mirror of
https://github.com/Ultimaker/Cura.git
synced 2025-07-06 22:47:29 -06:00
WIP Added first arranger functions. CURA-3239
This commit is contained in:
parent
3be6a0966b
commit
9d6dd1580b
2 changed files with 200 additions and 2 deletions
154
cura/Arrange.py
Executable file
154
cura/Arrange.py
Executable file
|
@ -0,0 +1,154 @@
|
|||
import numpy as np
|
||||
|
||||
## Some polygon converted to an array
|
||||
class ShapeArray:
|
||||
def __init__(self, arr, offset_x, offset_y, scale = 1):
|
||||
self.arr = arr
|
||||
self.offset_x = offset_x
|
||||
self.offset_y = offset_y
|
||||
self.scale = scale
|
||||
|
||||
@classmethod
|
||||
def from_polygon(cls, vertices, scale = 1):
|
||||
# scale
|
||||
vertices = vertices * scale
|
||||
# offset
|
||||
offset_y = int(np.amin(vertices[:, 0]))
|
||||
offset_x = int(np.amin(vertices[:, 1]))
|
||||
# normalize to 0
|
||||
vertices[:, 0] = np.add(vertices[:, 0], -offset_y)
|
||||
vertices[:, 1] = np.add(vertices[:, 1], -offset_x)
|
||||
shape = [int(np.amax(vertices[:, 0])), int(np.amax(vertices[:, 1]))]
|
||||
arr = cls.array_from_polygon(shape, vertices)
|
||||
return cls(arr, offset_x, offset_y)
|
||||
|
||||
## Return indices that mark one side of the line, used by array_from_polygon
|
||||
# Uses the line defined by p1 and p2 to check array of
|
||||
# input indices against interpolated value
|
||||
|
||||
# Returns boolean array, with True inside and False outside of shape
|
||||
# Originally from: http://stackoverflow.com/questions/37117878/generating-a-filled-polygon-inside-a-numpy-array
|
||||
@classmethod
|
||||
def _check(cls, p1, p2, base_array):
|
||||
"""
|
||||
"""
|
||||
if p1[0] == p2[0] and p1[1] == p2[1]:
|
||||
return
|
||||
idxs = np.indices(base_array.shape) # Create 3D array of indices
|
||||
|
||||
p1 = p1.astype(float)
|
||||
p2 = p2.astype(float)
|
||||
|
||||
if p2[0] == p1[0]:
|
||||
sign = np.sign(p2[1] - p1[1])
|
||||
return idxs[1] * sign
|
||||
|
||||
if p2[1] == p1[1]:
|
||||
sign = np.sign(p2[0] - p1[0])
|
||||
return idxs[1] * sign
|
||||
|
||||
# Calculate max column idx for each row idx based on interpolated line between two points
|
||||
|
||||
max_col_idx = (idxs[0] - p1[0]) / (p2[0] - p1[0]) * (p2[1] - p1[1]) + p1[1]
|
||||
sign = np.sign(p2[0] - p1[0])
|
||||
return idxs[1] * sign <= max_col_idx * sign
|
||||
|
||||
@classmethod
|
||||
def array_from_polygon(cls, shape, vertices):
|
||||
"""
|
||||
Creates np.array with dimensions defined by shape
|
||||
Fills polygon defined by vertices with ones, all other values zero
|
||||
|
||||
Only works correctly for convex hull vertices
|
||||
"""
|
||||
base_array = np.zeros(shape, dtype=float) # Initialize your array of zeros
|
||||
|
||||
fill = np.ones(base_array.shape) * True # Initialize boolean array defining shape fill
|
||||
|
||||
# Create check array for each edge segment, combine into fill array
|
||||
for k in range(vertices.shape[0]):
|
||||
fill = np.all([fill, cls._check(vertices[k - 1], vertices[k], base_array)], axis=0)
|
||||
|
||||
# Set all values inside polygon to one
|
||||
base_array[fill] = 1
|
||||
|
||||
return base_array
|
||||
|
||||
|
||||
class Arrange:
|
||||
def __init__(self, x, y, offset_x, offset_y, scale=1):
|
||||
self.shape = (y, x)
|
||||
self._priority = np.zeros((x, y), dtype=np.int32)
|
||||
self._occupied = np.zeros((x, y), dtype=np.int32)
|
||||
self._scale = scale # convert input coordinates to arrange coordinates
|
||||
self._offset_x = offset_x
|
||||
self._offset_y = offset_y
|
||||
|
||||
## Fill priority, take offset as center. lower is better
|
||||
def centerFirst(self):
|
||||
self._priority = np.fromfunction(
|
||||
lambda i, j: abs(self._offset_x-i)+abs(self._offset_y-j), self.shape)
|
||||
|
||||
## Return the amount of "penalty points" for polygon, which is the sum of priority
|
||||
# 999999 if occupied
|
||||
def check_shape(self, x, y, shape_arr):
|
||||
x = int(self._scale * x)
|
||||
y = int(self._scale * y)
|
||||
offset_x = x + self._offset_x + shape_arr.offset_x
|
||||
offset_y = y + self._offset_y + shape_arr.offset_y
|
||||
occupied_slice = self._occupied[
|
||||
offset_y:offset_y + shape_arr.arr.shape[0],
|
||||
offset_x:offset_x + shape_arr.arr.shape[1]]
|
||||
if np.any(occupied_slice[np.where(shape_arr.arr == 1)]):
|
||||
return 999999
|
||||
prio_slice = self._priority[
|
||||
offset_y:offset_y + shape_arr.arr.shape[0],
|
||||
offset_x:offset_x + shape_arr.arr.shape[1]]
|
||||
return np.sum(prio_slice[np.where(shape_arr.arr == 1)])
|
||||
|
||||
## Slower but better (it tries all possible locations)
|
||||
