Arranger: moved functions, split Arrange into Arrange All and Arrange Selection. CURA-3239

This commit is contained in:
Jack Ha 2017-04-03 10:40:04 +02:00
parent 9db816b0fc
commit abb5d1e76e
4 changed files with 181 additions and 159 deletions

View file

@ -1,6 +1,9 @@
import numpy as np
import numpy
from UM.Math.Polygon import Polygon
## Some polygon converted to an array
## Polygon representation as an array
#
class ShapeArray:
def __init__(self, arr, offset_x, offset_y, scale = 1):
self.arr = arr
@ -9,39 +12,59 @@ class ShapeArray:
self.scale = scale
@classmethod
def from_polygon(cls, vertices, scale = 1):
def fromPolygon(cls, vertices, scale = 1):
# scale
vertices = vertices * scale
# flip y, x -> x, y
flip_vertices = np.zeros((vertices.shape))
flip_vertices = numpy.zeros((vertices.shape))
flip_vertices[:, 0] = vertices[:, 1]
flip_vertices[:, 1] = vertices[:, 0]
flip_vertices = flip_vertices[::-1]
# offset, we want that all coordinates have positive values
offset_y = int(np.amin(flip_vertices[:, 0]))
offset_x = int(np.amin(flip_vertices[:, 1]))
flip_vertices[:, 0] = np.add(flip_vertices[:, 0], -offset_y)
flip_vertices[:, 1] = np.add(flip_vertices[:, 1], -offset_x)
shape = [int(np.amax(flip_vertices[:, 0])), int(np.amax(flip_vertices[:, 1]))]
arr = cls.array_from_polygon(shape, flip_vertices)
offset_y = int(numpy.amin(flip_vertices[:, 0]))
offset_x = int(numpy.amin(flip_vertices[:, 1]))
flip_vertices[:, 0] = numpy.add(flip_vertices[:, 0], -offset_y)
flip_vertices[:, 1] = numpy.add(flip_vertices[:, 1], -offset_x)
shape = [int(numpy.amax(flip_vertices[:, 0])), int(numpy.amax(flip_vertices[:, 1]))]
arr = cls.arrayFromPolygon(shape, flip_vertices)
return cls(arr, offset_x, offset_y)
## Return an offset and hull ShapeArray from a scenenode.
@classmethod
def fromNode(cls, node, min_offset, scale = 0.5):
# hacky way to undo transformation
transform = node._transformation
transform_x = transform._data[0][3]
transform_y = transform._data[2][3]
hull_verts = node.callDecoration("getConvexHull")
offset_verts = hull_verts.getMinkowskiHull(Polygon.approximatedCircle(min_offset))
offset_points = copy.deepcopy(offset_verts._points) # x, y
offset_points[:, 0] = numpy.add(offset_points[:, 0], -transform_x)
offset_points[:, 1] = numpy.add(offset_points[:, 1], -transform_y)
offset_shape_arr = ShapeArray.fromPolygon(offset_points, scale = scale)
hull_points = copy.deepcopy(hull_verts._points)
hull_points[:, 0] = numpy.add(hull_points[:, 0], -transform_x)
hull_points[:, 1] = numpy.add(hull_points[:, 1], -transform_y)
hull_shape_arr = ShapeArray.fromPolygon(hull_points, scale = scale) # x, y
return offset_shape_arr, hull_shape_arr
## Create np.array with dimensions defined by shape
# Fills polygon defined by vertices with ones, all other values zero
# Only works correctly for convex hull vertices
# Originally from: http://stackoverflow.com/questions/37117878/generating-a-filled-polygon-inside-a-numpy-array
@classmethod
def array_from_polygon(cls, shape, vertices):
"""
Creates np.array with dimensions defined by shape
Fills polygon defined by vertices with ones, all other values zero
def arrayFromPolygon(cls, shape, vertices):
base_array = numpy.zeros(shape, dtype=float) # Initialize your array of zeros
Only works correctly for convex hull vertices
"""
base_array = np.zeros(shape, dtype=float) # Initialize your array of zeros
fill = np.ones(base_array.shape) * True # Initialize boolean array defining shape fill
fill = numpy.ones(base_array.shape) * True # Initialize boolean array defining shape fill
# Create check array for each edge segment, combine into fill array
for k in range(vertices.shape[0]):
fill = np.all([fill, cls._check(vertices[k - 1], vertices[k], base_array)], axis=0)
fill = numpy.all([fill, cls._check(vertices[k - 1], vertices[k], base_array)], axis=0)
# Set all values inside polygon to one
base_array[fill] = 1
@ -51,43 +74,102 @@ class ShapeArray:
## Return indices that mark one side of the line, used by array_from_polygon
# Uses the line defined by p1 and p2 to check array of
# input indices against interpolated value
# Returns boolean array, with True inside and False outside of shape
# Originally from: http://stackoverflow.com/questions/37117878/generating-a-filled-polygon-inside-a-numpy-array
@classmethod
def _check(cls, p1, p2, base_array):
if p1[0] == p2[0] and p1[1] == p2[1]:
return
idxs = np.indices(base_array.shape) # Create 3D array of indices
idxs = numpy.indices(base_array.shape) # Create 3D array of indices
p1 = p1.astype(float)
p2 = p2.astype(float)
if p2[0] == p1[0]:
sign = np.sign(p2[1] - p1[1])
sign = numpy.sign(p2[1] - p1[1])
return idxs[1] * sign
if p2[1] == p1[1]:
sign = np.sign(p2[0] - p1[0])
sign = numpy.sign(p2[0] - p1[0])
return idxs[1] * sign
# Calculate max column idx for each row idx based on interpolated line between two points
max_col_idx = (idxs[0] - p1[0]) / (p2[0] - p1[0]) * (p2[1] - p1[1]) + p1[1]
sign = np.sign(p2[0] - p1[0])
sign = numpy.sign(p2[0] - p1[0])
return idxs[1] * sign <= max_col_idx * sign
from UM.Scene.Iterator.DepthFirstIterator import DepthFirstIterator
from UM.Logger import Logger
import copy
class Arrange:
def __init__(self, x, y, offset_x, offset_y, scale=1):
self.shape = (y, x)
self._priority = np.zeros((x, y), dtype=np.int32)
self._priority = numpy.zeros((x, y), dtype=numpy.int32)
self._priority_unique_values = []
self._occupied = np.zeros((x, y), dtype=np.int32)
self._occupied = numpy.zeros((x, y), dtype=numpy.int32)
self._scale = scale # convert input coordinates to arrange coordinates
self._offset_x = offset_x
self._offset_y = offset_y
## Helper to create an Arranger instance
#
# Either fill in scene_root and create will find all sliceable nodes by itself,
# or use fixed_nodes to provide the nodes yourself.
# \param scene_root
# \param fixed_nodes
@classmethod
def create(cls, scene_root = None, fixed_nodes = None, scale = 0.5):
arranger = Arrange(220, 220, 110, 110, scale = scale)
arranger.centerFirst()
if fixed_nodes is None:
fixed_nodes = []
for node_ in DepthFirstIterator(scene_root):
# Only count sliceable objects
if node_.callDecoration("isSliceable"):
fixed_nodes.append(node_)
# place all objects fixed nodes
for fixed_node in fixed_nodes:
Logger.log("d", " # Placing [%s]" % str(fixed_node))
vertices = fixed_node.callDecoration("getConvexHull")
points = copy.deepcopy(vertices._points)
shape_arr = ShapeArray.fromPolygon(points, scale = scale)
arranger.place(0, 0, shape_arr)
Logger.log("d", "Current buildplate: \n%s" % str(arranger._occupied[::10, ::10]))
return arranger
## Find placement for a node and place it
#
def findNodePlacements(self, node, offset_shape_arr, hull_shape_arr, count = 1, step = 1):
# offset_shape_arr, hull_shape_arr, arranger -> nodes, arranger
nodes = []
start_prio = 0
for i in range(count):
new_node = copy.deepcopy(node)
Logger.log("d", " # Finding spot for %s" % new_node)
x, y, penalty_points, start_prio = self.bestSpot(
offset_shape_arr, start_prio = start_prio, step = step)
transformation = new_node._transformation
if x is not None: # We could find a place
transformation._data[0][3] = x
transformation._data[2][3] = y
Logger.log("d", "Best place is: %s %s (points = %s)" % (x, y, penalty_points))
self.place(x, y, hull_shape_arr) # take place before the next one
Logger.log("d", "New buildplate: \n%s" % str(self._occupied[::10, ::10]))
else:
Logger.log("d", "Could not find spot!")
transformation._data[0][3] = 200
transformation._data[2][3] = -100 + i * 20
nodes.append(new_node)
return nodes
## Fill priority, take offset as center. lower is better
def centerFirst(self):
# Distance x + distance y
@ -96,16 +178,16 @@ class Arrange:
# Square distance
# self._priority = np.fromfunction(
# lambda i, j: abs(self._offset_x-i)**2+abs(self._offset_y-j)**2, self.shape, dtype=np.int32)
self._priority = np.fromfunction(
lambda i, j: abs(self._offset_x-i)**3+abs(self._offset_y-j)**3, self.shape, dtype=np.int32)
self._priority = numpy.fromfunction(
lambda i, j: abs(self._offset_x-i)**3+abs(self._offset_y-j)**3, self.shape, dtype=numpy.int32)
# self._priority = np.fromfunction(
# lambda i, j: max(abs(self._offset_x-i), abs(self._offset_y-j)), self.shape, dtype=np.int32)
self._priority_unique_values = np.unique(self._priority)
self._priority_unique_values = numpy.unique(self._priority)
self._priority_unique_values.sort()
## Return the amount of "penalty points" for polygon, which is the sum of priority
# 999999 if occupied
def check_shape(self, x, y, shape_arr):
def checkShape(self, x, y, shape_arr):
x = int(self._scale * x)
y = int(self._scale * y)
offset_x = x + self._offset_x + shape_arr.offset_x
@ -114,24 +196,24 @@ class Arrange:
offset_y:offset_y + shape_arr.arr.shape[0],
offset_x:offset_x + shape_arr.arr.shape[1]]
try:
if np.any(occupied_slice[np.where(shape_arr.arr == 1)]):
if numpy.any(occupied_slice[numpy.where(shape_arr.arr == 1)]):
return 999999
except IndexError: # out of bounds if you try to place an object outside
return 999999
prio_slice = self._priority[
offset_y:offset_y + shape_arr.arr.shape[0],
offset_x:offset_x + shape_arr.arr.shape[1]]
return np.sum(prio_slice[np.where(shape_arr.arr == 1)])
return numpy.sum(prio_slice[numpy.where(shape_arr.arr == 1)])
## Find "best" spot
## Find "best" spot for ShapeArray
def bestSpot(self, shape_arr, start_prio = 0, step = 1):
start_idx_list = np.where(self._priority_unique_values == start_prio)
start_idx_list = numpy.where(self._priority_unique_values == start_prio)
if start_idx_list:
start_idx = start_idx_list[0]
else:
start_idx = 0
for prio in self._priority_unique_values[start_idx::step]:
tryout_idx = np.where(self._priority == prio)
tryout_idx = numpy.where(self._priority == prio)
for idx in range(len(tryout_idx[0])):
x = tryout_idx[0][idx]
y = tryout_idx[1][idx]
@ -139,7 +221,7 @@ class Arrange:
projected_y = y - self._offset_y
# array to "world" coordinates
penalty_points = self.check_shape(projected_x, projected_y, shape_arr)
penalty_points = self.checkShape(projected_x, projected_y, shape_arr)
if penalty_points != 999999:
return projected_x, projected_y, penalty_points, prio
return None, None, None, prio # No suitable location found :-(
@ -158,10 +240,10 @@ class Arrange:
max_y = min(max(offset_y + shape_arr.arr.shape[0], 0), shape_y - 1)
occupied_slice = self._occupied[min_y:max_y, min_x:max_x]
# we use a slice of shape because it can be out of bounds
occupied_slice[np.where(shape_arr.arr[
occupied_slice[numpy.where(shape_arr.arr[
min_y - offset_y:max_y - offset_y, min_x - offset_x:max_x - offset_x] == 1)] = 1
# Set priority to low (= high number), so it won't get picked at trying out.
prio_slice = self._priority[min_y:max_y, min_x:max_x]
prio_slice[np.where(shape_arr.arr[
prio_slice[numpy.where(shape_arr.arr[
min_y - offset_y:max_y - offset_y, min_x - offset_x:max_x - offset_x] == 1)] = 999