mirror of
https://github.com/Ultimaker/Cura.git
synced 2025-07-06 14:37:29 -06:00
CURA-4525 first multi slice + multi layer data, added filter on build plate, added option arrange on load, visuals like convex hull are now correct
This commit is contained in:
parent
41d5ec86a3
commit
e21acd1a07
18 changed files with 468 additions and 260 deletions
|
@ -11,7 +11,8 @@ from UM.Math.Matrix import Matrix
|
|||
from UM.Math.Vector import Vector
|
||||
from UM.Mesh.MeshBuilder import MeshBuilder
|
||||
from UM.Mesh.MeshReader import MeshReader
|
||||
from UM.Scene.SceneNode import SceneNode
|
||||
#from UM.Scene.SceneNode import SceneNode
|
||||
from cura.Scene.CuraSceneNode import CuraSceneNode as SceneNode
|
||||
|
||||
MYPY = False
|
||||
try:
|
||||
|
@ -19,63 +20,63 @@ try:
|
|||
import xml.etree.cElementTree as ET
|
||||
except ImportError:
|
||||
import xml.etree.ElementTree as ET
|
||||
|
||||
|
||||
# TODO: preserve the structure of scenes that contain several objects
|
||||
# Use CADPart, for example, to distinguish between separate objects
|
||||
|
||||
# Use CADPart, for example, to distinguish between separate objects
|
||||
|
||||
DEFAULT_SUBDIV = 16 # Default subdivision factor for spheres, cones, and cylinders
|
||||
EPSILON = 0.000001
|
||||
|
||||
class Shape:
|
||||
|
||||
|
||||
# Expects verts in MeshBuilder-ready format, as a n by 3 mdarray
|
||||
# with vertices stored in rows
|
||||
def __init__(self, verts, faces, index_base, name):
|
||||
self.verts = verts
|
||||
self.faces = faces
|
||||
# Those are here for debugging purposes only
|
||||
self.index_base = index_base
|
||||
self.index_base = index_base
|
||||
self.name = name
|
||||
|
||||
|
||||
class X3DReader(MeshReader):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self._supported_extensions = [".x3d"]
|
||||
self._namespaces = {}
|
||||
|
||||
|
||||
# Main entry point
|
||||
# Reads the file, returns a SceneNode (possibly with nested ones), or None
|
||||
def read(self, file_name):
|
||||
try:
|
||||
self.defs = {}
|
||||
self.shapes = []
|
||||
|
||||
|
||||
tree = ET.parse(file_name)
|
||||
xml_root = tree.getroot()
|
||||
|
||||
|
||||
if xml_root.tag != "X3D":
|
||||
return None
|
||||
|
||||
scale = 1000 # Default X3D unit it one meter, while Cura's is one millimeters
|
||||
scale = 1000 # Default X3D unit it one meter, while Cura's is one millimeters
|
||||
if xml_root[0].tag == "head":
|
||||
for head_node in xml_root[0]:
|
||||
if head_node.tag == "unit" and head_node.attrib.get("category") == "length":
|
||||
scale *= float(head_node.attrib["conversionFactor"])
|
||||
break
|
||||
break
|
||||
xml_scene = xml_root[1]
|
||||
else:
|
||||
xml_scene = xml_root[0]
|
||||
|
||||
|
||||
if xml_scene.tag != "Scene":
|
||||
return None
|
||||
|
||||
|
||||
self.transform = Matrix()
|
||||
self.transform.setByScaleFactor(scale)
|
||||
self.index_base = 0
|
||||
|
||||
|
||||
# Traverse the scene tree, populate the shapes list
|
||||
self.processChildNodes(xml_scene)
|
||||
|
||||
|
||||
if self.shapes:
|
||||
builder = MeshBuilder()
|
||||
builder.setVertices(numpy.concatenate([shape.verts for shape in self.shapes]))
|
||||
|
@ -95,20 +96,20 @@ class X3DReader(MeshReader):
|
|||
|
||||
else:
|
||||
return None
|
||||
|
||||
|
||||
except Exception:
|
||||
Logger.logException("e", "Exception in X3D reader")
|
||||
return None
|
||||
|
||||
return node
|
||||
|
||||
|
||||
# ------------------------- XML tree traversal
|
||||
|
||||
|
||||
def processNode(self, xml_node):
|
||||
xml_node = self.resolveDefUse(xml_node)
|
||||
if xml_node is None:
|
||||
return
|
||||
|
||||
|
||||
tag = xml_node.tag
|
||||
if tag in ("Group", "StaticGroup", "CADAssembly", "CADFace", "CADLayer", "Collision"):
|
||||
self.processChildNodes(xml_node)
|
||||
|
@ -120,8 +121,8 @@ class X3DReader(MeshReader):
|
|||
self.processTransform(xml_node)
|
||||
elif tag == "Shape":
|
||||
self.processShape(xml_node)
|
||||
|
||||
|
||||
|
||||
|
||||
def processShape(self, xml_node):
|
||||
# Find the geometry and the appearance inside the Shape
|
||||
geometry = appearance = None
|
||||
|
@ -130,21 +131,21 @@ class X3DReader(MeshReader):
|
|||
appearance = self.resolveDefUse(sub_node)
|
||||
elif sub_node.tag in self.geometry_importers and not geometry:
|
||||
geometry = self.resolveDefUse(sub_node)
|
||||
|
||||
# TODO: appearance is completely ignored. At least apply the material color...
|
||||
|
||||
# TODO: appearance is completely ignored. At least apply the material color...
|
||||
if not geometry is None:
|
||||
try:
|
||||
self.verts = self.faces = [] # Safeguard
|
||||
self.verts = self.faces = [] # Safeguard
|
||||
self.geometry_importers[geometry.tag](self, geometry)
|
||||
m = self.transform.getData()
|
||||
verts = m.dot(self.verts)[:3].transpose()
|
||||
|
||||
|
||||
self.shapes.append(Shape(verts, self.faces, self.index_base, geometry.tag))
|
||||
self.index_base += len(verts)
|
||||
|
||||
|
||||
except Exception:
|
||||
Logger.logException("e", "Exception in X3D reader while reading %s", geometry.tag)
|
||||
|
||||
|
||||
# Returns the referenced node if the node has USE, the same node otherwise.
|
||||
# May return None is USE points at a nonexistent node
|
||||
# In X3DOM, when both DEF and USE are in the same node, DEF is ignored.
|
||||
|
@ -155,34 +156,34 @@ class X3DReader(MeshReader):
|
|||
if USE:
|
||||
return self.defs.get(USE, None)
|
||||
|
||||
DEF = node.attrib.get("DEF")
|
||||
DEF = node.attrib.get("DEF")
|
||||
if DEF:
|
||||
self.defs[DEF] = node
|
||||
self.defs[DEF] = node
|
||||
return node
|
||||
|
||||
|
||||
def processChildNodes(self, node):
|
||||
for c in node:
|
||||
self.processNode(c)
|
||||
Job.yieldThread()
|
||||
|
||||
|
||||
# Since this is a grouping node, will recurse down the tree.
|
||||
# According to the spec, the final transform matrix is:
|
||||
# T * C * R * SR * S * -SR * -C
|
||||
# Where SR corresponds to the rotation matrix to scaleOrientation
|
||||
# C and SR are rather exotic. S, slightly less so.
|
||||
# C and SR are rather exotic. S, slightly less so.
|
||||
def processTransform(self, node):
|
||||
rot = readRotation(node, "rotation", (0, 0, 1, 0)) # (angle, axisVactor) tuple
|
||||
trans = readVector(node, "translation", (0, 0, 0)) # Vector
|
||||
scale = readVector(node, "scale", (1, 1, 1)) # Vector
|
||||
center = readVector(node, "center", (0, 0, 0)) # Vector
|
||||
scale_orient = readRotation(node, "scaleOrientation", (0, 0, 1, 0)) # (angle, axisVactor) tuple
|
||||
|
||||
# Store the previous transform; in Cura, the default matrix multiplication is in place
|
||||
|
||||
# Store the previous transform; in Cura, the default matrix multiplication is in place
|
||||
prev = Matrix(self.transform.getData()) # It's deep copy, I've checked
|
||||
|
||||
|
||||
# The rest of transform manipulation will be applied in place
|
||||
got_center = (center.x != 0 or center.y != 0 or center.z != 0)
|
||||
|
||||
|
||||
T = self.transform
|
||||
if trans.x != 0 or trans.y != 0 or trans.z !=0:
|
||||
T.translate(trans)
|
||||
|
@ -202,13 +203,13 @@ class X3DReader(MeshReader):
|
|||
T.rotateByAxis(-scale_orient[0], scale_orient[1])
|
||||
if got_center:
|
||||
T.translate(-center)
|
||||
|
||||
|
||||
self.processChildNodes(node)
|
||||
self.transform = prev
|
||||
|
||||
|
||||
# ------------------------- Geometry importers
|
||||
# They are supposed to fill the self.verts and self.faces arrays, the caller will do the rest
|
||||
|
||||
|
||||
# Primitives
|
||||
|
||||
def processGeometryBox(self, node):
|
||||
|
@ -228,14 +229,14 @@ class X3DReader(MeshReader):
|
|||
self.addVertex(-dx, -dy, dz)
|
||||
self.addVertex(-dx, -dy, -dz)
|
||||
self.addVertex(dx, -dy, -dz)
|
||||
|
||||
|
||||
self.addQuad(0, 1, 2, 3) # +y
|
||||
self.addQuad(4, 0, 3, 7) # +x
|
||||
self.addQuad(7, 3, 2, 6) # -z
|
||||
self.addQuad(6, 2, 1, 5) # -x
|
||||
self.addQuad(5, 1, 0, 4) # +z
|
||||
self.addQuad(7, 6, 5, 4) # -y
|
||||
|
||||
|
||||
# The sphere is subdivided into nr rings and ns segments
|
||||