def bestSpot2(self, shape_arr):
|
||||
best_x, best_y, best_points = None, None, None
|
||||
min_y = max(-shape_arr.offset_y, 0) - self._offset_y
|
||||
max_y = self.shape[0] - shape_arr.arr.shape[0] - self._offset_y
|
||||
min_x = max(-shape_arr.offset_x, 0) - self._offset_x
|
||||
max_x = self.shape[1] - shape_arr.arr.shape[1] - self._offset_x
|
||||
for y in range(min_y, max_y):
|
||||
for x in range(min_x, max_x):
|
||||
penalty_points = self.check_shape(x, y, shape_arr)
|
||||
if best_points is None or penalty_points < best_points:
|
||||
best_points = penalty_points
|
||||
best_x, best_y = x, y
|
||||
return best_x, best_y, best_points
|
||||
|
||||
## Faster
|
||||
def bestSpot(self, shape_arr):
|
||||
min_y = max(-shape_arr.offset_y, 0) - self._offset_y
|
||||
max_y = self.shape[0] - shape_arr.arr.shape[0] - self._offset_y
|
||||
min_x = max(-shape_arr.offset_x, 0) - self._offset_x
|
||||
max_x = self.shape[1] - shape_arr.arr.shape[1] - self._offset_x
|
||||
|
||||
for prio in range(200):
|
||||
tryout_idx = np.where(self._priority == prio)
|
||||
for idx in range(len(tryout_idx[0])):
|
||||
x = tryout_idx[0][idx]
|
||||
y = tryout_idx[1][idx]
|
||||
projected_x = x - self._offset_x
|
||||
projected_y = y - self._offset_y
|
||||
if projected_x < min_x or projected_x > max_x or projected_y < min_y or projected_y > max_y:
|
||||
continue
|
||||
# array to "world" coordinates
|
||||
penalty_points = self.check_shape(projected_x, projected_y, shape_arr)
|
||||
if penalty_points != 999999:
|
||||
return projected_x, projected_y, penalty_points
|
||||
return None, None, None # No suitable location found :-(
|
||||
|
||||
def place(self, x, y, shape_arr):
|
||||
x = int(self._scale * x)
|
||||
y = int(self._scale * y)
|
||||
offset_x = x + self._offset_x + shape_arr.offset_x
|
||||
offset_y = y + self._offset_y + shape_arr.offset_y
|
||||
occupied_slice = self._occupied[
|
||||
offset_y:offset_y + shape_arr.arr.shape[0],
|
||||
offset_x:offset_x + shape_arr.arr.shape[1]]
|
||||
occupied_slice[np.where(shape_arr.arr == 1)] = 1
|
|
@ -827,6 +827,48 @@ class CuraApplication(QtApplication):
|
|||
if not node and object_id != 0: # Workaround for tool handles overlapping the selected object
|
||||
node = Selection.getSelectedObject(0)
|
||||
|
||||
### testing
|
||||
|
||||
from cura.Arrange import Arrange, ShapeArray
|
||||
arranger = Arrange(215, 215, 107, 107)
|
||||
arranger.centerFirst()
|
||||
|
||||
# place all objects that are already there
|
||||
root = self.getController().getScene().getRoot()
|
||||
for node_ in DepthFirstIterator(root):
|
||||
# Only count sliceable objects
|
||||
if node_.callDecoration("isSliceable"):
|
||||
Logger.log("d", " # Placing [%s]" % str(node_))
|
||||
vertices = node_.callDecoration("getConvexHull")
|
||||
points = copy.deepcopy(vertices._points)
|
||||
#points[:,1] = -points[:,1]
|
||||
#points = points[::-1] # reverse
|
||||
shape_arr = ShapeArray.from_polygon(points)
|
||||
transform = node_._transformation
|
||||
x = transform._data[0][3]
|
||||
y = transform._data[2][3]
|
||||
arranger.place(x, y, shape_arr)
|
||||
|
||||
nodes = []
|
||||
for _ in range(count):
|
||||
new_node = copy.deepcopy(node)
|
||||
vertices = new_node.callDecoration("getConvexHull")
|
||||
points = copy.deepcopy(vertices._points)
|
||||
#points[:, 1] = -points[:, 1]
|
||||
#points = points[::-1] # reverse
|
||||
shape_arr = ShapeArray.from_polygon(points)
|
||||
transformation = new_node._transformation
|
||||
Logger.log("d", " # Finding spot for %s" % new_node)
|
||||
x, y, penalty_points = arranger.bestSpot(shape_arr)
|
||||
if x is not None: # We could find a place
|
||||
transformation._data[0][3] = x
|
||||
transformation._data[2][3] = y
|
||||
arranger.place(x, y, shape_arr) # take place before the next one
|
||||
# new_node.setTransformation(transformation)
|
||||
nodes.append(new_node)
|
||||
### testing
|
||||
|
||||
|
||||
if node:
|
||||
current_node = node
|
||||
# Find the topmost group
|
||||
|
@ -834,9 +876,11 @@ class CuraApplication(QtApplication):
|
|||
current_node = current_node.getParent()
|
||||
|
||||
op = GroupedOperation()
|
||||
for _ in range(count):
|
||||
new_node = copy.deepcopy(current_node)
|
||||
for new_node in nodes:
|
||||
op.addOperation(AddSceneNodeOperation(new_node, current_node.getParent()))
|
||||
# for _ in range(count):
|
||||
# new_node = copy.deepcopy(current_node)
|
||||
# op.addOperation(AddSceneNodeOperation(new_node, current_node.getParent()))
|
||||
op.push()
|
||||
|
||||
## Center object on platform.
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue