mirror of
https://github.com/Ultimaker/Cura.git
synced 2025-07-12 09:17:50 -06:00

Converted doxygen style comments to reStructuredText style in the files found in Cura/cura/Arranging directory recursively using the script dox_2_rst.py (provided in the Uranium repo). Comments were manually checked and changed if needed. Various missing return types were added to complete Typing support
250 lines
10 KiB
Python
250 lines
10 KiB
Python
# Copyright (c) 2020 Ultimaker B.V.
|
|
# Cura is released under the terms of the LGPLv3 or higher.
|
|
from typing import Optional
|
|
|
|
from UM.Scene.Iterator.DepthFirstIterator import DepthFirstIterator
|
|
from UM.Logger import Logger
|
|
from UM.Math.Polygon import Polygon
|
|
from UM.Math.Vector import Vector
|
|
from UM.Scene.SceneNode import SceneNode
|
|
from cura.Arranging.ShapeArray import ShapeArray
|
|
from cura.BuildVolume import BuildVolume
|
|
from cura.Scene import ZOffsetDecorator
|
|
|
|
from collections import namedtuple
|
|
|
|
import numpy
|
|
import copy
|
|
|
|
LocationSuggestion = namedtuple("LocationSuggestion", ["x", "y", "penalty_points", "priority"])
|
|
"""Return object for bestSpot"""
|
|
|
|
|
|
class Arrange:
|
|
"""
|
|
The Arrange classed is used together with :py:class:`cura.Arranging.ShapeArray.ShapeArray`. Use it to find good locations for objects that you try to put
|
|
on a build place. Different priority schemes can be defined so it alters the behavior while using the same logic.
|
|
|
|
.. note::
|
|
|
|
Make sure the scale is the same between :py:class:`cura.Arranging.ShapeArray.ShapeArray` objects and the :py:class:`cura.Arranging.Arrange.Arrange` instance.
|
|
"""
|
|
|
|
build_volume = None # type: Optional[BuildVolume]
|
|
|
|
def __init__(self, x, y, offset_x, offset_y, scale = 0.5):
|
|
self._scale = scale # convert input coordinates to arrange coordinates
|
|
world_x, world_y = int(x * self._scale), int(y * self._scale)
|
|
self._shape = (world_y, world_x)
|
|
self._priority = numpy.zeros((world_y, world_x), dtype=numpy.int32) # beware: these are indexed (y, x)
|
|
self._priority_unique_values = []
|
|
self._occupied = numpy.zeros((world_y, world_x), dtype=numpy.int32) # beware: these are indexed (y, x)
|
|
self._offset_x = int(offset_x * self._scale)
|
|
self._offset_y = int(offset_y * self._scale)
|
|
self._last_priority = 0
|
|
self._is_empty = True
|
|
|
|
@classmethod
|
|
def create(cls, scene_root = None, fixed_nodes = None, scale = 0.5, x = 350, y = 250, min_offset = 8) -> "Arrange":
|
|
"""Helper to create an :py:class:`cura.Arranging.Arrange.Arrange` instance
|
|
|
|
Either fill in scene_root and create will find all sliceable nodes by itself, or use fixed_nodes to provide the
|
|
nodes yourself.
|
|
|
|
:param scene_root: Root for finding all scene nodes default = None
|
|
:param fixed_nodes: Scene nodes to be placed default = None
|
|
:param scale: default = 0.5
|
|
:param x: default = 350
|
|
:param y: default = 250
|
|
:param min_offset: default = 8
|
|
"""
|
|
|
|
arranger = Arrange(x, y, x // 2, y // 2, scale = scale)
|
|
arranger.centerFirst()
|
|
|
|
if fixed_nodes is None:
|
|
fixed_nodes = []
|
|
for node_ in DepthFirstIterator(scene_root):
|
|
# Only count sliceable objects
|
|
if node_.callDecoration("isSliceable"):
|
|
fixed_nodes.append(node_)
|
|
|
|
# Place all objects fixed nodes
|
|
for fixed_node in fixed_nodes:
|
|
vertices = fixed_node.callDecoration("getConvexHullHead") or fixed_node.callDecoration("getConvexHull")
|
|
if not vertices:
|
|
continue
|
|
vertices = vertices.getMinkowskiHull(Polygon.approximatedCircle(min_offset))
|
|
points = copy.deepcopy(vertices._points)
|
|
|
|
# After scaling (like up to 0.1 mm) the node might not have points
|
|
if not points.size:
|
|
continue
|
|
|
|
shape_arr = ShapeArray.fromPolygon(points, scale = scale)
|
|
arranger.place(0, 0, shape_arr)
|
|
|
|
# If a build volume was set, add the disallowed areas
|
|
if Arrange.build_volume:
|
|
disallowed_areas = Arrange.build_volume.getDisallowedAreasNoBrim()
|
|
for area in disallowed_areas:
|
|
points = copy.deepcopy(area._points)
|
|
shape_arr = ShapeArray.fromPolygon(points, scale = scale)
|
|
arranger.place(0, 0, shape_arr, update_empty = False)
|
|
return arranger
|
|
|
|
def resetLastPriority(self):
|
|
"""This resets the optimization for finding location based on size"""
|
|
|
|
self._last_priority = 0
|
|
|
|
def findNodePlacement(self, node: SceneNode, offset_shape_arr: ShapeArray, hull_shape_arr: ShapeArray, step = 1) -> bool:
|
|
""" Find placement for a node (using offset shape) and place it (using hull shape)
|
|
|
|
:param node: The node to be placed
|
|
:param offset_shape_arr: shape array with offset, for placing the shape
|
|
:param hull_shape_arr: shape array without offset, used to find location
|
|
:param step: default = 1
|
|
:return: the nodes that should be placed
|
|
"""
|
|
|
|
best_spot = self.bestSpot(
|
|
hull_shape_arr, start_prio = self._last_priority, step = step)
|
|
x, y = best_spot.x, best_spot.y
|
|
|
|
# Save the last priority.
|
|
self._last_priority = best_spot.priority
|
|
|
|
# Ensure that the object is above the build platform
|
|
node.removeDecorator(ZOffsetDecorator.ZOffsetDecorator)
|
|
bbox = node.getBoundingBox()
|
|
if bbox:
|
|
center_y = node.getWorldPosition().y - bbox.bottom
|
|
else:
|
|
center_y = 0
|
|
|
|
if x is not None: # We could find a place
|
|
node.setPosition(Vector(x, center_y, y))
|
|
found_spot = True
|
|
self.place(x, y, offset_shape_arr) # place the object in arranger
|
|
else:
|
|
Logger.log("d", "Could not find spot!")
|
|
found_spot = False
|
|
node.setPosition(Vector(200, center_y, 100))
|
|
return found_spot
|
|
|
|
def centerFirst(self):
|
|
""" Fill priority, center is best. Lower value is better. """
|
|
|
|
# Square distance: creates a more round shape
|
|
self._priority = numpy.fromfunction(
|
|
lambda j, i: (self._offset_x - i) ** 2 + (self._offset_y - j) ** 2, self._shape, dtype=numpy.int32)
|
|
self._priority_unique_values = numpy.unique(self._priority)
|
|
self._priority_unique_values.sort()
|
|
|
|
def backFirst(self):
|
|
""" Fill priority, back is best. Lower value is better """
|
|
|
|
self._priority = numpy.fromfunction(
|
|
lambda j, i: 10 * j + abs(self._offset_x - i), self._shape, dtype=numpy.int32)
|
|
self._priority_unique_values = numpy.unique(self._priority)
|
|
self._priority_unique_values.sort()
|
|
|
|
def checkShape(self, x, y, shape_arr) -> Optional[numpy.ndarray]:
|
|
""" Return the amount of "penalty points" for polygon, which is the sum of priority
|
|
|
|
:param x: x-coordinate to check shape
|
|
:param y: y-coordinate to check shape
|
|
:param shape_arr: the shape array object to place
|
|
:return: None if occupied
|
|
"""
|
|
|
|
x = int(self._scale * x)
|
|
y = int(self._scale * y)
|
|
offset_x = x + self._offset_x + shape_arr.offset_x
|
|
offset_y = y + self._offset_y + shape_arr.offset_y
|
|
if offset_x < 0 or offset_y < 0:
|
|
return None # out of bounds in self._occupied
|
|
occupied_x_max = offset_x + shape_arr.arr.shape[1]
|
|
occupied_y_max = offset_y + shape_arr.arr.shape[0]
|
|
if occupied_x_max > self._occupied.shape[1] + 1 or occupied_y_max > self._occupied.shape[0] + 1:
|
|
return None # out of bounds in self._occupied
|
|
occupied_slice = self._occupied[
|
|
offset_y:occupied_y_max,
|
|
offset_x:occupied_x_max]
|
|
try:
|
|
if numpy.any(occupied_slice[numpy.where(shape_arr.arr == 1)]):
|
|
return None
|
|
except IndexError: # out of bounds if you try to place an object outside
|
|
return None
|
|
prio_slice = self._priority[
|
|
offset_y:offset_y + shape_arr.arr.shape[0],
|
|
offset_x:offset_x + shape_arr.arr.shape[1]]
|
|
return numpy.sum(prio_slice[numpy.where(shape_arr.arr == 1)])
|
|
|
|
def bestSpot(self, shape_arr, start_prio = 0, step = 1) -> LocationSuggestion:
|
|
""" Find "best" spot for ShapeArray
|
|
|
|
:param shape_arr: shape array
|
|
:param start_prio: Start with this priority value (and skip the ones before)
|
|
:param step: Slicing value, higher = more skips = faster but less accurate
|
|
:return: namedtuple with properties x, y, penalty_points, priority.
|
|
"""
|
|
|
|
start_idx_list = numpy.where(self._priority_unique_values == start_prio)
|
|
if start_idx_list:
|
|
try:
|
|
start_idx = start_idx_list[0][0]
|
|
except IndexError:
|
|
start_idx = 0
|
|
else:
|
|
start_idx = 0
|
|
for priority in self._priority_unique_values[start_idx::step]:
|
|
tryout_idx = numpy.where(self._priority == priority)
|
|
for idx in range(len(tryout_idx[0])):
|
|
x = tryout_idx[1][idx]
|
|
y = tryout_idx[0][idx]
|
|
projected_x = int((x - self._offset_x) / self._scale)
|
|
projected_y = int((y - self._offset_y) / self._scale)
|
|
|
|
penalty_points = self.checkShape(projected_x, projected_y, shape_arr)
|
|
if penalty_points is not None:
|
|
return LocationSuggestion(x = projected_x, y = projected_y, penalty_points = penalty_points, priority = priority)
|
|
return LocationSuggestion(x = None, y = None, penalty_points = None, priority = priority) # No suitable location found :-(
|
|
|
|
def place(self, x, y, shape_arr, update_empty = True):
|
|
""" Place the object.
|
|
|
|
Marks the locations in self._occupied and self._priority
|
|
|
|
:param x:
|
|
:param y:
|
|
:param shape_arr:
|
|
:param update_empty: updates the _is_empty, used when adding disallowed areas
|
|
"""
|
|
|
|
x = int(self._scale * x)
|
|
y = int(self._scale * y)
|
|
offset_x = x + self._offset_x + shape_arr.offset_x
|
|
offset_y = y + self._offset_y + shape_arr.offset_y
|
|
shape_y, shape_x = self._occupied.shape
|
|
|
|
min_x = min(max(offset_x, 0), shape_x - 1)
|
|
min_y = min(max(offset_y, 0), shape_y - 1)
|
|
max_x = min(max(offset_x + shape_arr.arr.shape[1], 0), shape_x - 1)
|
|
max_y = min(max(offset_y + shape_arr.arr.shape[0], 0), shape_y - 1)
|
|
occupied_slice = self._occupied[min_y:max_y, min_x:max_x]
|
|
# we use a slice of shape because it can be out of bounds
|
|
new_occupied = numpy.where(shape_arr.arr[
|
|
min_y - offset_y:max_y - offset_y, min_x - offset_x:max_x - offset_x] == 1)
|
|
if update_empty and new_occupied:
|
|
self._is_empty = False
|
|
occupied_slice[new_occupied] = 1
|
|
|
|
# Set priority to low (= high number), so it won't get picked at trying out.
|
|
prio_slice = self._priority[min_y:max_y, min_x:max_x]
|
|
prio_slice[new_occupied] = 999
|
|
|
|
@property
|
|
def isEmpty(self):
|
|
return self._is_empty
|