mirror of
https://github.com/Ultimaker/Cura.git
synced 2025-07-08 07:27:29 -06:00

MeshBuilder.addArc only supports circular arcs, not elliptic arcs. To work around this, the resulting MeshData is scaled.
816 lines
No EOL
43 KiB
Python
816 lines
No EOL
43 KiB
Python
# Copyright (c) 2016 Ultimaker B.V.
|
|
# Cura is released under the terms of the AGPLv3 or higher.
|
|
|
|
from cura.Settings.ExtruderManager import ExtruderManager
|
|
from UM.i18n import i18nCatalog
|
|
from UM.Scene.Platform import Platform
|
|
from UM.Scene.Iterator.BreadthFirstIterator import BreadthFirstIterator
|
|
from UM.Scene.SceneNode import SceneNode
|
|
from UM.Application import Application
|
|
from UM.Resources import Resources
|
|
from UM.Mesh.MeshBuilder import MeshBuilder
|
|
from UM.Math.Vector import Vector
|
|
from UM.Math.Matrix import Matrix
|
|
from UM.Math.Color import Color
|
|
from UM.Math.AxisAlignedBox import AxisAlignedBox
|
|
from UM.Math.Polygon import Polygon
|
|
from UM.Message import Message
|
|
from UM.Signal import Signal
|
|
from PyQt5.QtCore import QTimer
|
|
from UM.View.RenderBatch import RenderBatch
|
|
from UM.View.GL.OpenGL import OpenGL
|
|
catalog = i18nCatalog("cura")
|
|
|
|
import numpy
|
|
import copy
|
|
import math
|
|
|
|
import UM.Settings.ContainerRegistry
|
|
|
|
|
|
# Setting for clearance around the prime
|
|
PRIME_CLEARANCE = 6.5
|
|
|
|
|
|
## Build volume is a special kind of node that is responsible for rendering the printable area & disallowed areas.
|
|
class BuildVolume(SceneNode):
|
|
VolumeOutlineColor = Color(12, 169, 227, 255)
|
|
XAxisColor = Color(255, 0, 0, 255)
|
|
YAxisColor = Color(0, 0, 255, 255)
|
|
ZAxisColor = Color(0, 255, 0, 255)
|
|
|
|
raftThicknessChanged = Signal()
|
|
|
|
def __init__(self, parent = None):
|
|
super().__init__(parent)
|
|
|
|
self._width = 0
|
|
self._height = 0
|
|
self._depth = 0
|
|
self._shape = ""
|
|
|
|
self._shader = None
|
|
|
|
self._origin_mesh = None
|
|
self._origin_line_length = 20
|
|
self._origin_line_width = 0.5
|
|
|
|
self._grid_mesh = None
|
|
self._grid_shader = None
|
|
|
|
self._disallowed_areas = []
|
|
self._disallowed_area_mesh = None
|
|
|
|
self._error_areas = []
|
|
self._error_mesh = None
|
|
|
|
self.setCalculateBoundingBox(False)
|
|
self._volume_aabb = None
|
|
|
|
self._raft_thickness = 0.0
|
|
self._adhesion_type = None
|
|
self._platform = Platform(self)
|
|
|
|
self._global_container_stack = None
|
|
Application.getInstance().globalContainerStackChanged.connect(self._onStackChanged)
|
|
self._onStackChanged()
|
|
|
|
self._has_errors = False
|
|
Application.getInstance().getController().getScene().sceneChanged.connect(self._onSceneChanged)
|
|
|
|
#Objects loaded at the moment. We are connected to the property changed events of these objects.
|
|
self._scene_objects = set()
|
|
|
|
self._change_timer = QTimer()
|
|
self._change_timer.setInterval(100)
|
|
self._change_timer.setSingleShot(True)
|
|
self._change_timer.timeout.connect(self._onChangeTimerFinished)
|
|
|
|
self._build_volume_message = Message(catalog.i18nc("@info:status",
|
|
"The build volume height has been reduced due to the value of the"
|
|
" \"Print Sequence\" setting to prevent the gantry from colliding"
|
|
" with printed models."))
|
|
|
|
# Must be after setting _build_volume_message, apparently that is used in getMachineManager.
|
|
# activeQualityChanged is always emitted after setActiveVariant, setActiveMaterial and setActiveQuality.
|
|
# Therefore this works.
|
|
Application.getInstance().getMachineManager().activeQualityChanged.connect(self._onStackChanged)
|
|
# This should also ways work, and it is semantically more correct,
|
|
# but it does not update the disallowed areas after material change
|
|
Application.getInstance().getMachineManager().activeStackChanged.connect(self._onStackChanged)
|
|
|
|
def _onSceneChanged(self, source):
|
|
if self._global_container_stack:
|
|
self._change_timer.start()
|
|
|
|
def _onChangeTimerFinished(self):
|
|
root = Application.getInstance().getController().getScene().getRoot()
|
|
new_scene_objects = set(node for node in BreadthFirstIterator(root) if node.getMeshData() and type(node) is SceneNode)
|
|
if new_scene_objects != self._scene_objects:
|
|
for node in new_scene_objects - self._scene_objects: #Nodes that were added to the scene.
|
|
node.decoratorsChanged.connect(self._onNodeDecoratorChanged)
|
|
for node in self._scene_objects - new_scene_objects: #Nodes that were removed from the scene.
|
|
per_mesh_stack = node.callDecoration("getStack")
|
|
if per_mesh_stack:
|
|
per_mesh_stack.propertyChanged.disconnect(self._onSettingPropertyChanged)
|
|
active_extruder_changed = node.callDecoration("getActiveExtruderChangedSignal")
|
|
if active_extruder_changed is not None:
|
|
node.callDecoration("getActiveExtruderChangedSignal").disconnect(self._updateDisallowedAreasAndRebuild)
|
|
node.decoratorsChanged.disconnect(self._onNodeDecoratorChanged)
|
|
|
|
self._scene_objects = new_scene_objects
|
|
self._onSettingPropertyChanged("print_sequence", "value") # Create fake event, so right settings are triggered.
