Tuned arranger a bit, good enough for proof of concept. CURA-3239

This commit is contained in:
Jack Ha 2017-03-29 09:32:29 +02:00
parent bf08d30e7d
commit f357dea086
2 changed files with 27 additions and 41 deletions

View file

@ -12,20 +12,17 @@ class ShapeArray:
def from_polygon(cls, vertices, scale = 1):
# scale
vertices = vertices * scale
# flip x, y
# flip y, x -> x, y
flip_vertices = np.zeros((vertices.shape))
flip_vertices[:, 0] = vertices[:, 1]
flip_vertices[:, 1] = vertices[:, 0]
flip_vertices = flip_vertices[::-1]
# offset
# offset, we want that all coordinates have positive values
offset_y = int(np.amin(flip_vertices[:, 0]))
offset_x = int(np.amin(flip_vertices[:, 1]))
# offset to 0
flip_vertices[:, 0] = np.add(flip_vertices[:, 0], -offset_y)
flip_vertices[:, 1] = np.add(flip_vertices[:, 1], -offset_x)
shape = [int(np.amax(flip_vertices[:, 0])), int(np.amax(flip_vertices[:, 1]))]
#from UM.Logger import Logger
#Logger.log("d", " Vertices: %s" % str(flip_vertices))
arr = cls.array_from_polygon(shape, flip_vertices)
return cls(arr, offset_x, offset_y)
@ -85,6 +82,7 @@ class Arrange:
def __init__(self, x, y, offset_x, offset_y, scale=1):
self.shape = (y, x)
self._priority = np.zeros((x, y), dtype=np.int32)
self._priority_unique_values = []
self._occupied = np.zeros((x, y), dtype=np.int32)
self._scale = scale # convert input coordinates to arrange coordinates
self._offset_x = offset_x
@ -92,8 +90,12 @@ class Arrange:
## Fill priority, take offset as center. lower is better
def centerFirst(self):
#self._priority = np.fromfunction(
# lambda i, j: abs(self._offset_x-i)+abs(self._offset_y-j), self.shape)
self._priority = np.fromfunction(
lambda i, j: abs(self._offset_x-i)+abs(self._offset_y-j), self.shape)
lambda i, j: abs(self._offset_x-i)**2+abs(self._offset_y-j)**2, self.shape, dtype=np.int32)
self._priority_unique_values = np.unique(self._priority)
self._priority_unique_values.sort()
## Return the amount of "penalty points" for polygon, which is the sum of priority
# 999999 if occupied
@ -115,24 +117,14 @@ class Arrange:
offset_x:offset_x + shape_arr.arr.shape[1]]
return np.sum(prio_slice[np.where(shape_arr.arr == 1)])
## Slower but better (it tries all possible locations)
def bestSpot2(self, shape_arr):
best_x, best_y, best_points = None, None, None
min_y = max(-shape_arr.offset_y, 0) - self._offset_y
max_y = self.shape[0] - shape_arr.arr.shape[0] - self._offset_y
min_x = max(-shape_arr.offset_x, 0) - self._offset_x
max_x = self.shape[1] - shape_arr.arr.shape[1] - self._offset_x
for y in range(min_y, max_y):
for x in range(min_x, max_x):
penalty_points = self.check_shape(x, y, shape_arr)
if best_points is None or penalty_points < best_points:
best_points = penalty_points
best_x, best_y = x, y
return best_x, best_y, best_points
## Faster
## Find "best" spot
def bestSpot(self, shape_arr, start_prio = 0):
for prio in range(start_prio, 300):
start_idx_list = np.where(self._priority_unique_values == start_prio)
if start_idx_list:
start_idx = start_idx_list[0]
else:
start_idx = 0
for prio in self._priority_unique_values[start_idx:]:
tryout_idx = np.where(self._priority == prio)
for idx in range(len(tryout_idx[0])):
x = tryout_idx[0][idx]