mirror of
https://github.com/Ultimaker/Cura.git
synced 2025-07-06 22:47:29 -06:00
Merge branch 'feature_arrange_cleanup' of github.com:Ultimaker/Cura
This commit is contained in:
commit
ecf905f580
6 changed files with 562 additions and 10 deletions
172
cura/Arrange.py
Executable file
172
cura/Arrange.py
Executable file
|
@ -0,0 +1,172 @@
|
|||
from UM.Scene.Iterator.DepthFirstIterator import DepthFirstIterator
|
||||
from UM.Logger import Logger
|
||||
from cura.ShapeArray import ShapeArray
|
||||
|
||||
from collections import namedtuple
|
||||
|
||||
import numpy
|
||||
import copy
|
||||
|
||||
|
||||
## Return object for bestSpot
|
||||
LocationSuggestion = namedtuple("LocationSuggestion", ["x", "y", "penalty_points", "priority"])
|
||||
|
||||
## The Arrange classed is used together with ShapeArray. Use it to find
|
||||
# good locations for objects that you try to put on a build place.
|
||||
# Different priority schemes can be defined so it alters the behavior while using
|
||||
# the same logic.
|
||||
class Arrange:
|
||||
def __init__(self, x, y, offset_x, offset_y, scale=1):
|
||||
self.shape = (y, x)
|
||||
self._priority = numpy.zeros((x, y), dtype=numpy.int32)
|
||||
self._priority_unique_values = []
|
||||
self._occupied = numpy.zeros((x, y), dtype=numpy.int32)
|
||||
self._scale = scale # convert input coordinates to arrange coordinates
|
||||
self._offset_x = offset_x
|
||||
self._offset_y = offset_y
|
||||
|
||||
## Helper to create an Arranger instance
|
||||
#
|
||||
# Either fill in scene_root and create will find all sliceable nodes by itself,
|
||||
# or use fixed_nodes to provide the nodes yourself.
|
||||
# \param scene_root Root for finding all scene nodes
|
||||
# \param fixed_nodes Scene nodes to be placed
|
||||
@classmethod
|
||||
def create(cls, scene_root = None, fixed_nodes = None, scale = 0.5):
|
||||
arranger = Arrange(220, 220, 110, 110, scale = scale)
|
||||
arranger.centerFirst()
|
||||
|
||||
if fixed_nodes is None:
|
||||
fixed_nodes = []
|
||||
for node_ in DepthFirstIterator(scene_root):
|
||||
# Only count sliceable objects
|
||||
if node_.callDecoration("isSliceable"):
|
||||
fixed_nodes.append(node_)
|
||||
# place all objects fixed nodes
|
||||
for fixed_node in fixed_nodes:
|
||||
vertices = fixed_node.callDecoration("getConvexHull")
|
||||
points = copy.deepcopy(vertices._points)
|
||||
shape_arr = ShapeArray.fromPolygon(points, scale = scale)
|
||||
arranger.place(0, 0, shape_arr)
|
||||
return arranger
|
||||
|
||||
## Find placement for a node (using offset shape) and place it (using hull shape)
|
||||
# return the nodes that should be placed
|
||||
# \param node
|
||||
# \param offset_shape_arr ShapeArray with offset, used to find location
|
||||
# \param hull_shape_arr ShapeArray without offset, for placing the shape
|
||||
# \param count Number of objects
|
||||
def findNodePlacements(self, node, offset_shape_arr, hull_shape_arr, count = 1, step = 1):
|
||||
nodes = []
|
||||
start_prio = 0
|
||||
for i in range(count):
|
||||
new_node = copy.deepcopy(node)
|
||||
|
||||
best_spot = self.bestSpot(
|
||||
offset_shape_arr, start_prio = start_prio, step = step)
|
||||
x, y = best_spot.x, best_spot.y
|
||||
start_prio = best_spot.priority
|
||||
transformation = new_node._transformation
|
||||
if x is not None: # We could find a place
|
||||
transformation._data[0][3] = x
|
||||
transformation._data[2][3] = y
|
||||
self.place(x, y, hull_shape_arr) # take place before the next one
|
||||
else:
|
||||
Logger.log("d", "Could not find spot!")
|
||||
transformation._data[0][3] = 200
|
||||
transformation._data[2][3] = 100 + i * 20
|
||||
|
||||
nodes.append(new_node)
|
||||
return nodes
|
||||
|
||||
## Fill priority, center is best. lower value is better
|
||||
def centerFirst(self):
|
||||
# Distance x + distance y: creates diamond shape
|
||||
#self._priority = numpy.fromfunction(
|
||||
# lambda i, j: abs(self._offset_x-i)+abs(self._offset_y-j), self.shape, dtype=numpy.int32)
|
||||
# Square distance: creates a more round shape
|
||||
self._priority = numpy.fromfunction(
|
||||
lambda i, j: (self._offset_x - i) ** 2 + (self._offset_y - j) ** 2, self.shape, dtype=numpy.int32)
|
||||
self._priority_unique_values = numpy.unique(self._priority)
|
||||
self._priority_unique_values.sort()
|
||||
|
||||
## Fill priority, back is best. lower value is better
|
||||
def backFirst(self):
|
||||
self._priority = numpy.fromfunction(
|
||||
lambda i, j: 10 * j + abs(self._offset_x - i), self.shape, dtype=numpy.int32)
|
||||
self._priority_unique_values = numpy.unique(self._priority)
|
||||
self._priority_unique_values.sort()
|
||||
|
||||
## Return the amount of "penalty points" for polygon, which is the sum of priority
|
||||
# 999999 if occupied
|
||||
# \param x x-coordinate to check shape
|
||||
# \param y y-coordinate
|
||||
# \param shape_arr the ShapeArray object to place
|
||||
def checkShape(self, x, y, shape_arr):
|
||||
x = int(self._scale * x)
|
||||
y = int(self._scale * y)
|
||||
offset_x = x + self._offset_x + shape_arr.offset_x
|
||||
offset_y = y + self._offset_y + shape_arr.offset_y
|
||||
occupied_slice = self._occupied[
|
||||
offset_y:offset_y + shape_arr.arr.shape[0],
|
||||
offset_x:offset_x + shape_arr.arr.shape[1]]
|
||||
try:
|
||||
if numpy.any(occupied_slice[numpy.where(shape_arr.arr == 1)]):
|
||||
return 999999
|
||||
except IndexError: # out of bounds if you try to place an object outside
|
||||
return 999999
|
||||
prio_slice = self._priority[
|
||||
offset_y:offset_y + shape_arr.arr.shape[0],
|
||||
offset_x:offset_x + shape_arr.arr.shape[1]]
|
||||
return numpy.sum(prio_slice[numpy.where(shape_arr.arr == 1)])
|
||||
|
||||
## Find "best" spot for ShapeArray
|
||||
# Return namedtuple with properties x, y, penalty_points, priority
|
||||
# \param shape_arr ShapeArray
|
||||
# \param start_prio Start with this priority value (and skip the ones before)
|
||||
# \param step Slicing value, higher = more skips = faster but less accurate
|
||||
def bestSpot(self, shape_arr, start_prio = 0, step = 1):
|
||||
start_idx_list = numpy.where(self._priority_unique_values == start_prio)
|
||||
if start_idx_list:
|
||||
start_idx = start_idx_list[0][0]
|
||||
else:
|
||||
start_idx = 0
|
||||
for prio in self._priority_unique_values[start_idx::step]:
|
||||
tryout_idx = numpy.where(self._priority == prio)
|
||||
for idx in range(len(tryout_idx[0])):
|
||||
x = tryout_idx[0][idx]
|
||||
y = tryout_idx[1][idx]
|
||||
projected_x = x - self._offset_x
|
||||
projected_y = y - self._offset_y
|
||||
|
||||
# array to "world" coordinates
|
||||
penalty_points = self.checkShape(projected_x, projected_y, shape_arr)
|
||||
if penalty_points != 999999:
|
||||
return LocationSuggestion(x = projected_x, y = projected_y, penalty_points = penalty_points, priority = prio)
|
||||
return LocationSuggestion(x = None, y = None, penalty_points = None, priority = prio) # No suitable location found :-(
|
||||
|
||||
## Place the object.
|
||||
# Marks the locations in self._occupied and self._priority
|
||||
# \param x x-coordinate
|
||||
# \param y y-coordinate
|
||||
# \param shape_arr ShapeArray object
|
||||
def place(self, x, y, shape_arr):
|
||||
x = int(self._scale * x)
|
||||
y = int(self._scale * y)
|
||||
offset_x = x + self._offset_x + shape_arr.offset_x
|
||||
offset_y = y + self._offset_y + shape_arr.offset_y
|
||||
shape_y, shape_x = self._occupied.shape
|
||||
|
||||
min_x = min(max(offset_x, 0), shape_x - 1)
|
||||
min_y = min(max(offset_y, 0), shape_y - 1)
|
||||
max_x = min(max(offset_x + shape_arr.arr.shape[1], 0), shape_x - 1)
|
||||
max_y = min(max(offset_y + shape_arr.arr.shape[0], 0), shape_y - 1)
|
||||
occupied_slice = self._occupied[min_y:max_y, min_x:max_x]
|
||||
# we use a slice of shape because it can be out of bounds
|
||||
occupied_slice[numpy.where(shape_arr.arr[
|
||||
min_y - offset_y:max_y - offset_y, min_x - offset_x:max_x - offset_x] == 1)] = 1
|
||||
|
||||
# Set priority to low (= high number), so it won't get picked at trying out.
|
||||
prio_slice = self._priority[min_y:max_y, min_x:max_x]
|
||||
prio_slice[numpy.where(shape_arr.arr[
|
||||
min_y - offset_y:max_y - offset_y, min_x - offset_x:max_x - offset_x] == 1)] = 999
|
|
@ -31,6 +31,9 @@ from UM.Operations.AddSceneNodeOperation import AddSceneNodeOperation
|
|||
from UM.Operations.RemoveSceneNodeOperation import RemoveSceneNodeOperation
|
||||
from UM.Operations.GroupedOperation import GroupedOperation
|
||||
from UM.Operations.SetTransformOperation import SetTransformOperation
|
||||
from cura.Arrange import Arrange
|
||||
from cura.ShapeArray import ShapeArray
|
||||
from cura.ConvexHullDecorator import ConvexHullDecorator
|
||||
from cura.SetParentOperation import SetParentOperation
|
||||
from cura.SliceableObjectDecorator import SliceableObjectDecorator
|
||||
from cura.BlockSlicingDecorator import BlockSlicingDecorator
|
||||
|
@ -838,22 +841,29 @@ class CuraApplication(QtApplication):
|
|||
op.push()
|
||||
|
||||
## Create a number of copies of existing object.
|
||||
# \param object_id
|
||||
# \param count number of copies
|
||||
# \param min_offset minimum offset to other objects.
|
||||
@pyqtSlot("quint64", int)
|
||||
def multiplyObject(self, object_id, count):
|
||||
def multiplyObject(self, object_id, count, min_offset = 8):
|
||||
node = self.getController().getScene().findObject(object_id)
|
||||
|
||||
if not node and object_id != 0: # Workaround for tool handles overlapping the selected object
|
||||
node = Selection.getSelectedObject(0)
|
||||
|
||||
if node:
|
||||
current_node = node
|
||||
# Find the topmost group
|
||||
while current_node.getParent() and current_node.getParent().callDecoration("isGroup"):
|
||||
current_node = current_node.getParent()
|
||||
# If object is part of a group, multiply group
|
||||
current_node = node
|
||||
while current_node.getParent() and current_node.getParent().callDecoration("isGroup"):
|
||||
current_node = current_node.getParent()
|
||||
|
||||
root = self.getController().getScene().getRoot()
|
||||
arranger = Arrange.create(scene_root = root)
|
||||
offset_shape_arr, hull_shape_arr = ShapeArray.fromNode(current_node, min_offset = min_offset)
|
||||
nodes = arranger.findNodePlacements(current_node, offset_shape_arr, hull_shape_arr, count = count)
|
||||
|
||||
if nodes:
|
||||
op = GroupedOperation()
|
||||
for _ in range(count):
|
||||
new_node = copy.deepcopy(current_node)
|
||||
for new_node in nodes:
|
||||
op.addOperation(AddSceneNodeOperation(new_node, current_node.getParent()))
|
||||
op.push()
|
||||
|
||||
|
@ -973,6 +983,83 @@ class CuraApplication(QtApplication):
|
|||
op.addOperation(SetTransformOperation(node, Vector(0, center_y, 0), Quaternion(), Vector(1, 1, 1)))
|
||||
op.push()
|
||||
|
||||
## Arrange all objects.
|
||||
@pyqtSlot()
|
||||
def arrangeAll(self):
|
||||
nodes = []
|
||||
for node in DepthFirstIterator(self.getController().getScene().getRoot()):
|
||||
if type(node) is not SceneNode:
|
||||
continue
|
||||
if not node.getMeshData() and not node.callDecoration("isGroup"):
|
||||
continue # Node that doesnt have a mesh and is not a group.
|
||||
if node.getParent() and node.getParent().callDecoration("isGroup"):
|
||||
continue # Grouped nodes don't need resetting as their parent (the group) is resetted)
|
||||
if not node.isSelectable():
|
||||
continue # i.e. node with layer data
|
||||
nodes.append(node)
|
||||
self.arrange(nodes, fixed_nodes = [])
|
||||
|
||||
## Arrange Selection
|
||||
@pyqtSlot()
|
||||
def arrangeSelection(self):
|
||||
nodes = Selection.getAllSelectedObjects()
|
||||
|
||||
# What nodes are on the build plate and are not being moved
|
||||
fixed_nodes = []
|
||||
for node in DepthFirstIterator(self.getController().getScene().getRoot()):
|
||||
if type(node) is not SceneNode:
|
||||
continue
|
||||
if not node.getMeshData() and not node.callDecoration("isGroup"):
|
||||
continue # Node that doesnt have a mesh and is not a group.
|
||||
if node.getParent() and node.getParent().callDecoration("isGroup"):
|
||||
continue # Grouped nodes don't need resetting as their parent (the group) is resetted)
|
||||
if not node.isSelectable():
|
||||
continue # i.e. node with layer data
|
||||
if node in nodes: # exclude selected node from fixed_nodes
|
||||
continue
|
||||
fixed_nodes.append(node)
|
||||
self.arrange(nodes, fixed_nodes)
|
||||
|
||||
## Arrange the nodes, given fixed nodes
|
||||
# \param nodes nodes that we have to place
|
||||
# \param fixed_nodes nodes that are placed in the arranger before finding spots for nodes
|
||||
def arrange(self, nodes, fixed_nodes):
|
||||
min_offset = 8
|
||||
|
||||
arranger = Arrange.create(fixed_nodes = fixed_nodes)
|
||||
|
||||
# Collect nodes to be placed
|
||||
nodes_arr = [] # fill with (size, node, offset_shape_arr, hull_shape_arr)
|
||||
for node in nodes:
|
||||
offset_shape_arr, hull_shape_arr = ShapeArray.fromNode(node, min_offset = min_offset)
|
||||
nodes_arr.append((offset_shape_arr.arr.shape[0] * offset_shape_arr.arr.shape[1], node, offset_shape_arr, hull_shape_arr))
|
||||
|
||||
# Sort nodes biggest area first
|
||||
nodes_arr.sort(key = lambda item: item[0])
|
||||
nodes_arr.reverse()
|
||||
|
||||
# Place nodes one at a time
|
||||
start_prio = 0
|
||||
for size, node, offset_shape_arr, hull_shape_arr in nodes_arr:
|
||||
# For performance reasons, we assume that when a location does not fit,
|
||||
# it will also not fit for the next object (while what can be untrue).
|
||||
# We also skip possibilities by slicing through the possibilities (step = 10)
|
||||
best_spot = arranger.bestSpot(offset_shape_arr, start_prio = start_prio, step = 10)
|
||||
x, y = best_spot.x, best_spot.y
|
||||
start_prio = best_spot.priority
|
||||
if x is not None: # We could find a place
|
||||
arranger.place(x, y, hull_shape_arr) # take place before the next one
|
||||
|
||||
node.removeDecorator(ZOffsetDecorator.ZOffsetDecorator)
|
||||
if node.getBoundingBox():
|
||||
center_y = node.getWorldPosition().y - node.getBoundingBox().bottom
|
||||
else:
|
||||
center_y = 0
|
||||
|
||||
op = GroupedOperation()
|
||||
op.addOperation(SetTransformOperation(node, Vector(x, center_y, y)))
|
||||
op.push()
|
||||
|
||||
## Reload all mesh data on the screen from file.
|
||||
@pyqtSlot()
|
||||
def reloadAll(self):
|
||||
|
@ -1209,6 +1296,10 @@ class CuraApplication(QtApplication):
|
|||
filename = job.getFileName()
|
||||
self._currently_loading_files.remove(filename)
|
||||
|
||||
root = self.getController().getScene().getRoot()
|
||||
arranger = Arrange.create(scene_root = root)
|
||||
min_offset = 8
|
||||
|
||||
for node in nodes:
|
||||
node.setSelectable(True)
|
||||
node.setName(os.path.basename(filename))
|
||||
|
@ -1229,8 +1320,18 @@ class CuraApplication(QtApplication):
|
|||
|
||||
scene = self.getController().getScene()
|
||||
|
||||
op = AddSceneNodeOperation(node, scene.getRoot())
|
||||
op.push()
|
||||
# If there is no convex hull for the node, start calculating it and continue.
|
||||
if not node.getDecorator(ConvexHullDecorator):
|
||||
node.addDecorator(ConvexHullDecorator())
|
||||
|
||||
# find node location
|
||||
offset_shape_arr, hull_shape_arr = ShapeArray.fromNode(node, min_offset = min_offset)
|
||||
# step is for skipping tests to make it a lot faster. it also makes the outcome somewhat rougher
|
||||
nodes = arranger.findNodePlacements(node, offset_shape_arr, hull_shape_arr, count = 1, step = 10)
|
||||
|
||||
for new_node in nodes:
|
||||
op = AddSceneNodeOperation(new_node, scene.getRoot())
|
||||
op.push()
|
||||
|
||||
scene.sceneChanged.emit(node)
|
||||
|
||||
|
|
111
cura/ShapeArray.py
Executable file
111
cura/ShapeArray.py
Executable file
|
@ -0,0 +1,111 @@
|
|||
import numpy
|
||||
import copy
|
||||
|
||||
from UM.Math.Polygon import Polygon
|
||||
|
||||
|
||||
## Polygon representation as an array for use with Arrange
|
||||
class ShapeArray:
|
||||
def __init__(self, arr, offset_x, offset_y, scale = 1):
|
||||
self.arr = arr
|
||||
self.offset_x = offset_x
|
||||
self.offset_y = offset_y
|
||||
self.scale = scale
|
||||
|
||||
## Instantiate from a bunch of vertices
|
||||
# \param vertices
|
||||
# \param scale scale the coordinates
|
||||
@classmethod
|
||||
def fromPolygon(cls, vertices, scale = 1):
|
||||
# scale
|
||||
vertices = vertices * scale
|
||||
# flip y, x -> x, y
|
||||
flip_vertices = numpy.zeros((vertices.shape))
|
||||
flip_vertices[:, 0] = vertices[:, 1]
|
||||
flip_vertices[:, 1] = vertices[:, 0]
|
||||
flip_vertices = flip_vertices[::-1]
|
||||
# offset, we want that all coordinates have positive values
|
||||
offset_y = int(numpy.amin(flip_vertices[:, 0]))
|
||||
offset_x = int(numpy.amin(flip_vertices[:, 1]))
|
||||
flip_vertices[:, 0] = numpy.add(flip_vertices[:, 0], -offset_y)
|
||||
flip_vertices[:, 1] = numpy.add(flip_vertices[:, 1], -offset_x)
|
||||
shape = [int(numpy.amax(flip_vertices[:, 0])), int(numpy.amax(flip_vertices[:, 1]))]
|
||||
arr = cls.arrayFromPolygon(shape, flip_vertices)
|
||||
return cls(arr, offset_x, offset_y)
|
||||
|
||||
## Instantiate an offset and hull ShapeArray from a scene node.
|
||||
# \param node source node where the convex hull must be present
|
||||
# \param min_offset offset for the offset ShapeArray
|
||||
# \param scale scale the coordinates
|
||||
@classmethod
|
||||
def fromNode(cls, node, min_offset, scale = 0.5):
|
||||
transform = node._transformation
|
||||
transform_x = transform._data[0][3]
|
||||
transform_y = transform._data[2][3]
|
||||
hull_verts = node.callDecoration("getConvexHull")
|
||||
|
||||
offset_verts = hull_verts.getMinkowskiHull(Polygon.approximatedCircle(min_offset))
|
||||
offset_points = copy.deepcopy(offset_verts._points) # x, y
|
||||
offset_points[:, 0] = numpy.add(offset_points[:, 0], -transform_x)
|
||||
offset_points[:, 1] = numpy.add(offset_points[:, 1], -transform_y)
|
||||
offset_shape_arr = ShapeArray.fromPolygon(offset_points, scale = scale)
|
||||
|
||||
hull_points = copy.deepcopy(hull_verts._points)
|
||||
hull_points[:, 0] = numpy.add(hull_points[:, 0], -transform_x)
|
||||
hull_points[:, 1] = numpy.add(hull_points[:, 1], -transform_y)
|
||||
hull_shape_arr = ShapeArray.fromPolygon(hull_points, scale = scale) # x, y
|
||||
|
||||
return offset_shape_arr, hull_shape_arr
|
||||
|
||||
## Create np.array with dimensions defined by shape
|
||||
# Fills polygon defined by vertices with ones, all other values zero
|
||||
# Only works correctly for convex hull vertices
|
||||
# Originally from: http://stackoverflow.com/questions/37117878/generating-a-filled-polygon-inside-a-numpy-array
|
||||
# \param shape numpy format shape, [x-size, y-size]
|
||||
# \param vertices
|
||||
@classmethod
|
||||
def arrayFromPolygon(cls, shape, vertices):
|
||||
base_array = numpy.zeros(shape, dtype=float) # Initialize your array of zeros
|
||||
|
||||
fill = numpy.ones(base_array.shape) * True # Initialize boolean array defining shape fill
|
||||
|
||||
# Create check array for each edge segment, combine into fill array
|
||||
for k in range(vertices.shape[0]):
|
||||
fill = numpy.all([fill, cls._check(vertices[k - 1], vertices[k], base_array)], axis=0)
|
||||
|
||||
# Set all values inside polygon to one
|
||||
base_array[fill] = 1
|
||||
|
||||
return base_array
|
||||
|
||||
## Return indices that mark one side of the line, used by arrayFromPolygon
|
||||
# Uses the line defined by p1 and p2 to check array of
|
||||
# input indices against interpolated value
|
||||
# Returns boolean array, with True inside and False outside of shape
|
||||
# Originally from: http://stackoverflow.com/questions/37117878/generating-a-filled-polygon-inside-a-numpy-array
|
||||
# \param p1 2-tuple with x, y for point 1
|
||||
# \param p2 2-tuple with x, y for point 2
|
||||
# \param base_array boolean array to project the line on
|
||||
@classmethod
|
||||
def _check(cls, p1, p2, base_array):
|
||||
if p1[0] == p2[0] and p1[1] == p2[1]:
|
||||
return
|
||||
idxs = numpy.indices(base_array.shape) # Create 3D array of indices
|
||||
|
||||
p1 = p1.astype(float)
|
||||
p2 = p2.astype(float)
|
||||
|
||||
if p2[0] == p1[0]:
|
||||
sign = numpy.sign(p2[1] - p1[1])
|
||||
return idxs[1] * sign
|
||||
|
||||
if p2[1] == p1[1]:
|
||||
sign = numpy.sign(p2[0] - p1[0])
|
||||
return idxs[1] * sign
|
||||
|
||||
# Calculate max column idx for each row idx based on interpolated line between two points
|
||||
|
||||
max_col_idx = (idxs[0] - p1[0]) / (p2[0] - p1[0]) * (p2[1] - p1[1]) + p1[1]
|
||||
sign = numpy.sign(p2[0] - p1[0])
|
||||
return idxs[1] * sign <= max_col_idx * sign
|
||||
|
17
resources/qml/Actions.qml
Normal file → Executable file
17
resources/qml/Actions.qml
Normal file → Executable file
|
@ -31,6 +31,8 @@ Item
|
|||
property alias selectAll: selectAllAction;
|
||||
property alias deleteAll: deleteAllAction;
|
||||
property alias reloadAll: reloadAllAction;
|
||||
property alias arrangeAll: arrangeAllAction;
|
||||
property alias arrangeSelection: arrangeSelectionAction;
|
||||
property alias resetAllTranslation: resetAllTranslationAction;
|
||||
property alias resetAll: resetAllAction;
|
||||
|
||||
|
@ -266,6 +268,21 @@ Item
|
|||
onTriggered: CuraApplication.reloadAll();
|
||||
}
|
||||
|
||||
Action
|
||||
{
|
||||
id: arrangeAllAction;
|
||||
text: catalog.i18nc("@action:inmenu menubar:edit","Arrange All Models");
|
||||
onTriggered: Printer.arrangeAll();
|
||||
shortcut: "Ctrl+R";
|
||||
}
|
||||
|
||||
Action
|
||||
{
|
||||
id: arrangeSelectionAction;
|
||||
text: catalog.i18nc("@action:inmenu menubar:edit","Arrange Selection");
|
||||
onTriggered: Printer.arrangeSelection();
|
||||
}
|
||||
|
||||
Action
|
||||
{
|
||||
id: resetAllTranslationAction;
|
||||
|
|
|
@ -131,6 +131,7 @@ UM.MainWindow
|
|||
MenuItem { action: Cura.Actions.redo; }
|
||||
MenuSeparator { }
|
||||
MenuItem { action: Cura.Actions.selectAll; }
|
||||
MenuItem { action: Cura.Actions.arrangeAll; }
|
||||
MenuItem { action: Cura.Actions.deleteSelection; }
|
||||
MenuItem { action: Cura.Actions.deleteAll; }
|
||||
MenuItem { action: Cura.Actions.resetAllTranslation; }
|
||||
|
@ -603,6 +604,7 @@ UM.MainWindow
|
|||
MenuItem { action: Cura.Actions.multiplyObject; }
|
||||
MenuSeparator { }
|
||||
MenuItem { action: Cura.Actions.selectAll; }
|
||||
MenuItem { action: Cura.Actions.arrangeAll; }
|
||||
MenuItem { action: Cura.Actions.deleteAll; }
|
||||
MenuItem { action: Cura.Actions.reloadAll; }
|
||||
MenuItem { action: Cura.Actions.resetAllTranslation; }
|
||||
|
@ -663,6 +665,7 @@ UM.MainWindow
|
|||
{
|
||||
id: contextMenu;
|
||||
MenuItem { action: Cura.Actions.selectAll; }
|
||||
MenuItem { action: Cura.Actions.arrangeAll; }
|
||||
MenuItem { action: Cura.Actions.deleteAll; }
|
||||
MenuItem { action: Cura.Actions.reloadAll; }
|
||||
MenuItem { action: Cura.Actions.resetAllTranslation; }
|
||||
|
|
148
tests/TestArrange.py
Executable file
148
tests/TestArrange.py
Executable file
|
@ -0,0 +1,148 @@
|
|||
import pytest
|
||||
import numpy
|
||||
import time
|
||||
|
||||
from cura.Arrange import Arrange
|
||||
from cura.ShapeArray import ShapeArray
|
||||
|
||||
|
||||
def gimmeShapeArray():
|
||||
vertices = numpy.array([[-3, 1], [3, 1], [0, -3]])
|
||||
shape_arr = ShapeArray.fromPolygon(vertices)
|
||||
return shape_arr
|
||||
|
||||
|
||||
## Smoke test for Arrange
|
||||
def test_smoke_arrange():
|
||||
ar = Arrange.create(fixed_nodes = [])
|
||||
|
||||
|
||||
## Smoke test for ShapeArray
|
||||
def test_smoke_ShapeArray():
|
||||
shape_arr = gimmeShapeArray()
|
||||
|
||||
|
||||
## Test centerFirst
|
||||
def test_centerFirst():
|
||||
ar = Arrange(300, 300, 150, 150)
|
||||
ar.centerFirst()
|
||||
assert ar._priority[150][150] < ar._priority[170][150]
|
||||
assert ar._priority[150][150] < ar._priority[150][170]
|
||||
assert ar._priority[150][150] < ar._priority[170][170]
|
||||
assert ar._priority[150][150] < ar._priority[130][150]
|
||||
assert ar._priority[150][150] < ar._priority[150][130]
|
||||
assert ar._priority[150][150] < ar._priority[130][130]
|
||||
|
||||
|
||||
## Test backFirst
|
||||
def test_backFirst():
|
||||
ar = Arrange(300, 300, 150, 150)
|
||||
ar.backFirst()
|
||||
assert ar._priority[150][150] < ar._priority[150][170]
|
||||
assert ar._priority[150][150] < ar._priority[170][170]
|
||||
assert ar._priority[150][150] > ar._priority[150][130]
|
||||
assert ar._priority[150][150] > ar._priority[130][130]
|
||||
|
||||
|
||||
## See if the result of bestSpot has the correct form
|
||||
def test_smoke_bestSpot():
|
||||
ar = Arrange(30, 30, 15, 15)
|
||||
ar.centerFirst()
|
||||
|
||||
shape_arr = gimmeShapeArray()
|
||||
best_spot = ar.bestSpot(shape_arr)
|
||||
assert hasattr(best_spot, "x")
|
||||
assert hasattr(best_spot, "y")
|
||||
assert hasattr(best_spot, "penalty_points")
|
||||
assert hasattr(best_spot, "priority")
|
||||
|
||||
|
||||
## Try to place an object and see if something explodes
|
||||
def test_smoke_place():
|
||||
ar = Arrange(30, 30, 15, 15)
|
||||
ar.centerFirst()
|
||||
|
||||
shape_arr = gimmeShapeArray()
|
||||
|
||||
assert not numpy.any(ar._occupied)
|
||||
ar.place(0, 0, shape_arr)
|
||||
assert numpy.any(ar._occupied)
|
||||
|
||||
|
||||
## See of our center has less penalty points than out of the center
|
||||
def test_checkShape():
|
||||
ar = Arrange(30, 30, 15, 15)
|
||||
ar.centerFirst()
|
||||
|
||||
shape_arr = gimmeShapeArray()
|
||||
points = ar.checkShape(0, 0, shape_arr)
|
||||
points2 = ar.checkShape(5, 0, shape_arr)
|
||||
points3 = ar.checkShape(0, 5, shape_arr)
|
||||
assert points2 > points
|
||||
assert points3 > points
|
||||
|
||||
|
||||
## After placing an object on a location that location should give more penalty points
|
||||
def test_checkShape_place():
|
||||
ar = Arrange(30, 30, 15, 15)
|
||||
ar.centerFirst()
|
||||
|
||||
shape_arr = gimmeShapeArray()
|
||||
points = ar.checkShape(3, 6, shape_arr)
|
||||
ar.place(3, 6, shape_arr)
|
||||
points2 = ar.checkShape(3, 6, shape_arr)
|
||||
|
||||
assert points2 > points
|
||||
|
||||
|
||||
## Test the whole sequence
|
||||
def test_smoke_place_objects():
|
||||
ar = Arrange(20, 20, 10, 10)
|
||||
ar.centerFirst()
|
||||
shape_arr = gimmeShapeArray()
|
||||
print(shape_arr)
|
||||
|
||||
now = time.time()
|
||||
for i in range(5):
|
||||
best_spot_x, best_spot_y, score, prio = ar.bestSpot(shape_arr)
|
||||
print(best_spot_x, best_spot_y, score)
|
||||
ar.place(best_spot_x, best_spot_y, shape_arr)
|
||||
print(ar._occupied)
|
||||
|
||||
print(time.time() - now)
|
||||
|
||||
|
||||
## Polygon -> array
|
||||
def test_arrayFromPolygon():
|
||||
vertices = numpy.array([[-3, 1], [3, 1], [0, -3]])
|
||||
array = ShapeArray.arrayFromPolygon([5, 5], vertices)
|
||||
assert numpy.any(array)
|
||||
|
||||
|
||||
## Polygon -> array
|
||||
def test_arrayFromPolygon2():
|
||||
vertices = numpy.array([[-3, 1], [3, 1], [2, -3]])
|
||||
array = ShapeArray.arrayFromPolygon([5, 5], vertices)
|
||||
assert numpy.any(array)
|
||||
|
||||
|
||||
## Line definition -> array with true/false
|
||||
def test_check():
|
||||
base_array = numpy.zeros([5, 5], dtype=float)
|
||||
p1 = numpy.array([0, 0])
|
||||
p2 = numpy.array([4, 4])
|
||||
check_array = ShapeArray._check(p1, p2, base_array)
|
||||
assert numpy.any(check_array)
|
||||
assert check_array[3][0]
|
||||
assert not check_array[0][3]
|
||||
|
||||
|
||||
## Line definition -> array with true/false
|
||||
def test_check2():
|
||||
base_array = numpy.zeros([5, 5], dtype=float)
|
||||
p1 = numpy.array([0, 3])
|
||||
p2 = numpy.array([4, 3])
|
||||
check_array = ShapeArray._check(p1, p2, base_array)
|
||||
assert numpy.any(check_array)
|
||||
assert not check_array[3][0]
|
||||
assert check_array[3][4]
|
Loading…
Add table
Add a link
Reference in a new issue