|
|
|
|
## Updates the listeners that listen for changes in per-mesh stacks.
|
|
#
|
|
# \param node The node for which the decorators changed.
|
|
def _onNodeDecoratorChanged(self, node):
|
|
per_mesh_stack = node.callDecoration("getStack")
|
|
if per_mesh_stack:
|
|
per_mesh_stack.propertyChanged.connect(self._onSettingPropertyChanged)
|
|
active_extruder_changed = node.callDecoration("getActiveExtruderChangedSignal")
|
|
if active_extruder_changed is not None:
|
|
active_extruder_changed.connect(self._updateDisallowedAreasAndRebuild)
|
|
self._updateDisallowedAreasAndRebuild()
|
|
|
|
def setWidth(self, width):
|
|
if width: self._width = width
|
|
|
|
def setHeight(self, height):
|
|
if height: self._height = height
|
|
|
|
def setDepth(self, depth):
|
|
if depth: self._depth = depth
|
|
|
|
def setShape(self, shape):
|
|
if shape: self._shape = shape
|
|
|
|
def getDisallowedAreas(self):
|
|
return self._disallowed_areas
|
|
|
|
def setDisallowedAreas(self, areas):
|
|
self._disallowed_areas = areas
|
|
|
|
def render(self, renderer):
|
|
if not self.getMeshData():
|
|
return True
|
|
|
|
if not self._shader:
|
|
self._shader = OpenGL.getInstance().createShaderProgram(Resources.getPath(Resources.Shaders, "default.shader"))
|
|
self._grid_shader = OpenGL.getInstance().createShaderProgram(Resources.getPath(Resources.Shaders, "grid.shader"))
|
|
|
|
renderer.queueNode(self, mode = RenderBatch.RenderMode.Lines)
|
|
renderer.queueNode(self, mesh = self._origin_mesh)
|
|
renderer.queueNode(self, mesh = self._grid_mesh, shader = self._grid_shader, backface_cull = True)
|
|
if self._disallowed_area_mesh:
|
|
renderer.queueNode(self, mesh = self._disallowed_area_mesh, shader = self._shader, transparent = True, backface_cull = True, sort = -9)
|
|
|
|
if self._error_mesh:
|
|
renderer.queueNode(self, mesh=self._error_mesh, shader=self._shader, transparent=True,
|
|
backface_cull=True, sort=-8)
|
|
|
|
return True
|
|
|
|
## Recalculates the build volume & disallowed areas.
|
|
def rebuild(self):
|
|
if not self._width or not self._height or not self._depth:
|
|
return
|
|
|
|
min_w = -self._width / 2
|
|
max_w = self._width / 2
|
|
min_h = 0.0
|
|
max_h = self._height
|
|
min_d = -self._depth / 2
|
|
max_d = self._depth / 2
|
|
|
|
if self._shape.lower() != "elliptic":
|
|
# Outline 'cube' of the build volume
|
|
mb = MeshBuilder()
|
|
mb.addLine(Vector(min_w, min_h, min_d), Vector(max_w, min_h, min_d), color = self.VolumeOutlineColor)
|
|
mb.addLine(Vector(min_w, min_h, min_d), Vector(min_w, max_h, min_d), color = self.VolumeOutlineColor)
|
|
mb.addLine(Vector(min_w, max_h, min_d), Vector(max_w, max_h, min_d), color = self.VolumeOutlineColor)
|
|
mb.addLine(Vector(max_w, min_h, min_d), Vector(max_w, max_h, min_d), color = self.VolumeOutlineColor)
|
|
|
|
mb.addLine(Vector(min_w, min_h, max_d), Vector(max_w, min_h, max_d), color = self.VolumeOutlineColor)
|
|
mb.addLine(Vector(min_w, min_h, max_d), Vector(min_w, max_h, max_d), color = self.VolumeOutlineColor)
|
|
mb.addLine(Vector(min_w, max_h, max_d), Vector(max_w, max_h, max_d), color = self.VolumeOutlineColor)
|
|
mb.addLine(Vector(max_w, min_h, max_d), Vector(max_w, max_h, max_d), color = self.VolumeOutlineColor)
|
|
|
|
mb.addLine(Vector(min_w, min_h, min_d), Vector(min_w, min_h, max_d), color = self.VolumeOutlineColor)
|
|
mb.addLine(Vector(max_w, min_h, min_d), Vector(max_w, min_h, max_d), color = self.VolumeOutlineColor)
|
|
mb.addLine(Vector(min_w, max_h, min_d), Vector(min_w, max_h, max_d), color = self.VolumeOutlineColor)
|
|
mb.addLine(Vector(max_w, max_h, min_d), Vector(max_w, max_h, max_d), color = self.VolumeOutlineColor)
|
|
|
|
self.setMeshData(mb.build())
|
|
|
|
# Build plate grid mesh
|
|
mb = MeshBuilder()
|
|
mb.addQuad(
|
|
Vector(min_w, min_h - 0.2, min_d),
|
|
Vector(max_w, min_h - 0.2, min_d),
|
|
Vector(max_w, min_h - 0.2, max_d),
|
|
Vector(min_w, min_h - 0.2, max_d)
|
|
)
|
|
|
|
for n in range(0, 6):
|
|
v = mb.getVertex(n)
|
|
mb.setVertexUVCoordinates(n, v[0], v[2])
|
|
self._grid_mesh = mb.build()
|
|
|
|
else:
|
|
# Bottom and top 'ellipse' of the build volume
|
|
aspect = 1.0
|
|
scale_matrix = Matrix()
|
|
if self._width != 0:
|
|
# Scale circular meshes by aspect ratio if width != height
|
|
aspect = self._height / self._width
|
|
scale_matrix.compose(Vector(1, 1, aspect))
|
|
mb = MeshBuilder()
|
|
mb.addArc(max_w, Vector.Unit_Y, center = (0, min_h - 0.2, 0), color = self.VolumeOutlineColor)
|
|
mb.addArc(max_w, Vector.Unit_Y, center = (0, max_h, 0), color = self.VolumeOutlineColor)
|
|
self.setMeshData(mb.build().getTransformed(scale_matrix))
|
|
|
|
# Build plate grid mesh
|
|
mb = MeshBuilder()
|
|
mb.addArc(max_w, Vector.Unit_Y, center = Vector(0, min_h - 0.2, 0))
|
|
sections = mb.getVertexCount()
|
|
mb.addVertex(0, min_h - 0.2, 0)
|
|
for n in range(0, sections-1):
|
|
mb.addIndices([sections, n + 1, n])
|
|
|
|
for n in range(0, mb.getVertexCount()):
|
|
v = mb.getVertex(n)
|
|
mb.setVertexUVCoordinates(n, v[0], v[2] * aspect)
|
|
self._grid_mesh = mb.build().getTransformed(scale_matrix)
|
|
|
|
# Indication of the machine origin
|
|
if self._global_container_stack.getProperty("machine_center_is_zero", "value"):
|
|
origin = (Vector(min_w, min_h, min_d) + Vector(max_w, min_h, max_d)) / 2
|
|
else:
|
|
origin = Vector(min_w, min_h, max_d)
|
|
|
|
mb = MeshBuilder()
|
|
mb.addCube(
|
|
width = self._origin_line_length,
|
|
height = self._origin_line_width,
|
|
depth = self._origin_line_width,
|
|
center = origin + Vector(self._origin_line_length / 2, 0, 0),
|
|
color = self.XAxisColor
|
|
)
|
|
mb.addCube(
|
|
width = self._origin_line_width,
|
|
height = self._origin_line_length,
|
|
depth = self._origin_line_width,
|
|
center = origin + Vector(0, self._origin_line_length / 2, 0),
|
|
color = self.YAxisColor
|
|
)
|
|
mb.addCube(
|
|
width = self._origin_line_width,
|
|
height = self._origin_line_width,
|
|
depth = self._origin_line_length,
|
|
center = origin - Vector(0, 0, self._origin_line_length / 2),
|
|
color = self.ZAxisColor
|
|
)
|
|
self._origin_mesh = mb.build()
|
|
|
|
disallowed_area_height = 0.1
|
|
disallowed_area_size = 0
|
|
if self._disallowed_areas:
|
|
mb = MeshBuilder()
|
|
color = Color(0.0, 0.0, 0.0, 0.15)
|
|
for polygon in self._disallowed_areas:
|
|
points = polygon.getPoints()
|
|
first = Vector(self._clamp(points[0][0], min_w, max_w), disallowed_area_height, self._clamp(points[0][1], min_d, max_d))
|
|
previous_point = Vector(self._clamp(points[0][0], min_w, max_w), disallowed_area_height, self._clamp(points[0][1], min_d, max_d))
|
|
for point in points:
|
|
new_point = Vector(self._clamp(point[0], min_w, max_w), disallowed_area_height, self._clamp(point[1], min_d, max_d))
|
|
mb.addFace(first, previous_point, new_point, color = color)
|
|
previous_point = new_point
|
|
|
|
# Find the largest disallowed area to exclude it from the maximum scale bounds.
|
|
# This is a very nasty hack. This pretty much only works for UM machines.
|
|
# This disallowed area_size needs a -lot- of rework at some point in the future: TODO
|
|
if numpy.min(points[:, 1]) >= 0: # This filters out all areas that have points to the left of the centre. This is done to filter the skirt area.
|
|
size = abs(numpy.max(points[:, 1]) - numpy.min(points[:, 1]))
|
|
else:
|
|
size = 0
|
|
disallowed_area_size = max(size, disallowed_area_size)
|
|
|
|
self._disallowed_area_mesh = mb.build()
|
|
else:
|
|
self._disallowed_area_mesh = None
|
|
|
|
if self._error_areas:
|
|
mb = MeshBuilder()
|
|
for error_area in self._error_areas:
|
|
color = Color(1.0, 0.0, 0.0, 0.5)
|
|
points = error_area.getPoints()
|
|
first = Vector(self._clamp(points[0][0], min_w, max_w), disallowed_area_height,
|
|
self._clamp(points[0][1], min_d, max_d))
|
|
previous_point = Vector(self._clamp(points[0][0], min_w, max_w), disallowed_area_height,
|
|
self._clamp(points[0][1], min_d, max_d))
|
|
for point in points:
|
|
new_point = Vector(self._clamp(point[0], min_w, max_w), disallowed_area_height,
|
|
self._clamp(point[1], min_d, max_d))
|
|
mb.addFace(first, previous_point, new_point, color=color)
|
|
previous_point = new_point
|
|
self._error_mesh = mb.build()
|
|
else:
|
|
self._error_mesh = None
|
|
|
|
self._volume_aabb = AxisAlignedBox(
|
|
minimum = Vector(min_w, min_h - 1.0, min_d),
|
|
maximum = Vector(max_w, max_h - self._raft_thickness, max_d))
|
|
|
|
bed_adhesion_size = self._getEdgeDisallowedSize()
|
|
|
|
# As this works better for UM machines, we only add the disallowed_area_size for the z direction.
|
|
# This is probably wrong in all other cases. TODO!
|
|
# The +1 and -1 is added as there is always a bit of extra room required to work properly.
|
|
scale_to_max_bounds = AxisAlignedBox(
|
|
minimum = Vector(min_w + bed_adhesion_size + 1, min_h, min_d + disallowed_area_size - bed_adhesion_size + 1),
|
|
maximum = Vector(max_w - bed_adhesion_size - 1, max_h - self._raft_thickness, max_d - disallowed_area_size + bed_adhesion_size - 1)
|
|
)
|
|
|
|
Application.getInstance().getController().getScene()._maximum_bounds = scale_to_max_bounds
|
|
|
|
def getBoundingBox(self):
|
|
return self._volume_aabb
|
|
|
|
def getRaftThickness(self):
|
|
return self._raft_thickness
|
|
|
|
def _updateRaftThickness(self):
|
|
old_raft_thickness = self._raft_thickness
|
|
self._adhesion_type = self._global_container_stack.getProperty("adhesion_type", "value")
|
|
self._raft_thickness = 0.0
|
|
if self._adhesion_type == "raft":
|
|
self._raft_thickness = (
|
|
self._global_container_stack.getProperty("raft_base_thickness", "value") +
|
|
self._global_container_stack.getProperty("raft_interface_thickness", "value") +
|
|
self._global_container_stack.getProperty("raft_surface_layers", "value") *
|
|
self._global_container_stack.getProperty("raft_surface_thickness", "value") +
|
|
self._global_container_stack.getProperty("raft_airgap", "value"))
|
|
|
|
# Rounding errors do not matter, we check if raft_thickness has changed at all
|
|
if old_raft_thickness != self._raft_thickness:
|
|
self.setPosition(Vector(0, -self._raft_thickness, 0), SceneNode.TransformSpace.World)
|
|
self.raftThicknessChanged.emit()
|
|
|
|
## Update the build volume visualization
|
|
def _onStackChanged(self):
|
|
if self._global_container_stack:
|
|
self._global_container_stack.propertyChanged.disconnect(self._onSettingPropertyChanged)
|
|
extruders = ExtruderManager.getInstance().getMachineExtruders(self._global_container_stack.getId())
|
|
for extruder in extruders:
|
|
extruder.propertyChanged.disconnect(self._onSettingPropertyChanged)
|
|
|
|
self._global_container_stack = Application.getInstance().getGlobalContainerStack()
|
|
|
|
if self._global_container_stack:
|
|
self._global_container_stack.propertyChanged.connect(self._onSettingPropertyChanged)
|
|
extruders = ExtruderManager.getInstance().getMachineExtruders(self._global_container_stack.getId())
|
|
for extruder in extruders:
|
|
extruder.propertyChanged.connect(self._onSettingPropertyChanged)
|
|
|
|
self._width = self._global_container_stack.getProperty("machine_width", "value")
|
|
machine_height = self._global_container_stack.getProperty("machine_height", "value")
|
|
if self._global_container_stack.getProperty("print_sequence", "value") == "one_at_a_time" and len(self._scene_objects) > 1:
|
|
self._height = min(self._global_container_stack.getProperty("gantry_height", "value"), machine_height)
|
|
if self._height < machine_height:
|
|
self._build_volume_message.show()
|
|
else:
|
|
self._build_volume_message.hide()
|
|
else:
|
|
self._height = self._global_container_stack.getProperty("machine_height", "value")
|
|
self._build_volume_message.hide()
|
|
self._depth = self._global_container_stack.getProperty("machine_depth", "value")
|
|
self._shape = self._global_container_stack.getProperty("machine_shape", "value")
|
|
|
|
self._updateDisallowedAreas()
|
|
self._updateRaftThickness()
|
|
|
|
self.rebuild()
|
|
|
|
def _onSettingPropertyChanged(self, setting_key, property_name):
|
|
if property_name != "value":
|
|
return
|
|
|
|
rebuild_me = False
|
|
if setting_key == "print_sequence":
|
|
machine_height = self._global_container_stack.getProperty("machine_height", "value")
|
|
if Application.getInstance().getGlobalContainerStack().getProperty("print_sequence", "value") == "one_at_a_time" and len(self._scene_objects) > 1:
|
|
self._height = min(self._global_container_stack.getProperty("gantry_height", "value"), machine_height)
|
|
if self._height < machine_height:
|
|
self._build_volume_message.show()
|
|
else:
|
|
self._build_volume_message.hide()
|
|
else:
|
|
self._height = self._global_container_stack.getProperty("machine_height", "value")
|
|
self._build_volume_message.hide()
|
|
rebuild_me = True
|
|
|
|
if setting_key in self._skirt_settings or setting_key in self._prime_settings or setting_key in self._tower_settings or setting_key == "print_sequence" or setting_key in self._ooze_shield_settings or setting_key in self._distance_settings or setting_key in self._extruder_settings:
|
|
self._updateDisallowedAreas()
|
|
rebuild_me = True
|
|
|
|
if setting_key in self._raft_settings:
|
|
self._updateRaftThickness()
|
|
rebuild_me = True
|
|
|
|
if rebuild_me:
|
|
self.rebuild()
|
|
|
|
def hasErrors(self):
|
|
return self._has_errors
|
|
|
|
## Calls _updateDisallowedAreas and makes sure the changes appear in the
|
|
# scene.
|
|
#
|
|
# This is required for a signal to trigger the update in one go. The
|
|
# ``_updateDisallowedAreas`` method itself shouldn't call ``rebuild``,
|
|
# since there may be other changes before it needs to be rebuilt, which
|
|
# would hit performance.
|
|
def _updateDisallowedAreasAndRebuild(self):
|
|
self._updateDisallowedAreas()
|
|
self.rebuild()
|
|
|
|
def _updateDisallowedAreas(self):
|
|
if not self._global_container_stack:
|
|
return
|
|
|
|
self._error_areas = []
|
|
|
|
extruder_manager = ExtruderManager.getInstance()
|
|
used_extruders = extruder_manager.getUsedExtruderStacks()
|
|
disallowed_border_size = self._getEdgeDisallowedSize()
|
|
|
|
result_areas = self._computeDisallowedAreasStatic(disallowed_border_size, used_extruders) #Normal machine disallowed areas can always be added.
|
|
prime_areas = self._computeDisallowedAreasPrime(disallowed_border_size, used_extruders)
|
|
prime_disallowed_areas = self._computeDisallowedAreasStatic(0, used_extruders) #Where the priming is not allowed to happen. This is not added to the result, just for collision checking.
|
|
|
|
#Check if prime positions intersect with disallowed areas.
|
|
for extruder in used_extruders:
|
|
extruder_id = extruder.getId()
|
|
|
|
collision = False
|
|
for prime_polygon in prime_areas[extruder_id]:
|
|
for disallowed_polygon in prime_disallowed_areas[extruder_id]:
|
|
if prime_polygon.intersectsPolygon(disallowed_polygon) is not None:
|
|
collision = True
|
|
break
|
|
if collision:
|
|
break
|
|
|
|
#Also check other prime positions (without additional offset).
|
|
for other_extruder_id in prime_areas:
|
|
if extruder_id == other_extruder_id: #It is allowed to collide with itself.
|
|
continue
|
|
for other_prime_polygon in prime_areas[other_extruder_id]:
|
|
if prime_polygon.intersectsPolygon(other_prime_polygon):
|
|
collision = True
|
|
break
|
|
if collision:
|
|
break
|
|
if collision:
|
|
break
|
|
|
|
result_areas[extruder_id].extend(prime_areas[extruder_id])
|
|
|
|
nozzle_disallowed_areas = extruder.getProperty("nozzle_disallowed_areas", "value")
|
|
for area in nozzle_disallowed_areas:
|
|
polygon = Polygon(numpy.array(area, numpy.float32))
|
|
polygon = polygon.getMinkowskiHull(Polygon.approximatedCircle(disallowed_border_size))
|
|
result_areas[extruder_id].append(polygon) #Don't perform the offset on these.
|
|
|
|
# Add prime tower location as disallowed area.
|
|
prime_tower_collision = False
|
|
prime_tower_areas = self._computeDisallowedAreasPrinted(used_extruders)
|
|
for extruder_id in prime_tower_areas:
|
|
for prime_tower_area in prime_tower_areas[extruder_id]:
|
|
for area in result_areas[extruder_id]:
|
|
if prime_tower_area.intersectsPolygon(area) is not None:
|
|
prime_tower_collision = True
|
|
break
|
|
if prime_tower_collision: #Already found a collision.
|
|
break
|
|
if not prime_tower_collision:
|
|
result_areas[extruder_id].extend(prime_tower_areas[extruder_id])
|
|
else:
|
|
self._error_areas.extend(prime_tower_areas[extruder_id])
|
|
|
|
self._has_errors = len(self._error_areas) > 0
|
|
|
|
self._disallowed_areas = []
|
|
for extruder_id in result_areas:
|
|
self._disallowed_areas.extend(result_areas[extruder_id])
|
|
|
|
## Computes the disallowed areas for objects that are printed with print
|
|
# features.
|
|
#
|
|
# This means that the brim, travel avoidance and such will be applied to
|
|
# these features.
|
|
#
|
|
# \return A dictionary with for each used extruder ID the disallowed areas
|
|
# where that extruder may not print.
|
|
def _computeDisallowedAreasPrinted(self, used_extruders):
|
|
result = {}
|
|
for extruder in used_extruders:
|
|
result[extruder.getId()] = []
|
|
|
|
#Currently, the only normally printed object is the prime tower.
|
|
if ExtruderManager.getInstance().getResolveOrValue("prime_tower_enable") == True:
|
|
prime_tower_size = self._global_container_stack.getProperty("prime_tower_size", "value")
|
|
machine_width = self._global_container_stack.getProperty("machine_width", "value")
|
|
machine_depth = self._global_container_stack.getProperty("machine_depth", "value")
|
|
prime_tower_x = self._global_container_stack.getProperty("prime_tower_position_x", "value") - machine_width / 2 #Offset by half machine_width and _depth to put the origin in the front-left.
|
|
prime_tower_y = - self._global_container_stack.getProperty("prime_tower_position_y", "value") + machine_depth / 2
|
|
|
|
prime_tower_area = Polygon([
|
|
[prime_tower_x - prime_tower_size, prime_tower_y - prime_tower_size],
|
|
[prime_tower_x, prime_tower_y - prime_tower_size],
|
|
[prime_tower_x, prime_tower_y],
|
|
[prime_tower_x - prime_tower_size, prime_tower_y],
|
|
])
|
|
prime_tower_area = prime_tower_area.getMinkowskiHull(Polygon.approximatedCircle(0))
|
|
for extruder in used_extruders:
|
|
result[extruder.getId()].append(prime_tower_area) #The prime tower location is the same for each extruder, regardless of offset.
