mirror of
https://github.com/Ultimaker/Cura.git
synced 2025-07-08 07:27:29 -06:00
Move all arranging related code into a subfolder
This commit is contained in:
parent
2f965cc053
commit
a5630e5c54
7 changed files with 7 additions and 26 deletions
198
cura/Arrange.py
198
cura/Arrange.py
|
@ -1,198 +0,0 @@
|
|||
from UM.Scene.Iterator.DepthFirstIterator import DepthFirstIterator
|
||||
from UM.Logger import Logger
|
||||
from UM.Math.Vector import Vector
|
||||
from cura.ShapeArray import ShapeArray
|
||||
from cura import ZOffsetDecorator
|
||||
|
||||
from collections import namedtuple
|
||||
|
||||
import numpy
|
||||
import copy
|
||||
|
||||
|
||||
## Return object for bestSpot
|
||||
LocationSuggestion = namedtuple("LocationSuggestion", ["x", "y", "penalty_points", "priority"])
|
||||
|
||||
|
||||
## The Arrange classed is used together with ShapeArray. Use it to find
|
||||
# good locations for objects that you try to put on a build place.
|
||||
# Different priority schemes can be defined so it alters the behavior while using
|
||||
# the same logic.
|
||||
class Arrange:
|
||||
build_volume = None
|
||||
|
||||
def __init__(self, x, y, offset_x, offset_y, scale= 1.0):
|
||||
self.shape = (y, x)
|
||||
self._priority = numpy.zeros((x, y), dtype=numpy.int32)
|
||||
self._priority_unique_values = []
|
||||
self._occupied = numpy.zeros((x, y), dtype=numpy.int32)
|
||||
self._scale = scale # convert input coordinates to arrange coordinates
|
||||
self._offset_x = offset_x
|
||||
self._offset_y = offset_y
|
||||
self._last_priority = 0
|
||||
self._is_empty = True
|
||||
|
||||
## Helper to create an Arranger instance
|
||||
#
|
||||
# Either fill in scene_root and create will find all sliceable nodes by itself,
|
||||
# or use fixed_nodes to provide the nodes yourself.
|
||||
# \param scene_root Root for finding all scene nodes
|
||||
# \param fixed_nodes Scene nodes to be placed
|
||||
@classmethod
|
||||
def create(cls, scene_root = None, fixed_nodes = None, scale = 0.5, x = 220, y = 220):
|
||||
arranger = Arrange(x, y, x // 2, y // 2, scale = scale)
|
||||
arranger.centerFirst()
|
||||
|
||||
if fixed_nodes is None:
|
||||
fixed_nodes = []
|
||||
for node_ in DepthFirstIterator(scene_root):
|
||||
# Only count sliceable objects
|
||||
if node_.callDecoration("isSliceable"):
|
||||
fixed_nodes.append(node_)
|
||||
|
||||
# Place all objects fixed nodes
|
||||
for fixed_node in fixed_nodes:
|
||||
vertices = fixed_node.callDecoration("getConvexHull")
|
||||
if not vertices:
|
||||
continue
|
||||
points = copy.deepcopy(vertices._points)
|
||||
shape_arr = ShapeArray.fromPolygon(points, scale = scale)
|
||||
arranger.place(0, 0, shape_arr)
|
||||
|
||||
# If a build volume was set, add the disallowed areas
|
||||
if Arrange.build_volume:
|
||||
disallowed_areas = Arrange.build_volume.getDisallowedAreas()
|
||||
for area in disallowed_areas:
|
||||
points = copy.deepcopy(area._points)
|
||||
shape_arr = ShapeArray.fromPolygon(points, scale = scale)
|
||||
arranger.place(0, 0, shape_arr, update_empty = False)
|
||||
return arranger
|
||||
|
||||
## Find placement for a node (using offset shape) and place it (using hull shape)
|
||||
# return the nodes that should be placed
|
||||
# \param node
|
||||
# \param offset_shape_arr ShapeArray with offset, used to find location
|
||||
# \param hull_shape_arr ShapeArray without offset, for placing the shape
|
||||
def findNodePlacement(self, node, offset_shape_arr, hull_shape_arr, step = 1):
|
||||
new_node = copy.deepcopy(node)
|
||||
best_spot = self.bestSpot(
|
||||
offset_shape_arr, start_prio = self._last_priority, step = step)
|
||||
x, y = best_spot.x, best_spot.y
|
||||
|
||||
# Save the last priority.
|
||||
self._last_priority = best_spot.priority
|
||||
|
||||
# Ensure that the object is above the build platform
|
||||
new_node.removeDecorator(ZOffsetDecorator.ZOffsetDecorator)
|
||||
if new_node.getBoundingBox():
|
||||
center_y = new_node.getWorldPosition().y - new_node.getBoundingBox().bottom
|
||||
else:
|
||||
center_y = 0
|
||||
|
||||
if x is not None: # We could find a place
|
||||
new_node.setPosition(Vector(x, center_y, y))
|
||||
found_spot = True
|
||||
self.place(x, y, hull_shape_arr) # place the object in arranger
|
||||
else:
|
||||
Logger.log("d", "Could not find spot!"),
|
||||
found_spot = False
|
||||
new_node.setPosition(Vector(200, center_y, 100))
|
||||
return new_node, found_spot
|
||||
|
||||
## Fill priority, center is best. Lower value is better
|
||||
# This is a strategy for the arranger.
|
||||
def centerFirst(self):
|
||||
# Square distance: creates a more round shape
|
||||
self._priority = numpy.fromfunction(
|
||||
lambda i, j: (self._offset_x - i) ** 2 + (self._offset_y - j) ** 2, self.shape, dtype=numpy.int32)
|
||||
self._priority_unique_values = numpy.unique(self._priority)
|
||||
self._priority_unique_values.sort()
|
||||
|
||||
## Fill priority, back is best. Lower value is better
|
||||
# This is a strategy for the arranger.
|
||||
def backFirst(self):
|
||||
self._priority = numpy.fromfunction(
|
||||
lambda i, j: 10 * j + abs(self._offset_x - i), self.shape, dtype=numpy.int32)
|
||||
self._priority_unique_values = numpy.unique(self._priority)
|
||||
self._priority_unique_values.sort()
|
||||
|
||||
## Return the amount of "penalty points" for polygon, which is the sum of priority
|
||||
# None if occupied
|
||||
# \param x x-coordinate to check shape
|
||||
# \param y y-coordinate
|
||||
# \param shape_arr the ShapeArray object to place
|
||||
def checkShape(self, x, y, shape_arr):
|
||||
x = int(self._scale * x)
|
||||
y = int(self._scale * y)
|
||||
offset_x = x + self._offset_x + shape_arr.offset_x
|
||||
offset_y = y + self._offset_y + shape_arr.offset_y
|
||||
occupied_slice = self._occupied[
|
||||
offset_y:offset_y + shape_arr.arr.shape[0],
|
||||
offset_x:offset_x + shape_arr.arr.shape[1]]
|
||||
try:
|
||||
if numpy.any(occupied_slice[numpy.where(shape_arr.arr == 1)]):
|
||||
return None
|
||||
except IndexError: # out of bounds if you try to place an object outside
|
||||
return None
|
||||
prio_slice = self._priority[
|
||||
offset_y:offset_y + shape_arr.arr.shape[0],
|
||||
offset_x:offset_x + shape_arr.arr.shape[1]]
|
||||
return numpy.sum(prio_slice[numpy.where(shape_arr.arr == 1)])
|
||||
|
||||
## Find "best" spot for ShapeArray
|
||||
# Return namedtuple with properties x, y, penalty_points, priority
|
||||
# \param shape_arr ShapeArray
|
||||
# \param start_prio Start with this priority value (and skip the ones before)
|
||||
# \param step Slicing value, higher = more skips = faster but less accurate
|
||||
def bestSpot(self, shape_arr, start_prio = 0, step = 1):
|
||||
start_idx_list = numpy.where(self._priority_unique_values == start_prio)
|
||||
if start_idx_list:
|
||||
start_idx = start_idx_list[0][0]
|
||||
else:
|
||||
start_idx = 0
|
||||
for priority in self._priority_unique_values[start_idx::step]:
|
||||
tryout_idx = numpy.where(self._priority == priority)
|
||||
for idx in range(len(tryout_idx[0])):
|
||||
x = tryout_idx[0][idx]
|
||||
y = tryout_idx[1][idx]
|
||||
projected_x = x - self._offset_x
|
||||
projected_y = y - self._offset_y
|
||||
|
||||
# array to "world" coordinates
|
||||
penalty_points = self.checkShape(projected_x, projected_y, shape_arr)
|
||||
if penalty_points is not None:
|
||||
return LocationSuggestion(x = projected_x, y = projected_y, penalty_points = penalty_points, priority = priority)
|
||||
return LocationSuggestion(x = None, y = None, penalty_points = None, priority = priority) # No suitable location found :-(
|
||||
|
||||
## Place the object.
|
||||
# Marks the locations in self._occupied and self._priority
|
||||
# \param x x-coordinate
|
||||
# \param y y-coordinate
|
||||
# \param shape_arr ShapeArray object
|
||||
def place(self, x, y, shape_arr, update_empty = True):
|
||||
x = int(self._scale * x)
|
||||
y = int(self._scale * y)
|
||||
offset_x = x + self._offset_x + shape_arr.offset_x
|
||||
offset_y = y + self._offset_y + shape_arr.offset_y
|
||||
shape_y, shape_x = self._occupied.shape
|
||||
|
||||
min_x = min(max(offset_x, 0), shape_x - 1)
|
||||
min_y = min(max(offset_y, 0), shape_y - 1)
|
||||
max_x = min(max(offset_x + shape_arr.arr.shape[1], 0), shape_x - 1)
|
||||
max_y = min(max(offset_y + shape_arr.arr.shape[0], 0), shape_y - 1)
|
||||
occupied_slice = self._occupied[min_y:max_y, min_x:max_x]
|
||||
# we use a slice of shape because it can be out of bounds
|
||||
new_occupied = numpy.where(shape_arr.arr[
|
||||
min_y - offset_y:max_y - offset_y, min_x - offset_x:max_x - offset_x] == 1)
|
||||
if update_empty and new_occupied:
|
||||
self._is_empty = False
|
||||
occupied_slice[new_occupied] = 1
|
||||
|
||||
# Set priority to low (= high number), so it won't get picked at trying out.
|
||||
prio_slice = self._priority[min_y:max_y, min_x:max_x]
|
||||
prio_slice[numpy.where(shape_arr.arr[
|
||||
min_y - offset_y:max_y - offset_y, min_x - offset_x:max_x - offset_x] == 1)] = 999
|
||||
|
||||
@property
|
||||
def isEmpty(self):
|
||||
return self._is_empty
|
Loading…
Add table
Add a link
Reference in a new issue