mirror of
https://github.com/Ultimaker/Cura.git
synced 2025-07-06 22:47:29 -06:00
Added first arranger tests, small refactors. CURA-3239
This commit is contained in:
parent
a83b1dd638
commit
d1b9078657
3 changed files with 88 additions and 4 deletions
|
@ -2,10 +2,15 @@ from UM.Scene.Iterator.DepthFirstIterator import DepthFirstIterator
|
||||||
from UM.Logger import Logger
|
from UM.Logger import Logger
|
||||||
from cura.ShapeArray import ShapeArray
|
from cura.ShapeArray import ShapeArray
|
||||||
|
|
||||||
|
from collections import namedtuple
|
||||||
|
|
||||||
import numpy
|
import numpy
|
||||||
import copy
|
import copy
|
||||||
|
|
||||||
|
|
||||||
|
## Return object for bestSpot
|
||||||
|
LocationSuggestion = namedtuple("LocationSuggestion", ["x", "y", "penalty_points", "priority"])
|
||||||
|
|
||||||
## The Arrange classed is used together with ShapeArray. The class tries to find
|
## The Arrange classed is used together with ShapeArray. The class tries to find
|
||||||
# good locations for objects that you try to put on a build place.
|
# good locations for objects that you try to put on a build place.
|
||||||
# Different priority schemes can be defined so it alters the behavior while using
|
# Different priority schemes can be defined so it alters the behavior while using
|
||||||
|
@ -54,7 +59,7 @@ class Arrange:
|
||||||
for i in range(count):
|
for i in range(count):
|
||||||
new_node = copy.deepcopy(node)
|
new_node = copy.deepcopy(node)
|
||||||
|
|
||||||
x, y, penalty_points, start_prio = self.bestSpot(
|
x, y = self.bestSpot(
|
||||||
offset_shape_arr, start_prio = start_prio, step = step)
|
offset_shape_arr, start_prio = start_prio, step = step)
|
||||||
transformation = new_node._transformation
|
transformation = new_node._transformation
|
||||||
if x is not None: # We could find a place
|
if x is not None: # We could find a place
|
||||||
|
@ -80,6 +85,7 @@ class Arrange:
|
||||||
self._priority_unique_values = numpy.unique(self._priority)
|
self._priority_unique_values = numpy.unique(self._priority)
|
||||||
self._priority_unique_values.sort()
|
self._priority_unique_values.sort()
|
||||||
|
|
||||||
|
##
|
||||||
def backFirst(self):
|
def backFirst(self):
|
||||||
self._priority = numpy.fromfunction(
|
self._priority = numpy.fromfunction(
|
||||||
lambda i, j: 10 * j + abs(self._offset_x - i), self.shape, dtype=numpy.int32)
|
lambda i, j: 10 * j + abs(self._offset_x - i), self.shape, dtype=numpy.int32)
|
||||||
|
@ -107,6 +113,7 @@ class Arrange:
|
||||||
return numpy.sum(prio_slice[numpy.where(shape_arr.arr == 1)])
|
return numpy.sum(prio_slice[numpy.where(shape_arr.arr == 1)])
|
||||||
|
|
||||||
## Find "best" spot for ShapeArray
|
## Find "best" spot for ShapeArray
|
||||||
|
# Return namedtuple with properties x, y, penalty_points, priority
|
||||||
def bestSpot(self, shape_arr, start_prio = 0, step = 1):
|
def bestSpot(self, shape_arr, start_prio = 0, step = 1):
|
||||||
start_idx_list = numpy.where(self._priority_unique_values == start_prio)
|
start_idx_list = numpy.where(self._priority_unique_values == start_prio)
|
||||||
if start_idx_list:
|
if start_idx_list:
|
||||||
|
@ -124,8 +131,8 @@ class Arrange:
|
||||||
# array to "world" coordinates
|
# array to "world" coordinates
|
||||||
penalty_points = self.checkShape(projected_x, projected_y, shape_arr)
|
penalty_points = self.checkShape(projected_x, projected_y, shape_arr)
|
||||||
if penalty_points != 999999:
|
if penalty_points != 999999:
|
||||||
return projected_x, projected_y, penalty_points, prio
|
return LocationSuggestion(x = projected_x, y = projected_y, penalty_points = penalty_points, priority = prio)
|
||||||
return None, None, None, prio # No suitable location found :-(
|
return LocationSuggestion(x = None, y = None, penalty_points = None, priority = prio) # No suitable location found :-(
|
||||||
|
|
||||||
## Place the object
|
## Place the object
|
||||||
def place(self, x, y, shape_arr):
|
def place(self, x, y, shape_arr):
|
||||||
|
|
|
@ -1043,8 +1043,10 @@ class CuraApplication(QtApplication):
|
||||||
for size, node, offset_shape_arr, hull_shape_arr in nodes_arr:
|
for size, node, offset_shape_arr, hull_shape_arr in nodes_arr:
|
||||||
# we assume that when a location does not fit, it will also not fit for the next
|
# we assume that when a location does not fit, it will also not fit for the next
|
||||||
# object (while what can be untrue). That saves a lot of time.
|
# object (while what can be untrue). That saves a lot of time.
|
||||||
x, y, penalty_points, start_prio = arranger.bestSpot(
|
best_spot = arranger.bestSpot(
|
||||||
offset_shape_arr, start_prio = start_prio)
|
offset_shape_arr, start_prio = start_prio)
|
||||||
|
x, y = best_spot.x, best_spot.y
|
||||||
|
start_prio = best_spot.priority
|
||||||
if x is not None: # We could find a place
|
if x is not None: # We could find a place
|
||||||
arranger.place(x, y, hull_shape_arr) # take place before the next one
|
arranger.place(x, y, hull_shape_arr) # take place before the next one
|
||||||
|
|
||||||
|
|
75
tests/TestArrange.py
Executable file
75
tests/TestArrange.py
Executable file
|
@ -0,0 +1,75 @@
|
||||||
|
import pytest
|
||||||
|
import numpy
|
||||||
|
import time
|
||||||
|
|
||||||
|
from cura.Arrange import Arrange
|
||||||
|
from cura.ShapeArray import ShapeArray
|
||||||
|
|
||||||
|
|
||||||
|
def gimmeShapeArray():
|
||||||
|
vertices = numpy.array([[-3, 1], [3, 1], [0, -3]])
|
||||||
|
shape_arr = ShapeArray.fromPolygon(vertices)
|
||||||
|
return shape_arr
|
||||||
|
|
||||||
|
|
||||||
|
def test_smoke_arrange():
|
||||||
|
ar = Arrange.create(fixed_nodes = [])
|
||||||
|
|
||||||
|
|
||||||
|
def test_centerFirst():
|
||||||
|
ar = Arrange(300, 300, 150, 150)
|
||||||
|
ar.centerFirst()
|
||||||
|
assert ar._priority[150][150] < ar._priority[170][150]
|
||||||
|
assert ar._priority[150][150] < ar._priority[150][170]
|
||||||
|
assert ar._priority[150][150] < ar._priority[170][170]
|
||||||
|
assert ar._priority[150][150] < ar._priority[130][150]
|
||||||
|
assert ar._priority[150][150] < ar._priority[150][130]
|
||||||
|
assert ar._priority[150][150] < ar._priority[130][130]
|
||||||
|
|
||||||
|
|
||||||
|
def test_backFirst():
|
||||||
|
ar = Arrange(300, 300, 150, 150)
|
||||||
|
ar.backFirst()
|
||||||
|
assert ar._priority[150][150] < ar._priority[150][170]
|
||||||
|
assert ar._priority[150][150] < ar._priority[170][170]
|
||||||
|
assert ar._priority[150][150] > ar._priority[150][130]
|
||||||
|
assert ar._priority[150][150] > ar._priority[130][130]
|
||||||
|
|
||||||
|
|
||||||
|
def test_smoke_bestSpot():
|
||||||
|
ar = Arrange(30, 30, 15, 15)
|
||||||
|
ar.centerFirst()
|
||||||
|
|
||||||
|
shape_arr = gimmeShapeArray()
|
||||||
|
best_spot = ar.bestSpot(shape_arr)
|
||||||
|
assert hasattr(best_spot, "x")
|
||||||
|
assert hasattr(best_spot, "y")
|
||||||
|
assert hasattr(best_spot, "penalty_points")
|
||||||
|
assert hasattr(best_spot, "priority")
|
||||||
|
|
||||||
|
|
||||||
|
def test_smoke_place():
|
||||||
|
ar = Arrange(30, 30, 15, 15)
|
||||||
|
ar.centerFirst()
|
||||||
|
|
||||||
|
shape_arr = gimmeShapeArray()
|
||||||
|
|
||||||
|
assert not numpy.any(ar._occupied)
|
||||||
|
ar.place(0, 0, shape_arr)
|
||||||
|
assert numpy.any(ar._occupied)
|
||||||
|
|
||||||
|
|
||||||
|
def test_place_objects():
|
||||||
|
ar = Arrange(20, 20, 10, 10)
|
||||||
|
ar.centerFirst()
|
||||||
|
shape_arr = gimmeShapeArray()
|
||||||
|
print(shape_arr)
|
||||||
|
|
||||||
|
now = time.time()
|
||||||
|
for i in range(5):
|
||||||
|
best_spot_x, best_spot_y, score, prio = ar.bestSpot(shape_arr)
|
||||||
|
print(best_spot_x, best_spot_y, score)
|
||||||
|
ar.place(best_spot_x, best_spot_y, shape_arr)
|
||||||
|
print(ar._occupied)
|
||||||
|
|
||||||
|
print(time.time() - now)
|
Loading…
Add table
Add a link
Reference in a new issue