|
|
|
|
return result
|
|
|
|
## Computes the disallowed areas for the prime locations.
|
|
#
|
|
# These are special because they are not subject to things like brim or
|
|
# travel avoidance. They do get a dilute with the border size though
|
|
# because they may not intersect with brims and such of other objects.
|
|
#
|
|
# \param border_size The size with which to offset the disallowed areas
|
|
# due to skirt, brim, travel avoid distance, etc.
|
|
# \param used_extruders The extruder stacks to generate disallowed areas
|
|
# for.
|
|
# \return A dictionary with for each used extruder ID the prime areas.
|
|
def _computeDisallowedAreasPrime(self, border_size, used_extruders):
|
|
result = {}
|
|
|
|
machine_width = self._global_container_stack.getProperty("machine_width", "value")
|
|
machine_depth = self._global_container_stack.getProperty("machine_depth", "value")
|
|
for extruder in used_extruders:
|
|
prime_x = extruder.getProperty("extruder_prime_pos_x", "value") - machine_width / 2 #Offset by half machine_width and _depth to put the origin in the front-left.
|
|
prime_y = machine_depth / 2 - extruder.getProperty("extruder_prime_pos_y", "value")
|
|
|
|
prime_polygon = Polygon.approximatedCircle(PRIME_CLEARANCE)
|
|
prime_polygon = prime_polygon.translate(prime_x, prime_y)
|
|
prime_polygon = prime_polygon.getMinkowskiHull(Polygon.approximatedCircle(border_size))
|
|
result[extruder.getId()] = [prime_polygon]
|
|
|
|
return result
|
|
|
|
## Computes the disallowed areas that are statically placed in the machine.
|
|
#
|
|
# It computes different disallowed areas depending on the offset of the
|
|
# extruder. The resulting dictionary will therefore have an entry for each
|
|
# extruder that is used.
|
|
#
|
|
# \param border_size The size with which to offset the disallowed areas
|
|
# due to skirt, brim, travel avoid distance, etc.
|
|
# \param used_extruders The extruder stacks to generate disallowed areas
|
|
# for.
|
|
# \return A dictionary with for each used extruder ID the disallowed areas
|
|
# where that extruder may not print.
|
|
def _computeDisallowedAreasStatic(self, border_size, used_extruders):
|
|
#Convert disallowed areas to polygons and dilate them.
|
|
machine_disallowed_polygons = []
|
|
for area in self._global_container_stack.getProperty("machine_disallowed_areas", "value"):
|
|
polygon = Polygon(numpy.array(area, numpy.float32))
|
|
polygon = polygon.getMinkowskiHull(Polygon.approximatedCircle(border_size))
|
|
machine_disallowed_polygons.append(polygon)
|
|
|
|
result = {}
|
|
for extruder in used_extruders:
|
|
extruder_id = extruder.getId()
|
|
offset_x = extruder.getProperty("machine_nozzle_offset_x", "value")
|
|
if offset_x is None:
|
|
offset_x = 0
|
|
offset_y = extruder.getProperty("machine_nozzle_offset_y", "value")
|
|
if offset_y is None:
|
|
offset_y = 0
|
|
result[extruder_id] = []
|
|
|
|
for polygon in machine_disallowed_polygons:
|
|
result[extruder_id].append(polygon.translate(offset_x, offset_y)) #Compensate for the nozzle offset of this extruder.
|
|
|
|
#Add the border around the edge of the build volume.
|
|
left_unreachable_border = 0
|
|
right_unreachable_border = 0
|
|
top_unreachable_border = 0
|
|
bottom_unreachable_border = 0
|
|
#The build volume is defined as the union of the area that all extruders can reach, so we need to know the relative offset to all extruders.
|
|
for other_extruder in ExtruderManager.getInstance().getActiveExtruderStacks():
|
|
other_offset_x = other_extruder.getProperty("machine_nozzle_offset_x", "value")
|
|
other_offset_y = other_extruder.getProperty("machine_nozzle_offset_y", "value")
|
|
left_unreachable_border = min(left_unreachable_border, other_offset_x - offset_x)
|
|
right_unreachable_border = max(right_unreachable_border, other_offset_x - offset_x)
|
|
top_unreachable_border = min(top_unreachable_border, other_offset_y - offset_y)
|
|
bottom_unreachable_border = max(bottom_unreachable_border, other_offset_y - offset_y)
|
|
half_machine_width = self._global_container_stack.getProperty("machine_width", "value") / 2
|
|
half_machine_depth = self._global_container_stack.getProperty("machine_depth", "value") / 2
|
|
if self._shape.lower() != "elliptic":
|
|
if border_size - left_unreachable_border > 0:
|
|
result[extruder_id].append(Polygon(numpy.array([
|
|
[-half_machine_width, -half_machine_depth],
|
|
[-half_machine_width, half_machine_depth],
|
|
[-half_machine_width + border_size - left_unreachable_border, half_machine_depth - border_size - bottom_unreachable_border],
|
|
[-half_machine_width + border_size - left_unreachable_border, -half_machine_depth + border_size - top_unreachable_border]
|
|
], numpy.float32)))
|
|
if border_size + right_unreachable_border > 0:
|
|
result[extruder_id].append(Polygon(numpy.array([
|
|
[half_machine_width, half_machine_depth],
|
|
[half_machine_width, -half_machine_depth],
|
|
[half_machine_width - border_size - right_unreachable_border, -half_machine_depth + border_size - top_unreachable_border],
|
|
[half_machine_width - border_size - right_unreachable_border, half_machine_depth - border_size - bottom_unreachable_border]
|
|
], numpy.float32)))
|
|
if border_size + bottom_unreachable_border > 0:
|
|
result[extruder_id].append(Polygon(numpy.array([
|
|
[-half_machine_width, half_machine_depth],
|
|
[half_machine_width, half_machine_depth],
|
|
[half_machine_width - border_size - right_unreachable_border, half_machine_depth - border_size - bottom_unreachable_border],
|
|
[-half_machine_width + border_size - left_unreachable_border, half_machine_depth - border_size - bottom_unreachable_border]
|
|
], numpy.float32)))
|
|
if border_size - top_unreachable_border > 0:
|
|
result[extruder_id].append(Polygon(numpy.array([
|
|
[half_machine_width, -half_machine_depth],
|
|
[-half_machine_width, -half_machine_depth],
|
|
[-half_machine_width + border_size - left_unreachable_border, -half_machine_depth + border_size - top_unreachable_border],
|
|
[half_machine_width - border_size - right_unreachable_border, -half_machine_depth + border_size - top_unreachable_border]
|
|
], numpy.float32)))
|
|
else:
|
|
sections = 32
|
|
arc_vertex = [0, half_machine_depth - border_size]
|
|
for i in range(0, sections):
|
|
quadrant = math.floor(4 * i / sections)
|
|
vertices = []
|
|
if quadrant == 0:
|
|
vertices.append([-half_machine_width, half_machine_depth])
|
|
elif quadrant == 1:
|
|
vertices.append([-half_machine_width, -half_machine_depth])
|
|
elif quadrant == 2:
|
|
vertices.append([half_machine_width, -half_machine_depth])
|
|
elif quadrant == 3:
|
|
vertices.append([half_machine_width, half_machine_depth])
|
|
vertices.append(arc_vertex)
|
|
|
|
angle = 2 * math.pi * (i + 1) / sections
|
|
arc_vertex = [-(half_machine_width - border_size) * math.sin(angle), (half_machine_depth - border_size) * math.cos(angle)]
|
|
vertices.append(arc_vertex)
|
|
|
|
result[extruder_id].append(Polygon(numpy.array(vertices, numpy.float32)))
|
|
|
|
if border_size > 0:
|
|
result[extruder_id].append(Polygon(numpy.array([
|
|
[-half_machine_width, -half_machine_depth],
|
|
[-half_machine_width, half_machine_depth],
|
|
[-half_machine_width + border_size, 0]
|
|
], numpy.float32)))
|
|
result[extruder_id].append(Polygon(numpy.array([
|
|
[-half_machine_width, half_machine_depth],
|
|
[ half_machine_width, half_machine_depth],
|
|
[ 0, half_machine_depth - border_size]
|
|
], numpy.float32)))
|
|
result[extruder_id].append(Polygon(numpy.array([
|
|
[ half_machine_width, half_machine_depth],
|
|
[ half_machine_width, -half_machine_depth],
|
|
[ half_machine_width - border_size, 0]
|
|
], numpy.float32)))
|
|
result[extruder_id].append(Polygon(numpy.array([
|
|
[ half_machine_width,-half_machine_depth],
|
|
[-half_machine_width,-half_machine_depth],
|
|
[ 0, -half_machine_depth + border_size]
|
|
], numpy.float32)))
|
|
|
|
return result
|
|
|
|
## Private convenience function to get a setting from the adhesion
|
|
# extruder.
|
|
#
|
|
# \param setting_key The key of the setting to get.
|
|
# \param property The property to get from the setting.
|
|
# \return The property of the specified setting in the adhesion extruder.
|
|
def _getSettingFromAdhesionExtruder(self, setting_key, property = "value"):
|
|
return self._getSettingFromExtruder(setting_key, "adhesion_extruder_nr", property)
|
|
|
|
## Private convenience function to get a setting from every extruder.
|
|
#
|
|
# For single extrusion machines, this gets the setting from the global
|
|
# stack.
|
|
#
|
|
# \return A sequence of setting values, one for each extruder.
|
|
def _getSettingFromAllExtruders(self, setting_key, property = "value"):
|
|
return ExtruderManager.getInstance().getAllExtruderSettings(setting_key, property)
|
|
|
|
## Private convenience function to get a setting from the support infill
|
|
# extruder.
|
|
#
|
|
# \param setting_key The key of the setting to get.
|
|
# \param property The property to get from the setting.
|
|
# \return The property of the specified setting in the support infill
|
|
# extruder.
|
|
def _getSettingFromSupportInfillExtruder(self, setting_key, property = "value"):
|
|
return self._getSettingFromExtruder(setting_key, "support_infill_extruder_nr", property)
|
|
|
|
## Helper function to get a setting from an extruder specified in another
|
|
# setting.
|
|
#
|
|
# \param setting_key The key of the setting to get.
|
|
# \param extruder_setting_key The key of the setting that specifies from
|
|
# which extruder to get the setting, if there are multiple extruders.
|
|
# \param property The property to get from the setting.
|
|
# \return The property of the specified setting in the specified extruder.
|
|
def _getSettingFromExtruder(self, setting_key, extruder_setting_key, property = "value"):
|
|
multi_extrusion = self._global_container_stack.getProperty("machine_extruder_count", "value") > 1
|
|
|
|
if not multi_extrusion:
|
|
return self._global_container_stack.getProperty(setting_key, property)
|
|
|
|
extruder_index = self._global_container_stack.getProperty(extruder_setting_key, "value")
|
|
|
|
if extruder_index == "-1": # If extruder index is -1 use global instead
|
|
return self._global_container_stack.getProperty(setting_key, property)
|
|
|
|
extruder_stack_id = ExtruderManager.getInstance().extruderIds[str(extruder_index)]
|
|
stack = UM.Settings.ContainerRegistry.getInstance().findContainerStacks(id = extruder_stack_id)[0]
|
|
return stack.getProperty(setting_key, property)
|
|
|
|
## Convenience function to calculate the disallowed radius around the edge.
|
|
#
|
|
# This disallowed radius is to allow for space around the models that is
|
|
# not part of the collision radius, such as bed adhesion (skirt/brim/raft)
|
|
# and travel avoid distance.
|
|
def _getEdgeDisallowedSize(self):
|
|
if not self._global_container_stack:
|
|
return 0
|
|
container_stack = self._global_container_stack
|
|
|
|
# If we are printing one at a time, we need to add the bed adhesion size to the disallowed areas of the objects
|
|
if container_stack.getProperty("print_sequence", "value") == "one_at_a_time":
|
|
return 0.1 # Return a very small value, so we do draw disallowed area's near the edges.
|
|
|
|
adhesion_type = container_stack.getProperty("adhesion_type", "value")
|
|
if adhesion_type == "skirt":
|
|
skirt_distance = self._getSettingFromAdhesionExtruder("skirt_gap")
|
|
skirt_line_count = self._getSettingFromAdhesionExtruder("skirt_line_count")
|
|
bed_adhesion_size = skirt_distance + (skirt_line_count * self._getSettingFromAdhesionExtruder("skirt_brim_line_width"))
|
|
if self._global_container_stack.getProperty("machine_extruder_count", "value") > 1:
|
|
adhesion_extruder_nr = int(self._global_container_stack.getProperty("adhesion_extruder_nr", "value"))
|
|
extruder_values = ExtruderManager.getInstance().getAllExtruderValues("skirt_brim_line_width")
|
|
del extruder_values[adhesion_extruder_nr] # Remove the value of the adhesion extruder nr.
|
|
for value in extruder_values:
|
|
bed_adhesion_size += value
|
|
elif adhesion_type == "brim":
|
|
bed_adhesion_size = self._getSettingFromAdhesionExtruder("brim_line_count") * self._getSettingFromAdhesionExtruder("skirt_brim_line_width")
|
|
if self._global_container_stack.getProperty("machine_extruder_count", "value") > 1:
|
|
adhesion_extruder_nr = int(self._global_container_stack.getProperty("adhesion_extruder_nr", "value"))
|
|
extruder_values = ExtruderManager.getInstance().getAllExtruderValues("skirt_brim_line_width")
|
|
del extruder_values[adhesion_extruder_nr] # Remove the value of the adhesion extruder nr.
|
|
for value in extruder_values:
|
|
bed_adhesion_size += value
|
|
elif adhesion_type == "raft":
|
|
bed_adhesion_size = self._getSettingFromAdhesionExtruder("raft_margin")
|
|
elif adhesion_type == "none":
|
|
bed_adhesion_size = 0
|
|
else:
|
|
raise Exception("Unknown bed adhesion type. Did you forget to update the build volume calculations for your new bed adhesion type?")
|
|
|
|
support_expansion = 0
|
|
if self._getSettingFromSupportInfillExtruder("support_offset") and self._global_container_stack.getProperty("support_enable", "value"):
|
|
support_expansion += self._getSettingFromSupportInfillExtruder("support_offset")
|
|
|
|
farthest_shield_distance = 0
|
|
if container_stack.getProperty("draft_shield_enabled", "value"):
|
|
farthest_shield_distance = max(farthest_shield_distance, container_stack.getProperty("draft_shield_dist", "value"))
|
|
if container_stack.getProperty("ooze_shield_enabled", "value"):
|
|
farthest_shield_distance = max(farthest_shield_distance, container_stack.getProperty("ooze_shield_dist", "value"))
|
|
|
|
move_from_wall_radius = 0 # Moves that start from outer wall.
|
|
move_from_wall_radius = max(move_from_wall_radius, max(self._getSettingFromAllExtruders("infill_wipe_dist")))
|
|
avoid_enabled_per_extruder = self._getSettingFromAllExtruders(("travel_avoid_other_parts"))
|
|
avoid_distance_per_extruder = self._getSettingFromAllExtruders("travel_avoid_distance")
|
|
for index, avoid_other_parts_enabled in enumerate(avoid_enabled_per_extruder): #For each extruder (or just global).
|
|
if avoid_other_parts_enabled:
|
|
move_from_wall_radius = max(move_from_wall_radius, avoid_distance_per_extruder[index]) #Index of the same extruder.
|
|
|
|
#Now combine our different pieces of data to get the final border size.
|
|
#Support expansion is added to the bed adhesion, since the bed adhesion goes around support.
|
|
#Support expansion is added to farthest shield distance, since the shields go around support.
|
|
border_size = max(move_from_wall_radius, support_expansion + farthest_shield_distance, support_expansion + bed_adhesion_size)
|
|
return border_size
|
|
|
|
def _clamp(self, value, min_value, max_value):
|
|
return max(min(value, max_value), min_value)
|
|
|
|
_skirt_settings = ["adhesion_type", "skirt_gap", "skirt_line_count", "skirt_brim_line_width", "brim_width", "brim_line_count", "raft_margin", "draft_shield_enabled", "draft_shield_dist"]
|
|
_raft_settings = ["adhesion_type", "raft_base_thickness", "raft_interface_thickness", "raft_surface_layers", "raft_surface_thickness", "raft_airgap"]
|
|
_prime_settings = ["extruder_prime_pos_x", "extruder_prime_pos_y", "extruder_prime_pos_z"]
|
|
_tower_settings = ["prime_tower_enable", "prime_tower_size", "prime_tower_position_x", "prime_tower_position_y"]
|
|
_ooze_shield_settings = ["ooze_shield_enabled", "ooze_shield_dist"]
|
|
_distance_settings = ["infill_wipe_dist", "travel_avoid_distance", "support_offset", "support_enable", "travel_avoid_other_parts"]
|
|
_extruder_settings = ["support_enable", "support_interface_enable", "support_infill_extruder_nr", "support_extruder_nr_layer_0", "support_interface_extruder_nr", "brim_line_count", "adhesion_extruder_nr", "adhesion_type"] #Settings that can affect which extruders are used. |