mirror of
https://github.com/Ultimaker/Cura.git
synced 2025-11-02 20:52:20 -07:00
CURA-5370 Small refactor for Arranger: make x and y consistent (numpy arrays start with y first in general), faster, cleanup, more unit tests, take actual build plate size in Arranger instances
This commit is contained in:
parent
310aee07ac
commit
f5bed242ed
8 changed files with 287 additions and 73 deletions
|
|
@ -18,17 +18,20 @@ LocationSuggestion = namedtuple("LocationSuggestion", ["x", "y", "penalty_points
|
|||
# good locations for objects that you try to put on a build place.
|
||||
# Different priority schemes can be defined so it alters the behavior while using
|
||||
# the same logic.
|
||||
#
|
||||
# Note: Make sure the scale is the same between ShapeArray objects and the Arrange instance.
|
||||
class Arrange:
|
||||
build_volume = None
|
||||
|
||||
def __init__(self, x, y, offset_x, offset_y, scale= 1.0):
|
||||
self.shape = (y, x)
|
||||
self._priority = numpy.zeros((x, y), dtype=numpy.int32)
|
||||
self._priority_unique_values = []
|
||||
self._occupied = numpy.zeros((x, y), dtype=numpy.int32)
|
||||
def __init__(self, x, y, offset_x, offset_y, scale= 0.5):
|
||||
self._scale = scale # convert input coordinates to arrange coordinates
|
||||
self._offset_x = offset_x
|
||||
self._offset_y = offset_y
|
||||
world_x, world_y = int(x * self._scale), int(y * self._scale)
|
||||
self._shape = (world_y, world_x)
|
||||
self._priority = numpy.zeros((world_y, world_x), dtype=numpy.int32) # beware: these are indexed (y, x)
|
||||
self._priority_unique_values = []
|
||||
self._occupied = numpy.zeros((world_y, world_x), dtype=numpy.int32) # beware: these are indexed (y, x)
|
||||
self._offset_x = int(offset_x * self._scale)
|
||||
self._offset_y = int(offset_y * self._scale)
|
||||
self._last_priority = 0
|
||||
self._is_empty = True
|
||||
|
||||
|
|
@ -39,7 +42,7 @@ class Arrange:
|
|||
# \param scene_root Root for finding all scene nodes
|
||||
# \param fixed_nodes Scene nodes to be placed
|
||||
@classmethod
|
||||
def create(cls, scene_root = None, fixed_nodes = None, scale = 0.5, x = 220, y = 220):
|
||||
def create(cls, scene_root = None, fixed_nodes = None, scale = 0.5, x = 350, y = 250):
|
||||
arranger = Arrange(x, y, x // 2, y // 2, scale = scale)
|
||||
arranger.centerFirst()
|
||||
|
||||
|
|
@ -61,13 +64,17 @@ class Arrange:
|
|||
|
||||
# If a build volume was set, add the disallowed areas
|
||||
if Arrange.build_volume:
|
||||
disallowed_areas = Arrange.build_volume.getDisallowedAreas()
|
||||
disallowed_areas = Arrange.build_volume.getDisallowedAreasNoBrim()
|
||||
for area in disallowed_areas:
|
||||
points = copy.deepcopy(area._points)
|
||||
shape_arr = ShapeArray.fromPolygon(points, scale = scale)
|
||||
arranger.place(0, 0, shape_arr, update_empty = False)
|
||||
return arranger
|
||||
|
||||
## This resets the optimization for finding location based on size
|
||||
def resetLastPriority(self):
|
||||
self._last_priority = 0
|
||||
|
||||
## Find placement for a node (using offset shape) and place it (using hull shape)
|
||||
# return the nodes that should be placed
|
||||
# \param node
|
||||
|
|
@ -104,7 +111,7 @@ class Arrange:
|
|||
def centerFirst(self):
|
||||
# Square distance: creates a more round shape
|
||||
self._priority = numpy.fromfunction(
|
||||
lambda i, j: (self._offset_x - i) ** 2 + (self._offset_y - j) ** 2, self.shape, dtype=numpy.int32)
|
||||
lambda j, i: (self._offset_x - i) ** 2 + (self._offset_y - j) ** 2, self._shape, dtype=numpy.int32)
|
||||
self._priority_unique_values = numpy.unique(self._priority)
|
||||
self._priority_unique_values.sort()
|
||||
|
||||
|
|
@ -112,7 +119,7 @@ class Arrange:
|
|||
# This is a strategy for the arranger.
|
||||
def backFirst(self):
|
||||
self._priority = numpy.fromfunction(
|
||||
lambda i, j: 10 * j + abs(self._offset_x - i), self.shape, dtype=numpy.int32)
|
||||
lambda j, i: 10 * j + abs(self._offset_x - i), self._shape, dtype=numpy.int32)
|
||||
self._priority_unique_values = numpy.unique(self._priority)
|
||||
self._priority_unique_values.sort()
|
||||
|
||||
|
|
@ -126,9 +133,15 @@ class Arrange:
|
|||
y = int(self._scale * y)
|
||||
offset_x = x + self._offset_x + shape_arr.offset_x
|
||||
offset_y = y + self._offset_y + shape_arr.offset_y
|
||||
if offset_x < 0 or offset_y < 0:
|
||||
return None # out of bounds in self._occupied
|
||||
occupied_x_max = offset_x + shape_arr.arr.shape[1]
|
||||
occupied_y_max = offset_y + shape_arr.arr.shape[0]
|
||||
if occupied_x_max > self._occupied.shape[1] + 1 or occupied_y_max > self._occupied.shape[0] + 1:
|
||||
return None # out of bounds in self._occupied
|
||||
occupied_slice = self._occupied[
|
||||
offset_y:offset_y + shape_arr.arr.shape[0],
|
||||
offset_x:offset_x + shape_arr.arr.shape[1]]
|
||||
offset_y:occupied_y_max,
|
||||
offset_x:occupied_x_max]
|
||||
try:
|
||||
if numpy.any(occupied_slice[numpy.where(shape_arr.arr == 1)]):
|
||||
return None
|
||||
|
|
@ -140,7 +153,7 @@ class Arrange:
|
|||
return numpy.sum(prio_slice[numpy.where(shape_arr.arr == 1)])
|
||||
|
||||
## Find "best" spot for ShapeArray
|
||||
# Return namedtuple with properties x, y, penalty_points, priority
|
||||
# Return namedtuple with properties x, y, penalty_points, priority.
|
||||
# \param shape_arr ShapeArray
|
||||
# \param start_prio Start with this priority value (and skip the ones before)
|
||||
# \param step Slicing value, higher = more skips = faster but less accurate
|
||||
|
|
@ -153,12 +166,11 @@ class Arrange:
|
|||
for priority in self._priority_unique_values[start_idx::step]:
|
||||
tryout_idx = numpy.where(self._priority == priority)
|
||||
for idx in range(len(tryout_idx[0])):
|
||||
x = tryout_idx[0][idx]
|
||||
y = tryout_idx[1][idx]
|
||||
projected_x = x - self._offset_x
|
||||
projected_y = y - self._offset_y
|
||||
x = tryout_idx[1][idx]
|
||||
y = tryout_idx[0][idx]
|
||||
projected_x = int((x - self._offset_x) / self._scale)
|
||||
projected_y = int((y - self._offset_y) / self._scale)
|
||||
|
||||
# array to "world" coordinates
|
||||
penalty_points = self.checkShape(projected_x, projected_y, shape_arr)
|
||||
if penalty_points is not None:
|
||||
return LocationSuggestion(x = projected_x, y = projected_y, penalty_points = penalty_points, priority = priority)
|
||||
|
|
@ -191,8 +203,12 @@ class Arrange:
|
|||
|
||||
# Set priority to low (= high number), so it won't get picked at trying out.
|
||||
prio_slice = self._priority[min_y:max_y, min_x:max_x]
|
||||
prio_slice[numpy.where(shape_arr.arr[
|
||||
min_y - offset_y:max_y - offset_y, min_x - offset_x:max_x - offset_x] == 1)] = 999
|
||||
prio_slice[new_occupied] = 999
|
||||
|
||||
# If you want to see how the rasterized arranger build plate looks like, uncomment this code
|
||||
# numpy.set_printoptions(linewidth=500, edgeitems=200)
|
||||
# print(self._occupied.shape)
|
||||
# print(self._occupied)
|
||||
|
||||
@property
|
||||
def isEmpty(self):
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue