN(CUTTER_POWER_RELATIVE, 0, TERN(SPINDLE_FEATURE, roundf(100.0f * (SPEED_POWER_MIN) / (SPEED_POWER_MAX)), SPEED_POWER_MIN)),
|
||||
max_pct = TERN(SPINDLE_FEATURE, 100, SPEED_POWER_MAX);
|
||||
if (pwr <= 0) return 0;
|
||||
cutter_power_t upwr;
|
||||
|
|
|
|||
|
|
@ -31,7 +31,7 @@ static uint32_t axis_plug_backward = 0;
|
|||
void stepper_driver_backward_error(FSTR_P const fstr) {
|
||||
SERIAL_ERROR_START();
|
||||
SERIAL_ECHOLN(fstr, F(" driver is backward!"));
|
||||
ui.status_printf(2, F(S_FMT S_FMT), FTOP(fstr), GET_TEXT_F(MSG_DRIVER_BACKWARD));
|
||||
ui.status_printf(2, F(S_FMT S_FMT), FTOP(fstr), GET_TEXT(MSG_DRIVER_BACKWARD));
|
||||
}
|
||||
|
||||
void stepper_driver_backward_check() {
|
||||
|
|
|
|||
|
|
@ -89,7 +89,9 @@
|
|||
|
||||
#if HAS_TMCX1X0
|
||||
|
||||
static uint32_t get_pwm_scale(TMC2130Stepper &st) { return st.PWM_SCALE(); }
|
||||
#if ENABLED(TMC_DEBUG)
|
||||
static uint32_t get_pwm_scale(TMC2130Stepper &st) { return st.PWM_SCALE(); }
|
||||
#endif
|
||||
|
||||
static TMC_driver_data get_driver_data(TMC2130Stepper &st) {
|
||||
constexpr uint8_t OT_bp = 25, OTPW_bp = 26;
|
||||
|
|
@ -148,7 +150,9 @@
|
|||
|
||||
#if HAS_DRIVER(TMC2240)
|
||||
|
||||
static uint32_t get_pwm_scale(TMC2240Stepper &st) { return st.PWM_SCALE(); }
|
||||
#if ENABLED(TMC_DEBUG)
|
||||
static uint32_t get_pwm_scale(TMC2240Stepper &st) { return st.PWM_SCALE(); }
|
||||
#endif
|
||||
|
||||
static TMC_driver_data get_driver_data(TMC2240Stepper &st) {
|
||||
constexpr uint8_t OT_bp = 25, OTPW_bp = 26;
|
||||
|
|
@ -207,7 +211,9 @@
|
|||
|
||||
#if HAS_TMC220x
|
||||
|
||||
static uint32_t get_pwm_scale(TMC2208Stepper &st) { return st.pwm_scale_sum(); }
|
||||
#if ENABLED(TMC_DEBUG)
|
||||
static uint32_t get_pwm_scale(TMC2208Stepper &st) { return st.pwm_scale_sum(); }
|
||||
#endif
|
||||
|
||||
static TMC_driver_data get_driver_data(TMC2208Stepper &st) {
|
||||
constexpr uint8_t OTPW_bp = 0, OT_bp = 1;
|
||||
|
|
@ -242,7 +248,9 @@
|
|||
|
||||
#if HAS_DRIVER(TMC2660)
|
||||
|
||||
static uint32_t get_pwm_scale(TMC2660Stepper) { return 0; }
|
||||
#if ENABLED(TMC_DEBUG)
|
||||
static uint32_t get_pwm_scale(TMC2660Stepper) { return 0; }
|
||||
#endif
|
||||
|
||||
static TMC_driver_data get_driver_data(TMC2660Stepper &st) {
|
||||
constexpr uint8_t OT_bp = 1, OTPW_bp = 2;
|
||||
|
|
@ -965,14 +973,14 @@
|
|||
TMC_REPORT("[mm/s]\t", TMC_TPWMTHRS_MMS);
|
||||
TMC_REPORT("OT prewarn", TMC_DEBUG_OTPW);
|
||||
#if ENABLED(MONITOR_DRIVER_STATUS)
|
||||
TMC_REPORT("triggered\n OTP\t", TMC_OTPW_TRIGGERED);
|
||||
TMC_REPORT("OTPW trig.\t", TMC_OTPW_TRIGGERED);
|
||||
#endif
|
||||
|
||||
#if HAS_TMC220x
|
||||
TMC_REPORT("pwm scale sum", TMC_PWM_SCALE_SUM);
|
||||
TMC_REPORT("pwm scale auto", TMC_PWM_SCALE_AUTO);
|
||||
TMC_REPORT("pwm offset auto", TMC_PWM_OFS_AUTO);
|
||||
TMC_REPORT("pwm grad auto", TMC_PWM_GRAD_AUTO);
|
||||
TMC_REPORT("pwm scale sum", TMC_PWM_SCALE_SUM);
|
||||
TMC_REPORT("pwm scale auto", TMC_PWM_SCALE_AUTO);
|
||||
TMC_REPORT("pwm offset auto", TMC_PWM_OFS_AUTO);
|
||||
TMC_REPORT("pwm grad auto", TMC_PWM_GRAD_AUTO);
|
||||
#endif
|
||||
|
||||
TMC_REPORT("off time", TMC_TOFF);
|
||||
|
|
|
|||
|
|
@ -53,7 +53,7 @@ void XATC::print_points() {
|
|||
SERIAL_EOL();
|
||||
}
|
||||
|
||||
float lerp(const_float_t t, const_float_t a, const_float_t b) { return a + t * (b - a); }
|
||||
float lerp(const float t, const float a, const float b) { return a + t * (b - a); }
|
||||
|
||||
float XATC::compensation(const xy_pos_t &raw) {
|
||||
if (!enabled) return 0;
|
||||
|
|
|
|||
|
|
@ -170,7 +170,7 @@ float g26_random_deviation = 0.0;
|
|||
|
||||
#endif
|
||||
|
||||
void move_to(const_float_t rx, const_float_t ry, const_float_t z, const_float_t e_delta) {
|
||||
void move_to(const float rx, const float ry, const float z, const float e_delta) {
|
||||
static float last_z = -999.99;
|
||||
|
||||
const xy_pos_t dest = { rx, ry };
|
||||
|
|
@ -196,7 +196,7 @@ void move_to(const_float_t rx, const_float_t ry, const_float_t z, const_float_t
|
|||
prepare_internal_move_to_destination(fr_mm_s);
|
||||
}
|
||||
|
||||
void move_to(const xyz_pos_t &where, const_float_t de) { move_to(where.x, where.y, where.z, de); }
|
||||
void move_to(const xyz_pos_t &where, const float de) { move_to(where.x, where.y, where.z, de); }
|
||||
|
||||
typedef struct {
|
||||
float extrusion_multiplier = EXTRUSION_MULTIPLIER,
|
||||
|
|
|
|||
|
|
@ -59,7 +59,7 @@
|
|||
#define DEBUG_OUT ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
#include "../../../core/debug_out.h"
|
||||
|
||||
#if DISABLED(PROBE_MANUALLY) && FT_MOTION_DISABLE_FOR_PROBING
|
||||
#if DISABLED(PROBE_MANUALLY) && ENABLED(FT_MOTION)
|
||||
#include "../../../module/ft_motion.h"
|
||||
#endif
|
||||
|
||||
|
|
@ -275,8 +275,9 @@ G29_TYPE GcodeSuite::G29() {
|
|||
// Set and report "probing" state to host
|
||||
TERN_(FULL_REPORT_TO_HOST_FEATURE, set_and_report_grblstate(M_PROBE, false));
|
||||
|
||||
#if DISABLED(PROBE_MANUALLY) && FT_MOTION_DISABLE_FOR_PROBING
|
||||
FTMotionDisableInScope FT_Disabler; // Disable Fixed-Time Motion for probing
|
||||
#if DISABLED(PROBE_MANUALLY) && ENABLED(FT_MOTION)
|
||||
// Potentially disable Fixed-Time Motion for probing
|
||||
FTMotionDisableInScope FT_Disabler;
|
||||
#endif
|
||||
|
||||
/**
|
||||
|
|
@ -708,7 +709,7 @@ G29_TYPE GcodeSuite::G29() {
|
|||
if (TERN0(IS_KINEMATIC, !probe.can_reach(abl.probePos))) continue;
|
||||
|
||||
if (abl.verbose_level) SERIAL_ECHOLNPGM("Probing mesh point ", pt_index, "/", abl.abl_points, ".");
|
||||
TERN_(HAS_STATUS_MESSAGE, ui.status_printf(0, F(S_FMT " %i/%i"), GET_TEXT_F(MSG_PROBING_POINT), int(pt_index), int(abl.abl_points)));
|
||||
TERN_(HAS_STATUS_MESSAGE, ui.status_printf(0, F(S_FMT " %i/%i"), GET_TEXT(MSG_PROBING_POINT), int(pt_index), int(abl.abl_points)));
|
||||
|
||||
#if ENABLED(BD_SENSOR_PROBE_NO_STOP)
|
||||
if (PR_INNER_VAR == inStart) {
|
||||
|
|
@ -813,7 +814,7 @@ G29_TYPE GcodeSuite::G29() {
|
|||
|
||||
for (uint8_t i = 0; i < 3; ++i) {
|
||||
if (abl.verbose_level) SERIAL_ECHOLNPGM("Probing point ", i + 1, "/3.");
|
||||
TERN_(HAS_STATUS_MESSAGE, ui.status_printf(0, F(S_FMT " %i/3"), GET_TEXT_F(MSG_PROBING_POINT), int(i + 1)));
|
||||
TERN_(HAS_STATUS_MESSAGE, ui.status_printf(0, F(S_FMT " %i/3"), GET_TEXT(MSG_PROBING_POINT), int(i + 1)));
|
||||
|
||||
// Retain the last probe position
|
||||
abl.probePos = xy_pos_t(points[i]);
|
||||
|
|
|
|||
|
|
@ -45,7 +45,7 @@
|
|||
#define DEBUG_OUT ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
#include "../../../core/debug_out.h"
|
||||
|
||||
#if FT_MOTION_DISABLE_FOR_PROBING
|
||||
#if ENABLED(FT_MOTION)
|
||||
#include "../../module/ft_motion.h"
|
||||
#endif
|
||||
|
||||
|
|
@ -67,9 +67,8 @@ inline void echo_not_entered(const char c) { SERIAL_CHAR(c); SERIAL_ECHOLNPGM("
|
|||
*/
|
||||
void GcodeSuite::G29() {
|
||||
|
||||
#if FT_MOTION_DISABLE_FOR_PROBING
|
||||
FTMotionDisableInScope FT_Disabler; // Disable Fixed-Time Motion for probing
|
||||
#endif
|
||||
// Potentially disable Fixed-Time Motion for probing
|
||||
TERN_(FT_MOTION, FTMotionDisableInScope FT_Disabler);
|
||||
|
||||
DEBUG_SECTION(log_G29, "G29", true);
|
||||
|
||||
|
|
@ -261,7 +260,7 @@ void GcodeSuite::G29() {
|
|||
|
||||
if (state == MeshNext) {
|
||||
SERIAL_ECHOLNPGM("MBL G29 point ", _MIN(mbl_probe_index, GRID_MAX_POINTS), " of ", GRID_MAX_POINTS);
|
||||
if (mbl_probe_index > 0) TERN_(HAS_STATUS_MESSAGE, ui.status_printf(0, F(S_FMT " %i/%i"), GET_TEXT_F(MSG_PROBING_POINT), _MIN(mbl_probe_index, GRID_MAX_POINTS), int(GRID_MAX_POINTS)));
|
||||
if (mbl_probe_index > 0) TERN_(HAS_STATUS_MESSAGE, ui.status_printf(0, F(S_FMT " %i/%i"), GET_TEXT(MSG_PROBING_POINT), _MIN(mbl_probe_index, GRID_MAX_POINTS), int(GRID_MAX_POINTS)));
|
||||
}
|
||||
|
||||
report_current_position();
|
||||
|
|
|
|||
|
|
@ -52,7 +52,7 @@
|
|||
#include "../../feature/bltouch.h"
|
||||
#endif
|
||||
|
||||
#if FT_MOTION_DISABLE_FOR_PROBING
|
||||
#if ENABLED(FT_MOTION)
|
||||
#include "../../module/ft_motion.h"
|
||||
#endif
|
||||
|
||||
|
|
@ -130,9 +130,8 @@
|
|||
|
||||
inline void home_z_safely() {
|
||||
|
||||
#if FT_MOTION_DISABLE_FOR_PROBING
|
||||
FTMotionDisableInScope FT_Disabler; // Disable Fixed-Time Motion for homing
|
||||
#endif
|
||||
// Potentially disable Fixed-Time Motion for homing
|
||||
TERN_(FT_MOTION, FTMotionDisableInScope FT_Disabler);
|
||||
|
||||
DEBUG_SECTION(log_G28, "home_z_safely", DEBUGGING(LEVELING));
|
||||
|
||||
|
|
@ -290,9 +289,8 @@ void GcodeSuite::G28() {
|
|||
motion_state_t saved_motion_state = begin_slow_homing();
|
||||
#endif
|
||||
|
||||
#if FT_MOTION_DISABLE_FOR_PROBING
|
||||
FTMotionDisableInScope FT_Disabler; // Disable Fixed-Time Motion for homing
|
||||
#endif
|
||||
// Potentially disable Fixed-Time Motion for homing
|
||||
TERN_(FT_MOTION, FTMotionDisableInScope FT_Disabler);
|
||||
|
||||
// Always home with tool 0 active
|
||||
#if HAS_MULTI_HOTEND
|
||||
|
|
|
|||
|
|
@ -87,7 +87,7 @@ void ac_cleanup() {
|
|||
TERN_(HAS_BED_PROBE, probe.use_probing_tool(false));
|
||||
}
|
||||
|
||||
void print_signed_float(FSTR_P const prefix, const_float_t f) {
|
||||
void print_signed_float(FSTR_P const prefix, const float f) {
|
||||
SERIAL_ECHO(F(" "), prefix, C(':'));
|
||||
serial_offset(f);
|
||||
}
|
||||
|
|
@ -154,7 +154,7 @@ static float std_dev_points(float z_pt[NPP + 1], const bool _0p_cal, const bool
|
|||
S2 += sq(z_pt[rad]);
|
||||
N++;
|
||||
}
|
||||
return LROUND(SQRT(S2 / N) * 1000.0f) / 1000.0f + 0.00001f;
|
||||
return LROUND(SQRT(S2 / N) * 1000.0f) * 0.001f + 0.00001f;
|
||||
}
|
||||
}
|
||||
return 0.00001f;
|
||||
|
|
@ -315,7 +315,7 @@ static void calc_kinematics_diff_probe_points(float z_pt[NPP + 1], const float d
|
|||
|
||||
static float auto_tune_h(const float dcr) {
|
||||
const float r_quot = dcr / delta_radius;
|
||||
return RECIPROCAL(r_quot / (2.0f / 3.0f)); // (2/3)/CR
|
||||
return RECIPROCAL(r_quot * (3.0f / 2.0f)); // (2/3)/CR
|
||||
}
|
||||
|
||||
static float auto_tune_r(const float dcr) {
|
||||
|
|
@ -490,7 +490,7 @@ void GcodeSuite::G33() {
|
|||
|
||||
float z_at_pt[NPP + 1] = { 0.0f };
|
||||
|
||||
test_precision = zero_std_dev_old != 999.0f ? (zero_std_dev + zero_std_dev_old) / 2.0f : zero_std_dev;
|
||||
test_precision = zero_std_dev_old != 999.0f ? (zero_std_dev + zero_std_dev_old) * 0.5f : zero_std_dev;
|
||||
iterations++;
|
||||
|
||||
// Probe the points
|
||||
|
|
@ -527,7 +527,7 @@ void GcodeSuite::G33() {
|
|||
* - Definition of the matrix scaling parameters
|
||||
* - Matrices for 4 and 7 point calibration
|
||||
*/
|
||||
#define ZP(N,I) ((N) * z_at_pt[I] / 4.0f) // 4.0 = divider to normalize to integers
|
||||
#define ZP(N,I) ((N) * z_at_pt[I] * 0.25f) // 4.0 = divider to normalize to integers
|
||||
#define Z12(I) ZP(12, I)
|
||||
#define Z4(I) ZP(4, I)
|
||||
#define Z2(I) ZP(2, I)
|
||||
|
|
|
|||
Some files were not shown because too many files have changed in this diff Show more
Loading…
Add table
Add a link
Reference in a new issue