def processGeometrySphere(self, node):
|
||||
r = readFloat(node, "radius", 0.5)
|
||||
|
@ -247,16 +248,16 @@ class X3DReader(MeshReader):
|
|||
(nr, ns) = subdiv
|
||||
else:
|
||||
nr = ns = DEFAULT_SUBDIV
|
||||
|
||||
|
||||
lau = pi / nr # Unit angle of latitude (rings) for the given tesselation
|
||||
lou = 2 * pi / ns # Unit angle of longitude (segments)
|
||||
|
||||
|
||||
self.reserveFaceAndVertexCount(ns*(nr*2 - 2), 2 + (nr - 1)*ns)
|
||||
|
||||
|
||||
# +y and -y poles
|
||||
self.addVertex(0, r, 0)
|
||||
self.addVertex(0, -r, 0)
|
||||
|
||||
|
||||
# The non-polar vertices go from x=0, negative z plane counterclockwise -
|
||||
# to -x, to +z, to +x, back to -z
|
||||
for ring in range(1, nr):
|
||||
|
@ -264,12 +265,12 @@ class X3DReader(MeshReader):
|
|||
self.addVertex(-r*sin(lou * seg) * sin(lau * ring),
|
||||
r*cos(lau * ring),
|
||||
-r*cos(lou * seg) * sin(lau * ring))
|
||||
|
||||
|
||||
vb = 2 + (nr - 2) * ns # First vertex index for the bottom cap
|
||||
|
||||
|
||||
# Faces go in order: top cap, sides, bottom cap.
|
||||
# Sides go by ring then by segment.
|
||||
|
||||
|
||||
# Caps
|
||||
# Top cap face vertices go in order: down right up
|
||||
# (starting from +y pole)
|
||||
|
@ -277,7 +278,7 @@ class X3DReader(MeshReader):
|
|||
for seg in range(ns):
|
||||
self.addTri(0, seg + 2, (seg + 1) % ns + 2)
|
||||
self.addTri(1, vb + (seg + 1) % ns, vb + seg)
|
||||
|
||||
|
||||
# Sides
|
||||
# Side face vertices go in order: down right upleft, downright up left
|
||||
for ring in range(nr - 2):
|
||||
|
@ -288,24 +289,24 @@ class X3DReader(MeshReader):
|
|||
for seg in range(ns):
|
||||
nseg = (seg + 1) % ns
|
||||
self.addQuad(tvb + seg, bvb + seg, bvb + nseg, tvb + nseg)
|
||||
|
||||
|
||||
def processGeometryCone(self, node):
|
||||
r = readFloat(node, "bottomRadius", 1)
|
||||
height = readFloat(node, "height", 2)
|
||||
bottom = readBoolean(node, "bottom", True)
|
||||
side = readBoolean(node, "side", True)
|
||||
n = readInt(node, "subdivision", DEFAULT_SUBDIV)
|
||||
|
||||
|
||||
d = height / 2
|
||||
angle = 2 * pi / n
|
||||
|
||||
|
||||
self.reserveFaceAndVertexCount((n if side else 0) + (n-2 if bottom else 0), n+1)
|
||||
|
||||
|
||||
# Vertex 0 is the apex, vertices 1..n are the bottom
|
||||
self.addVertex(0, d, 0)
|
||||
for i in range(n):
|
||||
self.addVertex(-r * sin(angle * i), -d, -r * cos(angle * i))
|
||||
|
||||
|
||||
# Side face vertices go: up down right
|
||||
if side:
|
||||
for i in range(n):
|
||||
|
@ -313,7 +314,7 @@ class X3DReader(MeshReader):
|
|||
if bottom:
|
||||
for i in range(2, n):
|
||||
self.addTri(1, i, i+1)
|
||||
|
||||
|
||||
def processGeometryCylinder(self, node):
|
||||
r = readFloat(node, "radius", 1)
|
||||
height = readFloat(node, "height", 2)
|
||||
|
@ -321,13 +322,13 @@ class X3DReader(MeshReader):
|
|||
side = readBoolean(node, "side", True)
|
||||
top = readBoolean(node, "top", True)
|
||||
n = readInt(node, "subdivision", DEFAULT_SUBDIV)
|
||||
|
||||
|
||||
nn = n * 2
|
||||
angle = 2 * pi / n
|
||||
hh = height/2
|
||||
|
||||
|
||||
self.reserveFaceAndVertexCount((nn if side else 0) + (n - 2 if top else 0) + (n - 2 if bottom else 0), nn)
|
||||
|
||||
|
||||
# The seam is at x=0, z=-r, vertices go ccw -
|
||||
# to pos x, to neg z, to neg x, back to neg z
|
||||
for i in range(n):
|
||||
|
@ -335,18 +336,18 @@ class X3DReader(MeshReader):
|
|||
rc = -r * cos(angle * i)
|
||||
self.addVertex(rs, hh, rc)
|
||||
self.addVertex(rs, -hh, rc)
|
||||
|
||||
|
||||
if side:
|
||||
for i in range(n):
|
||||
ni = (i + 1) % n
|
||||
self.addQuad(ni * 2 + 1, ni * 2, i * 2, i * 2 + 1)
|
||||
|
||||
|
||||
for i in range(2, nn-3, 2):
|
||||
if top:
|
||||
self.addTri(0, i, i+2)
|
||||
if bottom:
|
||||
self.addTri(1, i+1, i+3)
|
||||
|
||||
|
||||
# Semi-primitives
|
||||
|
||||
def processGeometryElevationGrid(self, node):
|
||||
|
@ -356,21 +357,21 @@ class X3DReader(MeshReader):
|
|||
nz = readInt(node, "zDimension", 0)
|
||||
height = readFloatArray(node, "height", False)
|
||||
ccw = readBoolean(node, "ccw", True)
|
||||
|
||||
|
||||
if nx <= 0 or nz <= 0 or len(height) < nx*nz:
|
||||
return # That's weird, the wording of the standard suggests grids with zero quads are somehow valid
|
||||
|
||||
|
||||
self.reserveFaceAndVertexCount(2*(nx-1)*(nz-1), nx*nz)
|
||||
|
||||
|
||||
for z in range(nz):
|
||||
for x in range(nx):
|
||||
self.addVertex(x * dx, height[z*nx + x], z * dz)
|
||||
|
||||
|
||||
for z in range(1, nz):
|
||||
for x in range(1, nx):
|
||||
self.addTriFlip((z - 1)*nx + x - 1, z*nx + x, (z - 1)*nx + x, ccw)
|
||||
self.addTriFlip((z - 1)*nx + x - 1, z*nx + x - 1, z*nx + x, ccw)
|
||||
|
||||
|
||||
def processGeometryExtrusion(self, node):
|
||||
ccw = readBoolean(node, "ccw", True)
|
||||
begin_cap = readBoolean(node, "beginCap", True)
|
||||
|
@ -384,23 +385,23 @@ class X3DReader(MeshReader):
|
|||
# This converts X3D's axis/angle rotation to a 3x3 numpy matrix
|
||||
def toRotationMatrix(rot):
|
||||
(x, y, z) = rot[:3]
|
||||
a = rot[3]
|
||||
a = rot[3]
|
||||
s = sin(a)
|
||||
c = cos(a)
|
||||
t = 1-c
|
||||
return numpy.array((
|
||||
(x * x * t + c, x * y * t - z*s, x * z * t + y * s),
|
||||
(x * y * t + z*s, y * y * t + c, y * z * t - x * s),
|
||||
(x * z * t - y * s, y * z * t + x * s, z * z * t + c)))
|
||||
|
||||
(x * z * t - y * s, y * z * t + x * s, z * z * t + c)))
|
||||
|
||||
orient = [toRotationMatrix(orient[i:i+4]) if orient[i+3] != 0 else None for i in range(0, len(orient), 4)]
|
||||
|
||||
|
||||
scale = readFloatArray(node, "scale", None)
|
||||
if scale:
|
||||
scale = [numpy.array(((scale[i], 0, 0), (0, 1, 0), (0, 0, scale[i+1])))
|
||||
if scale[i] != 1 or scale[i+1] != 1 else None for i in range(0, len(scale), 2)]
|
||||
|
||||
|
||||
|
||||
|
||||
# Special treatment for the closed spine and cross section.
|
||||
# Let's save some memory by not creating identical but distinct vertices;
|
||||
# later we'll introduce conditional logic to link the last vertex with
|
||||
|
@ -413,14 +414,14 @@ class X3DReader(MeshReader):
|
|||
ncf = nc if crossClosed else nc - 1
|
||||
# Face count along the cross; for closed cross, it's the same as the
|
||||
# respective vertex count
|
||||
|
||||
|
||||
spine_closed = spine[0] == spine[-1]
|
||||
if spine_closed:
|
||||
spine = spine[:-1]
|
||||
ns = len(spine)
|
||||
spine = [Vector(*s) for s in spine]
|
||||
nsf = ns if spine_closed else ns - 1
|
||||
|
||||
|
||||
# This will be used for fallback, where the current spine point joins
|
||||
# two collinear spine segments. No need to recheck the case of the
|
||||
# closed spine/last-to-first point juncture; if there's an angle there,
|
||||
|
@ -442,7 +443,7 @@ class X3DReader(MeshReader):
|
|||
if v.cross(orig_y).length() > EPSILON:
|
||||
# Spine at angle with global y - rotate the z accordingly
|
||||
a = v.cross(orig_y) # Axis of rotation to get to the Z
|
||||
(x, y, z) = a.normalized().getData()
|
||||
(x, y, z) = a.normalized().getData()
|
||||
s = a.length()/v.length()
|
||||
c = sqrt(1-s*s)
|
||||
t = 1-c
|
||||
|
@ -452,7 +453,7 @@ class X3DReader(MeshReader):
|
|||
(x * z * t + y * s, y * z * t - x * s, z * z * t + c)))
|
||||
orig_z = Vector(*m.dot(orig_z.getData()))
|
||||
return orig_z
|
||||
|
||||
|
||||
self.reserveFaceAndVertexCount(2*nsf*ncf + (nc - 2 if begin_cap else 0) + (nc - 2 if end_cap else 0), ns*nc)
|
||||
|
||||
z = None
|
||||
|
@ -482,151 +483,151 @@ class X3DReader(MeshReader):
|
|||
y = spt - sprev
|
||||
# If there's more than one point in the spine, z is already set.
|
||||
# One point in the spline is an error anyway.
|
||||
|
||||
|
||||
z = z.normalized()
|
||||
y = y.normalized()
|
||||
x = y.cross(z) # Already normalized
|
||||
m = numpy.array(((x.x, y.x, z.x), (x.y, y.y, z.y), (x.z, y.z, z.z)))
|
||||
|
||||
|
||||
# Columns are the unit vectors for the xz plane for the cross-section
|
||||
if orient:
|
||||
mrot = orient[i] if len(orient) > 1 else orient[0]
|
||||
if not mrot is None:
|
||||
m = m.dot(mrot) # Tested against X3DOM, the result matches, still not sure :(
|
||||
|
||||
|
||||
if scale:
|
||||
mscale = scale[i] if len(scale) > 1 else scale[0]
|
||||
if not mscale is None:
|
||||
m = m.dot(mscale)
|
||||
|
||||
|
||||
# First the cross-section 2-vector is scaled,
|
||||
# then rotated (which may make it a 3-vector),
|
||||
# then applied to the xz plane unit vectors
|
||||
|
||||
|
||||
sptv3 = numpy.array(spt.getData()[:3])
|
||||
for cpt in cross:
|
||||
v = sptv3 + m.dot(cpt)
|
||||
self.addVertex(*v)
|
||||
|
||||
|
||||
if begin_cap:
|
||||
self.addFace([x for x in range(nc - 1, -1, -1)], ccw)
|
||||
|
||||
|
||||
# Order of edges in the face: forward along cross, forward along spine,
|
||||
# backward along cross, backward along spine, flipped if now ccw.
|
||||
# This order is assumed later in the texture coordinate assignment;
|
||||
# please don't change without syncing.
|
||||
|
||||
|
||||
for s in range(ns - 1):
|
||||
for c in range(ncf):
|
||||
self.addQuadFlip(s * nc + c, s * nc + (c + 1) % nc,
|
||||
(s + 1) * nc + (c + 1) % nc, (s + 1) * nc + c, ccw)
|
||||
|
||||
|
||||
if spine_closed:
|
||||
# The faces between the last and the first spine points
|
||||
b = (ns - 1) * nc
|
||||
for c in range(ncf):
|
||||
self.addQuadFlip(b + c, b + (c + 1) % nc,
|
||||
(c + 1) % nc, c, ccw)
|
||||
|
||||
|
||||
if end_cap:
|
||||
self.addFace([(ns - 1) * nc + x for x in range(0, nc)], ccw)
|
||||
|
||||
|
||||
# Triangle meshes
|
||||
|
||||
# Helper for numerous nodes with a Coordinate subnode holding vertices
|
||||
# That all triangle meshes and IndexedFaceSet
|
||||
# num_faces can be a function, in case the face count is a function of vertex count
|
||||
# num_faces can be a function, in case the face count is a function of vertex count
|
||||
def startCoordMesh(self, node, num_faces):
|
||||
ccw = readBoolean(node, "ccw", True)
|
||||
self.readVertices(node) # This will allocate and fill the vertex array
|
||||
if hasattr(num_faces, "__call__"):
|
||||
num_faces = num_faces(self.getVertexCount())
|
||||
self.reserveFaceCount(num_faces)
|
||||
|
||||
|
||||
return ccw
|
||||
|
||||
|
||||
|
||||
def processGeometryIndexedTriangleSet(self, node):
|
||||
index = readIntArray(node, "index", [])
|
||||
num_faces = len(index) // 3
|
||||
ccw = int(self.startCoordMesh(node, num_faces))
|
||||
|
||||
|
||||
for i in range(0, num_faces*3, 3):
|
||||
self.addTri(index[i + 1 - ccw], index[i + ccw], index[i+2])
|
||||
|
||||
|
||||
def processGeometryIndexedTriangleStripSet(self, node):
|
||||
strips = readIndex(node, "index")
|
||||
ccw = int(self.startCoordMesh(node, sum([len(strip) - 2 for strip in strips])))
|
||||
|
||||
|
||||
for strip in strips:
|
||||
sccw = ccw # Running CCW value, reset for each strip
|
||||
for i in range(len(strip) - 2):
|
||||
self.addTri(strip[i + 1 - sccw], strip[i + sccw], strip[i+2])
|
||||
sccw = 1 - sccw
|
||||
|
||||
|
||||
def processGeometryIndexedTriangleFanSet(self, node):
|
||||
fans = readIndex(node, "index")
|
||||
ccw = int(self.startCoordMesh(node, sum([len(fan) - 2 for fan in fans])))
|
||||
|
||||
|
||||
for fan in fans:
|
||||
for i in range(1, len(fan) - 1):
|
||||
self.addTri(fan[0], fan[i + 1 - ccw], fan[i + ccw])
|
||||
|
||||
|
||||
def processGeometryTriangleSet(self, node):
|
||||
ccw = int(self.startCoordMesh(node, lambda num_vert: num_vert // 3))
|
||||
for i in range(0, self.getVertexCount(), 3):
|
||||
self.addTri(i + 1 - ccw, i + ccw, i+2)
|
||||
|
||||
|
||||
def processGeometryTriangleStripSet(self, node):
|
||||
strips = readIntArray(node, "stripCount", [])
|
||||
ccw = int(self.startCoordMesh(node, sum([n-2 for n in strips])))
|
||||
|
||||
|
||||
vb = 0
|
||||
for n in strips:
|
||||
sccw = ccw
|
||||
for i in range(n-2):
|
||||
for i in range(n-2):
|
||||
self.addTri(vb + i + 1 - sccw, vb + i + sccw, vb + i + 2)
|
||||
sccw = 1 - sccw
|
||||
vb += n
|
||||
|
||||
|
||||
def processGeometryTriangleFanSet(self, node):
|
||||
fans = readIntArray(node, "fanCount", [])
|
||||
ccw = int(self.startCoordMesh(node, sum([n-2 for n in fans])))
|
||||
|
||||
|
||||
vb = 0
|
||||
for n in fans:
|
||||
for i in range(1, n-1):
|
||||
for i in range(1, n-1):
|
||||
self.addTri(vb, vb + i + 1 - ccw, vb + i + ccw)
|
||||
vb += n
|
||||
|
||||
|
||||
# Quad geometries from the CAD module, might be relevant for printing
|
||||
|
||||
|
||||
def processGeometryQuadSet(self, node):
|
||||
ccw = self.startCoordMesh(node, lambda num_vert: 2*(num_vert // 4))
|
||||
for i in range(0, self.getVertexCount(), 4):
|
||||
self.addQuadFlip(i, i+1, i+2, i+3, ccw)
|
||||
|
||||
|
||||
def processGeometryIndexedQuadSet(self, node):
|
||||
index = readIntArray(node, "index", [])
|
||||
num_quads = len(index) // 4
|
||||
ccw = self.startCoordMesh(node, num_quads*2)
|
||||
|
||||
|
||||
for i in range(0, num_quads*4, 4):
|
||||
self.addQuadFlip(index[i], index[i+1], index[i+2], index[i+3], ccw)
|
||||
|
||||
|
||||
# 2D polygon geometries
|
||||
# Won't work for now, since Cura expects every mesh to have a nontrivial convex hull
|
||||
# The only way around that is merging meshes.
|
||||
|
||||
|
||||
def processGeometryDisk2D(self, node):
|
||||
innerRadius = readFloat(node, "innerRadius", 0)
|
||||
outerRadius = readFloat(node, "outerRadius", 1)
|
||||
n = readInt(node, "subdivision", DEFAULT_SUBDIV)
|
||||
|
||||
|
||||
angle = 2 * pi / n
|
||||
|
||||
|
||||
self.reserveFaceAndVertexCount(n*4 if innerRadius else n-2, n*2 if innerRadius else n)
|
||||
|
||||
|
||||
for i in range(n):
|
||||
s = sin(angle * i)
|
||||
c = cos(angle * i)
|
||||
|
@ -635,11 +636,11 @@ class X3DReader(MeshReader):
|
|||
self.addVertex(innerRadius*c, innerRadius*s, 0)
|
||||
ni = (i+1) % n
|
||||
self.addQuad(2*i, 2*ni, 2*ni+1, 2*i+1)
|
||||
|
||||
|
||||
if not innerRadius:
|
||||
for i in range(2, n):
|
||||
self.addTri(0, i-1, i)
|
||||
|
||||
|
||||
def processGeometryRectangle2D(self, node):
|
||||
(x, y) = readFloatArray(node, "size", (2, 2))
|
||||
self.reserveFaceAndVertexCount(2, 4)
|
||||
|
@ -648,7 +649,7 @@ class X3DReader(MeshReader):
|
|||
self.addVertex(x/2, y/2, 0)
|
||||
self.addVertex(-x/2, y/2, 0)
|
||||
self.addQuad(0, 1, 2, 3)
|
||||
|
||||
|
||||
def processGeometryTriangleSet2D(self, node):
|
||||
verts = readFloatArray(node, "vertices", ())
|
||||
num_faces = len(verts) // 6;
|
||||
|
@ -656,25 +657,25 @@ class X3DReader(MeshReader):
|
|||
self.reserveFaceAndVertexCount(num_faces, num_faces * 3)
|
||||
for vert in verts:
|
||||
self.addVertex(*vert)
|
||||
|
||||
|
||||
# The front face is on the +Z side, so CCW is a variable
|
||||
for i in range(0, num_faces*3, 3):
|
||||
a = Vector(*verts[i+2]) - Vector(*verts[i])
|
||||
b = Vector(*verts[i+1]) - Vector(*verts[i])
|
||||
self.addTriFlip(i, i+1, i+2, a.x*b.y > a.y*b.x)
|
||||
|
||||
|
||||
# General purpose polygon mesh
|
||||
|
||||
def processGeometryIndexedFaceSet(self, node):
|
||||
faces = readIndex(node, "coordIndex")
|
||||
ccw = self.startCoordMesh(node, sum([len(face) - 2 for face in faces]))
|
||||
|
||||
|
||||
for face in faces:
|
||||
if len(face) == 3:
|
||||
self.addTriFlip(face[0], face[1], face[2], ccw)
|
||||
elif len(face) > 3:
|
||||
self.addFace(face, ccw)
|
||||
|
||||
|
||||
geometry_importers = {
|
||||
"IndexedFaceSet": processGeometryIndexedFaceSet,
|
||||
"IndexedTriangleSet": processGeometryIndexedTriangleSet,
|
||||
|
@ -695,7 +696,7 @@ class X3DReader(MeshReader):
|
|||
"Cylinder": processGeometryCylinder,
|
||||
"Cone": processGeometryCone
|
||||
}
|
||||
|
||||
|
||||
# Parses the Coordinate.@point field, fills the verts array.
|
||||
def readVertices(self, node):
|
||||
for c in node:
|
||||
|
@ -704,9 +705,9 @@ class X3DReader(MeshReader):
|
|||
if not c is None:
|
||||
pt = c.attrib.get("point")
|
||||
if pt:
|
||||
# allow the list of float values in 'point' attribute to
|
||||
# be separated by commas or whitespace as per spec of
|
||||
# XML encoding of X3D
|
||||
# allow the list of float values in 'point' attribute to
|
||||
# be separated by commas or whitespace as per spec of
|
||||
# XML encoding of X3D
|
||||
# Ref ISO/IEC 19776-1:2015 : Section 5.1.2
|
||||
co = [float(x) for vec in pt.split(',') for x in vec.split()]
|
||||
num_verts = len(co) // 3
|
||||
|
@ -715,57 +716,57 @@ class X3DReader(MeshReader):
|
|||
# Group by three
|
||||
for i in range(num_verts):
|
||||
self.verts[:3,i] = co[3*i:3*i+3]
|
||||
|
||||
|
||||
# Mesh builder helpers
|
||||
|
||||
|
||||
def reserveFaceAndVertexCount(self, num_faces, num_verts):
|
||||
# Unlike the Cura MeshBuilder, we use 4-vectors stored as columns for easier transform
|
||||
self.verts = numpy.zeros((4, num_verts), dtype=numpy.float32)
|
||||
self.verts[3,:] = numpy.ones((num_verts), dtype=numpy.float32)
|
||||
self.num_verts = 0
|
||||
self.reserveFaceCount(num_faces)
|
||||
|
||||
|
||||
def reserveFaceCount(self, num_faces):
|
||||
self.faces = numpy.zeros((num_faces, 3), dtype=numpy.int32)
|
||||
self.num_faces = 0
|
||||
|
||||
|
||||
def getVertexCount(self):
|
||||
return self.verts.shape[1]
|
||||
|
||||
|
||||
def addVertex(self, x, y, z):
|
||||
self.verts[0, self.num_verts] = x
|
||||
self.verts[1, self.num_verts] = y
|
||||
self.verts[2, self.num_verts] = z
|
||||
self.num_verts += 1
|
||||
|
||||
|
||||
# Indices are 0-based for this shape, but they won't be zero-based in the merged mesh
|
||||
def addTri(self, a, b, c):
|
||||
self.faces[self.num_faces, 0] = self.index_base + a
|
||||
self.faces[self.num_faces, 1] = self.index_base + b
|
||||
self.faces[self.num_faces, 2] = self.index_base + c
|
||||
self.num_faces += 1
|
||||
|
||||
|
||||
def addTriFlip(self, a, b, c, ccw):
|
||||
if ccw:
|
||||
self.addTri(a, b, c)
|
||||
else:
|
||||
self.addTri(b, a, c)
|
||||
|
||||
|
||||
# Needs to be convex, but not necessaily planar
|
||||
# Assumed ccw, cut along the ac diagonal
|
||||
def addQuad(self, a, b, c, d):
|
||||
self.addTri(a, b, c)
|
||||
self.addTri(c, d, a)
|
||||
|
||||
|
||||
def addQuadFlip(self, a, b, c, d, ccw):
|
||||
if ccw:
|
||||
self.addTri(a, b, c)
|
||||
self.addTri(c, d, a)
|
||||
else:
|
||||
self.addTri(a, c, b)
|
||||
self.addTri(c, a, d)
|
||||
|
||||
|
||||
self.addTri(c, a, d)
|
||||
|
||||
|
||||
# Arbitrary polygon triangulation.
|
||||
# Doesn't assume convexity and doesn't check the "convex" flag in the file.
|
||||
# Works by the "cutting of ears" algorithm:
|
||||
|
@ -776,13 +777,13 @@ class X3DReader(MeshReader):
|
|||
def addFace(self, indices, ccw):
|
||||
# Resolve indices to coordinates for faster math
|
||||
face = [Vector(data=self.verts[0:3, i]) for i in indices]
|
||||
|
||||
|
||||
# Need a normal to the plane so that we can know which vertices form inner angles
|
||||
normal = findOuterNormal(face)
|
||||
|
||||
|
||||
if not normal: # Couldn't find an outer edge, non-planar polygon maybe?
|
||||
return
|
||||
|
||||
|
||||
# Find the vertex with the smallest inner angle and no points inside, cut off. Repeat until done
|
||||
n = len(face)
|
||||
vi = [i for i in range(n)] # We'll be using this to kick vertices from the face
|
||||
|
@ -807,17 +808,17 @@ class X3DReader(MeshReader):
|
|||
if pointInsideTriangle(vx, next, prev, nextXprev):
|
||||
no_points_inside = False
|
||||
break
|
||||
|
||||
|
||||
if no_points_inside:
|
||||
max_cos = cos
|
||||
i_min = i
|
||||
|
||||
|
||||
self.addTriFlip(indices[vi[(i_min + n - 1) % n]], indices[vi[i_min]], indices[vi[(i_min + 1) % n]], ccw)
|
||||
vi.pop(i_min)
|
||||
n -= 1
|
||||
self.addTriFlip(indices[vi[0]], indices[vi[1]], indices[vi[2]], ccw)
|
||||
|
||||
|
||||
|
||||
# ------------------------------------------------------------
|
||||
# X3D field parsers
|
||||
# ------------------------------------------------------------
|
||||
|
@ -844,7 +845,7 @@ def readInt(node, attr, default):
|
|||
if not s:
|
||||
return default
|
||||
return int(s, 0)
|
||||
|
||||
|
||||
def readBoolean(node, attr, default):
|
||||
s = node.attrib.get(attr)
|
||||
if not s:
|
||||
|
@ -873,8 +874,8 @@ def readIndex(node, attr):
|
|||
chunk.append(v[i])
|
||||
if chunk:
|
||||
chunks.append(chunk)
|
||||
return chunks
|
||||
|
||||
return chunks
|
||||
|
||||
# Given a face as a sequence of vectors, returns a normal to the polygon place that forms a right triple
|
||||
# with a vector along the polygon sequence and a vector backwards
|
||||
def findOuterNormal(face):
|
||||
|
@ -894,25 +895,25 @@ def findOuterNormal(face):
|
|||
if rejection.dot(prev_rejection) < -EPSILON: # points on both sides of the edge - not an outer one
|
||||
is_outer = False
|
||||
break
|
||||
elif rejection.length() > prev_rejection.length(): # Pick a greater rejection for numeric stability
|
||||
elif rejection.length() > prev_rejection.length(): # Pick a greater rejection for numeric stability
|
||||
prev_rejection = rejection
|
||||
|
||||
|
||||
if is_outer: # Found an outer edge, prev_rejection is the rejection inside the face. Generate a normal.
|
||||
return edge.cross(prev_rejection)
|
||||
|
||||
return False
|
||||
|
||||
# Given two *collinear* vectors a and b, returns the coefficient that takes b to a.
|
||||
# Given two *collinear* vectors a and b, returns the coefficient that takes b to a.
|
||||
# No error handling.
|
||||
# For stability, taking the ration between the biggest coordinates would be better...
|
||||
# For stability, taking the ration between the biggest coordinates would be better...
|
||||
def ratio(a, b):
|
||||
if b.x > EPSILON or b.x < -EPSILON:
|
||||
return a.x / b.x
|
||||
elif b.y > EPSILON or b.y < -EPSILON:
|
||||
return a.y / b.y
|
||||
else:
|
||||
return a.z / b.z
|
||||
|
||||
return a.z / b.z
|
||||
|
||||
def pointInsideTriangle(vx, next, prev, nextXprev):
|
||||
vxXprev = vx.cross(prev)
|
||||
r = ratio(vxXprev, nextXprev)
|
||||
|
@ -921,4 +922,4 @@ def pointInsideTriangle(vx, next, prev, nextXprev):
|
|||
vxXnext = vx.cross(next);
|
||||
s = -ratio(vxXnext, nextXprev)
|
||||
return s > 0 and (s + r) < 1
|
||||
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue