Merging all shapes into a single mesh during X3D loading

This commit is contained in:
Seva Alekseyev 2016-08-12 15:15:56 -04:00 committed by Ghostkeeper
parent 5cb9f97986
commit a27f82e64b

View file

@ -11,6 +11,7 @@ from UM.Job import Job
from math import pi, sin, cos, sqrt
import numpy
EPSILON = 0.000001 # So very crude. :(
try:
@ -18,9 +19,19 @@ try:
except ImportError:
import xml.etree.ElementTree as ET
# TODO: preserve the structure of scenes that contain several objects
# Use CADPart, for example, to distinguish between separate objects
DEFAULT_SUBDIV = 16 # Default subdivision factor for spheres, cones, and cylinders
class Shape:
def __init__(self, v, f, ib, n):
self.verts = v
self.faces = f
# Those are here for debugging purposes only
self.index_base = ib
self.name = n
class X3DReader(MeshReader):
def __init__(self):
super().__init__()
@ -32,102 +43,97 @@ class X3DReader(MeshReader):
def read(self, file_name):
try:
self.defs = {}
self.sceneNodes = []
self.fileName = file_name
self.shapes = []
tree = ET.parse(file_name)
root = tree.getroot()
xml_root = tree.getroot()
if root.tag != "X3D":
if xml_root.tag != "X3D":
return None
scale = 1000 # Default X3D unit it one meter, while Cura's is one millimeters
if root[0].tag == "head":
for headNode in root[0]:
if headNode.tag == "unit" and headNode.attrib.get("category") == "length":
scale *= float(headNode.attrib["conversionFactor"])
if xml_root[0].tag == "head":
for head_node in xml_root[0]:
if head_node.tag == "unit" and head_node.attrib.get("category") == "length":
scale *= float(head_node.attrib["conversionFactor"])
break
scene = root[1]
xml_scene = xml_root[1]
else:
scene = root[0]
xml_scene = xml_root[0]
if scene.tag != "Scene":
if xml_scene.tag != "Scene":
return None
self.transform = Matrix()
self.transform.setByScaleFactor(scale)
self.index_base = 0
# Traverse the scene tree, populate the sceneNodes array
self.processChildNodes(scene)
# Traverse the scene tree, populate the shapes list
self.processChildNodes(xml_scene)
if len(self.sceneNodes) > 1:
theScene = SceneNode()
group_decorator = GroupDecorator()
theScene.addDecorator(group_decorator)
for node in self.sceneNodes:
theScene.addChild(node)
theScene.setSelectable(True)
elif len(self.sceneNodes) == 1:
theScene = self.sceneNodes[0]
else: # No shapes read :(
if self.shapes:
bui = MeshBuilder()
bui.setVertices(numpy.concatenate([shape.verts for shape in self.shapes]))
bui.setIndices(numpy.concatenate([shape.faces for shape in self.shapes]))
bui.calculateNormals()
bui.setFileName(file_name)
scene = SceneNode()
scene.setMeshData(bui.build().getTransformed(Matrix()))
scene.setSelectable(True)
scene.setName(file_name)
else:
return None
theScene.setName(file_name)
except Exception as e:
Logger.log("e", "exception occured in x3d reader: %s", e)
try:
boundingBox = theScene.getBoundingBox()
boundingBox = scene.getBoundingBox()
boundingBox.isValid()
except:
return None
return theScene
return scene
# ------------------------- XML tree traversal
def processNode(self, xmlNode):
xmlNode = self.resolveDefUse(xmlNode)
if xmlNode is None:
def processNode(self, xml_node):
xml_node = self.resolveDefUse(xml_node)
if xml_node is None:
return
tag = xmlNode.tag
if tag in ("Group", "StaticGroup", "CADAssembly", "CADFace", "CADLayer", "CADPart", "Collision"):
self.processChildNodes(xmlNode)
tag = xml_node.tag
if tag in ("Group", "StaticGroup", "CADAssembly", "CADFace", "CADLayer", "Collision"):
self.processChildNodes(xml_node)
if tag == "CADPart":
self.processTransform(xml_node) # TODO: split the parts
elif tag == "LOD":
self.processNode(xmlNode[0])
self.processNode(xml_node[0])
elif tag == "Transform":
self.processTransform(xmlNode)
self.processTransform(xml_node)
elif tag == "Shape":
self.processShape(xmlNode)
self.processShape(xml_node)
def processShape(self, xmlNode):
def processShape(self, xml_node):
# Find the geometry and the appearance inside the Shape
geometry = appearance = None
for subNode in xmlNode:
for subNode in xml_node:
if subNode.tag == "Appearance" and not appearance:
appearance = self.resolveDefUse(subNode)
elif subNode.tag in self.geometryImporters and not geometry:
elif subNode.tag in self.geometry_importers and not geometry:
geometry = self.resolveDefUse(subNode)
# TODO: appearance is completely ignored. At least apply the material color...
if not geometry is None:
try:
bui = MeshBuilder()
self.geometryImporters[geometry.tag](self, geometry, bui)
bui.calculateNormals()
bui.setFileName(self.fileName)
sceneNode = SceneNode()
if "DEF" in geometry.attrib:
sceneNode.setName(geometry.tag + "#" + geometry.attrib["DEF"])
else:
sceneNode.setName(geometry.tag)
sceneNode.setMeshData(bui.build().getTransformed(self.transform))
sceneNode.setSelectable(True)
self.sceneNodes.append(sceneNode)
self.verts = self.faces = [] # Safeguard
self.geometry_importers[geometry.tag](self, geometry)
m = self.transform.getData()
verts = numpy.array([m.dot(vert)[:3] for vert in self.verts])
self.shapes.append(Shape(verts, self.faces, self.index_base, geometry.tag))
self.index_base += len(verts)
except Exception as e:
Logger.log("e", "exception occured in x3d reader while reading %s: %s", geometry.tag, e)
@ -198,12 +204,33 @@ class X3DReader(MeshReader):
# Primitives
def geomBox(self, node, bui):
size = readFloatArray(node, "size", [2, 2, 2])
bui.addCube(size[0], size[1], size[2])
def geomBox(self, node):
(dx, dy, dz) = readFloatArray(node, "size", [2, 2, 2])
dx /= 2
dy /= 2
dz /= 2
self.reserveFaceAndVertexCount(12, 8)
# xz plane at +y, ccw
self.addVertex(dx, dy, dz)
self.addVertex(-dx, dy, dz)
self.addVertex(-dx, dy, -dz)
self.addVertex(dx, dy, -dz)
# xz plane at -y
self.addVertex(dx, -dy, dz)
self.addVertex(-dx, -dy, dz)
self.addVertex(-dx, -dy, -dz)
self.addVertex(dx, -dy, -dz)
self.addQuad(0, 1, 2, 3) # +y
self.addQuad(4, 0, 3, 7) # +x
self.addQuad(7, 3, 2, 6) # -z
self.addQuad(6, 2, 1, 5) # -x
self.addQuad(5, 1, 0, 4) # +z
self.addQuad(7, 6, 5, 4) # -y
# The sphere is subdivided into nr rings and ns segments
def geomSphere(self, node, bui):
def geomSphere(self, node):
r = readFloat(node, "radius", 0.5)
subdiv = readIntArray(node, 'subdivision', None)
if subdiv:
@ -217,17 +244,17 @@ class X3DReader(MeshReader):
lau = pi / nr # Unit angle of latitude (rings) for the given tesselation
lou = 2 * pi / ns # Unit angle of longitude (segments)
bui.reserveFaceAndVertexCount(ns*(nr*2 - 2), 2 + (nr + 1)*ns)
self.reserveFaceAndVertexCount(ns*(nr*2 - 2), 2 + (nr - 1)*ns)
# +y and -y poles
bui.addVertex(0, r, 0)
bui.addVertex(0, -r, 0)
self.addVertex(0, r, 0)
self.addVertex(0, -r, 0)
# The non-polar vertices go from x=0, negative z plane counterclockwise -
# to -x, to +z, to +x, back to -z
for ring in range(1, nr):
for seg in range(ns):
bui.addVertex(-r*sin(lou * seg) * sin(lau * ring),
self.addVertex(-r*sin(lou * seg) * sin(lau * ring),
r*cos(lau * ring),
-r*cos(lou * seg) * sin(lau * ring))
@ -241,8 +268,8 @@ class X3DReader(MeshReader):
# (starting from +y pole)
# Bottom cap goes: up left down (starting from -y pole)
for seg in range(ns):
addTri(bui, 0, seg + 2, (seg + 1) % ns + 2)
addTri(bui, 1, vb + (seg + 1) % ns, vb + seg)
self.addTri(0, seg + 2, (seg + 1) % ns + 2)
self.addTri(1, vb + (seg + 1) % ns, vb + seg)
# Sides
# Side face vertices go in order: down right upleft, downright up left
@ -253,9 +280,9 @@ class X3DReader(MeshReader):
# First vertex index for the bottom edge of the ring
for seg in range(ns):
nseg = (seg + 1) % ns
addQuad(bui, tvb + seg, bvb + seg, bvb + nseg, tvb + nseg)
self.addQuad(tvb + seg, bvb + seg, bvb + nseg, tvb + nseg)
def geomCone(self, node, bui):
def geomCone(self, node):
r = readFloat(node, "bottomRadius", 1)
height = readFloat(node, "height", 2)
bottom = readBoolean(node, "bottom", True)
@ -265,21 +292,22 @@ class X3DReader(MeshReader):
d = height / 2
angle = 2 * pi / n
bui.reserveFaceAndVertexCount((n if side else 0) + (n-1 if bottom else 0), n+1)
self.reserveFaceAndVertexCount((n if side else 0) + (n-2 if bottom else 0), n+1)
bui.addVertex(0, d, 0)
# Vertex 0 is the apex, vertices 1..n are the bottom
self.addVertex(0, d, 0)
for i in range(n):
bui.addVertex(-r * sin(angle * i), -d, -r * cos(angle * i))
self.addVertex(-r * sin(angle * i), -d, -r * cos(angle * i))
# Side face vertices go: up down right
if side:
for i in range(n):
addTri(bui, 1 + (i + 1) % n, 0, 1 + i)
self.addTri(1 + (i + 1) % n, 0, 1 + i)
if bottom:
for i in range(2, n):
addTri(bui, 1, i, i+1)
self.addTri(1, i, i+1)
def geomCylinder(self, node, bui):
def geomCylinder(self, node):
r = readFloat(node, "radius", 1)
height = readFloat(node, "height", 2)
bottom = readBoolean(node, "bottom", True)
@ -291,30 +319,30 @@ class X3DReader(MeshReader):
angle = 2 * pi / n
hh = height/2
bui.reserveFaceAndVertexCount((nn if side else 0) + (n - 2 if top else 0) + (n - 2 if bottom else 0), nn)
self.reserveFaceAndVertexCount((nn if side else 0) + (n - 2 if top else 0) + (n - 2 if bottom else 0), nn)
# The seam is at x=0, z=-r, vertices go ccw -
# to pos x, to neg z, to neg x, back to neg z
for i in range(n):
rs = -r * sin(angle * i)
rc = -r * cos(angle * i)
bui.addVertex(rs, hh, rc)
bui.addVertex(rs, -hh, rc)
self.addVertex(rs, hh, rc)
self.addVertex(rs, -hh, rc)
if side:
for i in range(n):
ni = (i + 1) % n
addQuad(bui, ni * 2 + 1, ni * 2, i * 2, i * 2 + 1)
self.addQuad(ni * 2 + 1, ni * 2, i * 2, i * 2 + 1)
for i in range(2, nn-3, 2):
if top:
addTri(bui, 0, i, i+2)
self.addTri(0, i, i+2)
if bottom:
addTri(bui, 1, i+1, i+3)
self.addTri(1, i+1, i+3)
# Semi-primitives
# Semi-primitives
def geomElevationGrid(self, node, bui):
def geomElevationGrid(self, node):
dx = readFloat(node, "xSpacing", 1)
dz = readFloat(node, "zSpacing", 1)
nx = readInt(node, "xDimension", 0)
@ -325,18 +353,18 @@ class X3DReader(MeshReader):
if nx <= 0 or nz <= 0 or len(height) < nx*nz:
return # That's weird, the wording of the standard suggests grids with zero quads are somehow valid
bui.reserveFaceAndVertexCount(2*(nx-1)*(nz-1), nx*nz)
self.reserveFaceAndVertexCount(2*(nx-1)*(nz-1), nx*nz)
for z in range(nz):
for x in range(nx):
bui.addVertex(x * dx, height[z*nx + x], z * dz)
self.addVertex(x * dx, height[z*nx + x], z * dz)
for z in range(1, nz):
for x in range(1, nx):
addTriFlip(bui, (z - 1)*nx + x - 1, z*nx + x, (z - 1)*nx + x, ccw)
addTriFlip(bui, (z - 1)*nx + x - 1, z*nx + x - 1, z*nx + x, ccw)
self.addTriFlip((z - 1)*nx + x - 1, z*nx + x, (z - 1)*nx + x, ccw)
self.addTriFlip((z - 1)*nx + x - 1, z*nx + x - 1, z*nx + x, ccw)
def geomExtrusion(self, node, bui):
def geomExtrusion(self, node):
ccw = readBoolean(node, "ccw", True)
beginCap = readBoolean(node, "beginCap", True)
endCap = readBoolean(node, "endCap", True)
@ -403,7 +431,7 @@ class X3DReader(MeshReader):
orig_z = Vector(*m.dot(orig_z.getData()))
return orig_z
bui.reserveFaceAndVertexCount(2*nsf*ncf + (nc - 2 if beginCap else 0) + (nc - 2 if endCap else 0), ns*nc)
self.reserveFaceAndVertexCount(2*nsf*ncf + (nc - 2 if beginCap else 0) + (nc - 2 if endCap else 0), ns*nc)
z = None
for i, spt in enumerate(spine):
@ -456,10 +484,10 @@ class X3DReader(MeshReader):
sptv3 = numpy.array(spt.getData()[:3])
for cpt in cross:
v = sptv3 + m.dot(cpt)
bui.addVertex(*v)
self.addVertex(*v)
if beginCap:
addFace(bui, [x for x in range(nc - 1, -1, -1)], ccw)
self.addFace([x for x in range(nc - 1, -1, -1)], ccw)
# Order of edges in the face: forward along cross, forward along spine,
# backward along cross, backward along spine, flipped if now ccw.
@ -468,117 +496,167 @@ class X3DReader(MeshReader):
for s in range(ns - 1):
for c in range(ncf):
addQuadFlip(bui, s * nc + c, s * nc + (c + 1) % nc,
self.addQuadFlip(s * nc + c, s * nc + (c + 1) % nc,
(s + 1) * nc + (c + 1) % nc, (s + 1) * nc + c, ccw)
if spineClosed:
# The faces between the last and the first spine points
b = (ns - 1) * nc
for c in range(ncf):
addQuadFlip(bui, b + c, b + (c + 1) % nc,
self.addQuadFlip(b + c, b + (c + 1) % nc,
(c + 1) % nc, c, ccw)
if endCap:
addFace(bui, [(ns - 1) * nc + x for x in range(0, nc)], ccw)
self.addFace([(ns - 1) * nc + x for x in range(0, nc)], ccw)
# Triangle meshes
# Helper for numerous nodes with a Coordinate subnode holding vertices
# That all triangle meshes and IndexedFaceSet
# nFaces can be a function, in case the face count is a function of coord
def startCoordMesh(self, node, bui, nFaces):
# num_faces can be a function, in case the face count is a function of coord
def startCoordMesh(self, node, num_faces):
ccw = readBoolean(node, "ccw", True)
coord = self.readVertices(node)
if hasattr(nFaces, '__call__'):
nFaces = nFaces(coord)
bui.reserveFaceAndVertexCount(nFaces, len(coord))
if hasattr(num_faces, '__call__'):
num_faces = num_faces(coord)
self.reserveFaceAndVertexCount(num_faces, len(coord))
for pt in coord:
bui.addVertex(*pt)
self.addVertex(*pt)
return ccw
def geomIndexedTriangleSet(self, node, bui):
def geomIndexedTriangleSet(self, node):
index = readIntArray(node, "index", [])
nFaces = len(index) // 3
ccw = self.startCoordMesh(node, bui, nFaces)
num_faces = len(index) // 3
ccw = self.startCoordMesh(node, num_faces)
for i in range(0, nFaces*3, 3):
addTriFlip(bui, index[i], index[i+1], index[i+2], ccw)
for i in range(0, num_faces*3, 3):
self.addTriFlip(index[i], index[i+1], index[i+2], ccw)
def geomIndexedTriangleStripSet(self, node, bui):
def geomIndexedTriangleStripSet(self, node):
strips = readIndex(node, "index")
ccw = self.startCoordMesh(node, bui, sum([len(strip) - 2 for strip in strips]))
ccw = self.startCoordMesh(node, sum([len(strip) - 2 for strip in strips]))
for strip in strips:
sccw = ccw # Running CCW value, reset for each strip
for i in range(len(strip) - 2):
addTriFlip(bui, strip[i], strip[i+1], strip[i+2], sccw)
self.addTriFlip(strip[i], strip[i+1], strip[i+2], sccw)
sccw = not sccw
def geomIndexedTriangleFanSet(self, node, bui):
def geomIndexedTriangleFanSet(self, node):
fans = readIndex(node, "index")
ccw = self.startCoordMesh(node, bui, sum([len(fan) - 2 for fan in fans]))
ccw = self.startCoordMesh(node, sum([len(fan) - 2 for fan in fans]))
for fan in fans:
for i in range(1, len(fan) - 1):
addTriFlip(bui, fan[0], fan[i], fan[i+1], ccw)
self.addTriFlip(fan[0], fan[i], fan[i+1], ccw)
def geomTriangleSet(self, node, bui):
ccw = self.startCoordMesh(node, bui, lambda coord: len(coord) // 3)
for i in range(0, len(bui.getVertices()), 3):
addTriFlip(bui, i, i+1, i+2, ccw)
def geomTriangleSet(self, node):
ccw = self.startCoordMesh(node, lambda coord: len(coord) // 3)
for i in range(0, len(self.verts), 3):
self.addTriFlip(i, i+1, i+2, ccw)
def geomTriangleStripSet(self, node, bui):
def geomTriangleStripSet(self, node):
strips = readIntArray(node, "stripCount", [])
ccw = self.startCoordMesh(node, bui, sum([n-2 for n in strips]))
ccw = self.startCoordMesh(node, sum([n-2 for n in strips]))
vb = 0
for n in strips:
sccw = ccw
for i in range(n-2):
addTriFlip(bui, vb+i, vb+i+1, vb+i+2, sccw)
self.addTriFlip(vb+i, vb+i+1, vb+i+2, sccw)
sccw = not sccw
vb += n
def geomTriangleFanSet(self, node, bui):
def geomTriangleFanSet(self, node):
fans = readIntArray(node, "fanCount", [])
ccw = self.startCoordMesh(node, bui, sum([n-2 for n in fans]))
ccw = self.startCoordMesh(node, sum([n-2 for n in fans]))
vb = 0
for n in fans:
for i in range(1, n-1):
addTriFlip(bui, vb, vb+i, vb+i+1, ccw)
self.addTriFlip(vb, vb+i, vb+i+1, ccw)
vb += n
# Quad geometries from the CAD module, might be relevant for printing
def geomQuadSet(self, node, bui):
ccw = self.startCoordMesh(node, bui, lambda coord: 2*(len(coord) // 4))
for i in range(0, len(bui.getVertices()), 4):
addQuadFlip(bui, i, i+1, i+2, i+3, ccw)
def geomQuadSet(self, node):
ccw = self.startCoordMesh(node, lambda coord: 2*(len(coord) // 4))
for i in range(0, len(self.verts), 4):
self.addQuadFlip(i, i+1, i+2, i+3, ccw)
def geomIndexedQuadSet(self, node, bui):
def geomIndexedQuadSet(self, node):
index = readIntArray(node, "index", [])
nQuads = len(index) // 4
ccw = self.startCoordMesh(node, bui, nQuads*2)
ccw = self.startCoordMesh(node, nQuads*2)
for i in range(0, nQuads*4, 4):
addQuadFlip(bui, index[i], index[i+1], index[i+2], index[i+3], ccw)
self.addQuadFlip(index[i], index[i+1], index[i+2], index[i+3], ccw)
# 2D polygon geometries
# Won't work for now, since Cura expects every mesh to have a nontrivial convex hull
# The only way around that is merging meshes.
def geomDisk2D(self, node):
innerRadius = readFloat(node, "innerRadius", 0)
outerRadius = readFloat(node, "outerRadius", 1)
n = readInt(node, "subdivision", DEFAULT_SUBDIV)
angle = 2 * pi / n
if innerRadius:
self.reserveFaceAndVertexCount(n*4 if innerRadius else n-2, n*2 if innerRadius else n)
for i in range(n):
s = sin(angle * i)
c = cos(angle * i)
self.addVertex(outerRadius*c, outerRadius*s, 0)
if innerRadius:
self.addVertex(innerRadius*c, innerRadius*s, 0)
ni = (i+1) % n
self.addQuad(2*i, 2*ni, 2*ni+1, 2*i+1)
if not innerRadius:
for i in range(2, n):
self.addTri(0, i-1, i)
def geomRectangle2D(self, node):
(x, y) = readFloatArray(node, "size", (2, 2))
self.reserveFaceAndVertexCount(2, 4)
self.addVertex(-x/2, -y/2, 0)
self.addVertex(x/2, -y/2, 0)
self.addVertex(x/2, y/2, 0)
self.addVertex(-x/2, y/2, 0)
self.addQuad(0, 1, 2, 3)
def geomTriangleSet2D(self, node):
verts = readFloatArray(node, "vertices", ())
num_faces = len(verts) // 6;
verts = [(verts[i], verts[i+1], 0) for i in range(0, 6 * num_faces, 2)]
self.reserveFaceAndVertexCount(num_faces, num_faces * 3)
for vert in verts:
self.addVertex(*vert)
# The front face is on the +Z side, so CCW is a variable
for i in range(0, num_faces*3, 3):
a = Vector(*verts[i+2]) - Vector(*verts[i])
b = Vector(*verts[i+1]) - Vector(*verts[i])
self.addTriFlip(i, i+1, i+2, a.x*b.y > a.y*b.x)
# General purpose polygon mesh
def geomIndexedFaceSet(self, node, bui):
def geomIndexedFaceSet(self, node):
faces = readIndex(node, "coordIndex")
ccw = self.startCoordMesh(node, bui, sum([len(face) - 2 for face in faces]))
ccw = self.startCoordMesh(node, sum([len(face) - 2 for face in faces]))
for face in faces:
if len(face) == 3:
addTriFlip(bui, face[0], face[1], face[2], ccw)
self.addTriFlip(face[0], face[1], face[2], ccw)
elif len(face) > 3:
addFace(bui, face, ccw)
self.addFace(face, ccw)
geometryImporters = {
geometry_importers = {
'IndexedFaceSet': geomIndexedFaceSet,
'IndexedTriangleSet': geomIndexedTriangleSet,
'IndexedTriangleStripSet': geomIndexedTriangleStripSet,
@ -588,6 +666,9 @@ class X3DReader(MeshReader):
'TriangleFanSet': geomTriangleFanSet,
'QuadSet': geomQuadSet,
'IndexedQuadSet': geomIndexedQuadSet,
'TriangleSet2D': geomTriangleSet2D,
'Rectangle2D': geomRectangle2D,
'Disk2D': geomDisk2D,
'ElevationGrid': geomElevationGrid,
'Extrusion': geomExtrusion,
'Sphere': geomSphere,
@ -609,6 +690,103 @@ class X3DReader(MeshReader):
return [(co[i], co[i+1], co[i+2]) for i in range(0, (len(co) // 3)*3, 3)]
return []
# Mesh builder helpers
def reserveFaceAndVertexCount(self, num_faces, num_verts):
# Unlike the Cura MeshBuilder, we use 4-vectors here for easier transform
self.verts = numpy.array([(0,0,0,1) for i in range(num_verts)], dtype=numpy.float32)
self.faces = numpy.zeros((num_faces, 3), dtype=numpy.int32)
self.num_faces = 0
self.num_verts = 0
def addVertex(self, x, y, z):
self.verts[self.num_verts, 0] = x
self.verts[self.num_verts, 1] = y
self.verts[self.num_verts, 2] = z
self.num_verts += 1
# Indices are 0-based for this shape, but they won't be zero-based in the merged mesh
def addTri(self, a, b, c):
self.faces[self.num_faces, 0] = self.index_base + a
self.faces[self.num_faces, 1] = self.index_base + b
self.faces[self.num_faces, 2] = self.index_base + c
self.num_faces += 1
def addTriFlip(self, a, b, c, ccw):
if ccw:
self.addTri(a, b, c)
else:
self.addTri(b, a, c)
# Needs to be convex, but not necessaily planar
# Assumed ccw, cut along the ac diagonal
def addQuad(self, a, b, c, d):
self.addTri(a, b, c)
self.addTri(c, d, a)
def addQuadFlip(self, a, b, c, d, ccw):
if ccw:
self.addTri(a, b, c)
self.addTri(c, d, a)
else:
self.addTri(a, c, b)
self.addTri(c, a, d)
# Arbitrary polygon triangulation.
# Doesn't assume convexity and doesn't check the "convex" flag in the file.
# Works by the "cutting of ears" algorithm:
# - Find an outer vertex with the smallest angle and no vertices inside its adjacent triangle
# - Remove the triangle at that vertex
# - Repeat until done
# Vertex coordinates are supposed to be already set
def addFace(self, indices, ccw):
# Resolve indices to coordinates for faster math
n = len(indices)
verts = self.verts
face = [Vector(verts[i, 0], verts[i, 1], verts[i, 2]) for i in indices]
# Need a normal to the plane so that we can know which vertices form inner angles
normal = findOuterNormal(face)
if not normal: # Couldn't find an outer edge, non-planar polygon maybe?
return
# Find the vertex with the smallest inner angle and no points inside, cut off. Repeat until done
m = len(face)
vi = [i for i in range(m)] # We'll be using this to kick vertices from the face
while m > 3:
max_cos = EPSILON # We don't want to check anything on Pi angles
i_min = 0 # max cos corresponds to min angle
for i in range(m):
inext = (i + 1) % m
iprev = (i + m - 1) % m
v = face[vi[i]]
next = face[vi[inext]] - v
prev = face[vi[iprev]] - v
nextXprev = next.cross(prev)
if nextXprev.dot(normal) > EPSILON: # If it's an inner angle
cos = next.dot(prev) / (next.length() * prev.length())
if cos > max_cos:
# Check if there are vertices inside the triangle
no_points_inside = True
for j in range(m):
if j != i and j != iprev and j != inext:
vx = face[vi[j]] - v
if pointInsideTriangle(vx, next, prev, nextXprev):
no_points_inside = False
break
if no_points_inside:
max_cos = cos
i_min = i
self.addTriFlip(indices[vi[(i_min + m - 1) % m]], indices[vi[i_min]], indices[vi[(i_min + 1) % m]], ccw)
vi.pop(i_min)
m -= 1
self.addTriFlip(indices[vi[0]], indices[vi[1]], indices[vi[2]], ccw)
# ------------------------------------------------------------
# X3D field parsers
# ------------------------------------------------------------
@ -666,89 +844,6 @@ def readIndex(node, attr):
chunks.append(chunk)
return chunks
# Mesh builder helpers
def addTri(bui, a, b, c):
bui._indices[bui._face_count, 0] = a
bui._indices[bui._face_count, 1] = b
bui._indices[bui._face_count, 2] = c
bui._face_count += 1
def addTriFlip(bui, a, b, c, ccw):
if ccw:
addTri(bui, a, b, c)
else:
addTri(bui, b, a, c)
# Needs to be convex, but not necessaily planar
# Assumed ccw, cut along the ac diagonal
def addQuad(bui, a, b, c, d):
addTri(bui, a, b, c)
addTri(bui, c, d, a)
def addQuadFlip(bui, a, b, c, d, ccw):
if ccw:
addTri(bui, a, b, c)
addTri(bui, c, d, a)
else:
addTri(bui, a, c, b)
addTri(bui, c, a, d)
# Arbitrary polygon triangulation.
# Doesn't assume convexity and doesn't check the "convex" flag in the file.
# Works by the "cutting of ears" algorithm:
# - Find an outer vertex with the smallest angle and no vertices inside its adjacent triangle
# - Remove the triangle at that vertex
# - Repeat until done
# Vertex coordinates are supposed to be already in the mesh builder object
def addFace(bui, indices, ccw):
# Resolve indices to coordinates for faster math
n = len(indices)
verts = bui.getVertices()
face = [Vector(verts[i, 0], verts[i, 1], verts[i, 2]) for i in indices]
# Need a normal to the plane so that we can know which vertices form inner angles
normal = findOuterNormal(face)
if not normal: # Couldn't find an outer edge, non-planar polygon maybe?
return
# Find the vertex with the smallest inner angle and no points inside, cut off. Repeat until done
m = len(face)
vi = [i for i in range(m)] # We'll be using this to kick vertices from the face
while m > 3:
maxCos = EPSILON # We don't want to check anything on Pi angles
iMin = 0 # max cos corresponds to min angle
for i in range(m):
inext = (i + 1) % m
iprev = (i + m - 1) % m
v = face[vi[i]]
next = face[vi[inext]] - v
prev = face[vi[iprev]] - v
nextXprev = next.cross(prev)
if nextXprev.dot(normal) > EPSILON: # If it's an inner angle
cos = next.dot(prev) / (next.length() * prev.length())
if cos > maxCos:
# Check if there are vertices inside the triangle
noPointsInside = True
for j in range(m):
if j != i and j != iprev and j != inext:
vx = face[vi[j]] - v
if pointInsideTriangle(vx, next, prev, nextXprev):
noPointsInside = False
break
if noPointsInside:
maxCos = cos
iMin = i
addTriFlip(bui, indices[vi[(iMin + m - 1) % m]], indices[vi[iMin]], indices[vi[(iMin + 1) % m]], ccw)
vi.pop(iMin)
m -= 1
addTriFlip(bui, indices[vi[0]], indices[vi[1]], indices[vi[2]], ccw)
# Given a face as a sequence of vectors, returns a normal to the polygon place that forms a right triple
# with a vector along the polygon sequence and a vector backwards
def findOuterNormal(face):
@ -758,21 +853,21 @@ def findOuterNormal(face):
edge = face[j] - face[i]
if edge.length() > EPSILON:
edge = edge.normalized()
prevRejection = Vector()
isOuter = True
prev_rejection = Vector()
is_outer = True
for k in range(n):
if k != i and k != j:
pt = face[k] - face[i]
pte = pt.dot(edge)
rejection = pt - edge*pte
if rejection.dot(prevRejection) < -EPSILON: # points on both sides of the edge - not an outer one
isOuter = False
if rejection.dot(prev_rejection) < -EPSILON: # points on both sides of the edge - not an outer one
is_outer = False
break
elif rejection.length() > prevRejection.length(): # Pick a greater rejection for numeric stability
prevRejection = rejection
elif rejection.length() > prev_rejection.length(): # Pick a greater rejection for numeric stability
prev_rejection = rejection
if isOuter: # Found an outer edge, prevRejection is the rejection inside the face. Generate a normal.
return edge.cross(prevRejection)
if is_outer: # Found an outer edge, prev_rejection is the rejection inside the face. Generate a normal.
return edge.cross(prev_rejection)
return False
@ -780,9 +875,9 @@ def findOuterNormal(face):
# No error handling.
# For stability, taking the ration between the biggest coordinates would be better; none of that, either.
def ratio(a, b):
if b.x > EPSILON:
if b.x > EPSILON or b.x < -EPSILON:
return a.x / b.x
elif b.y > EPSILON:
elif b.y > EPSILON or b.y < -EPSILON:
return a.y / b.y
else:
return a.z / b.z
@ -806,6 +901,3 @@ def toNumpyRotation(rot):
(x * x * t + c, x * y * t - z*s, x * z * t + y * s),
(x * y * t + z*s, y * y * t + c, y * z * t - x * s),
(x * z * t - y * s, y * z * t + x * s, z * z * t + c)))