Fix print order for one-at-a-time mode

This commit is contained in:
Lipu Fei 2018-08-06 17:11:28 +02:00
parent 85f80f85b8
commit 95481b8560
3 changed files with 93 additions and 95 deletions

View file

@ -1,112 +1,107 @@
# Copyright (c) 2015 Ultimaker B.V.
# Copyright (c) 2018 Ultimaker B.V.
# Cura is released under the terms of the LGPLv3 or higher.
import sys
from UM.Scene.Iterator import Iterator
from UM.Scene.SceneNode import SceneNode
from functools import cmp_to_key
from UM.Application import Application
## Iterator that returns a list of nodes in the order that they need to be printed
# If there is no solution an empty list is returned.
# Take note that the list of nodes can have children (that may or may not contain mesh data)
# Iterator that determines the object print order when one-at a time mode is enabled.
#
# In one-at-a-time mode, only one extruder can be enabled to print. In order to maximize the number of objects we can
# print, we need to print from the corner that's closest to the extruder that's being used. Here is an illustration:
#
# +--------------------------------+
# | |
# | |
# | | - Rectangle represents the complete print head including fans, etc.
# | X X | y - X's are the nozzles
# | (1) (2) | |
# | | |
# +--------------------------------+ +--> x
#
# In this case, the nozzles are symmetric, nozzle (1) is closer to the bottom left corner while (2) is closer to the
# bottom right. If we use nozzle (1) to print, then we better off printing from the bottom left corner so the print
# head will not collide into an object on its top-right side, which is a very large unused area. Following the same
# logic, if we are printing with nozzle (2), then it's better to print from the bottom-right side.
#
# This iterator determines the print order following the rules above.
#
class OneAtATimeIterator(Iterator.Iterator):
def __init__(self, scene_node):
super().__init__(scene_node) # Call super to make multiple inheritence work.
self._hit_map = [[]]
from cura.CuraApplication import CuraApplication
self._global_stack = CuraApplication.getInstance().getGlobalContainerStack()
self._original_node_list = []
super().__init__(scene_node) # Call super to make multiple inheritance work.
def getMachineNearestCornerToExtruder(self, global_stack):
head_and_fans_coordinates = global_stack.getHeadAndFansCoordinates()
used_extruder = None
for extruder in global_stack.extruders.values():
if extruder.isEnabled:
used_extruder = extruder
break
extruder_offsets = [used_extruder.getProperty("machine_nozzle_offset_x", "value"),
used_extruder.getProperty("machine_nozzle_offset_y", "value")]
# find the corner that's closest to the origin
min_distance2 = sys.maxsize
min_coord = None
for coord in head_and_fans_coordinates:
x = coord[0] - extruder_offsets[0]
y = coord[1] - extruder_offsets[1]
distance2 = x**2 + y**2
if distance2 <= min_distance2:
min_distance2 = distance2
min_coord = coord
return min_coord
def _fillStack(self):
min_coord = self.getMachineNearestCornerToExtruder(self._global_stack)
transform_x = -int(round(min_coord[0] / abs(min_coord[0])))
transform_y = -int(round(min_coord[1] / abs(min_coord[1])))
machine_size = [self._global_stack.getProperty("machine_width", "value"),
self._global_stack.getProperty("machine_depth", "value")]
def flip_x(polygon):
tm2 = [-1, 0, 0, 1, 0, 0]
return affinity.affine_transform(affinity.translate(polygon, xoff = -machine_size[0]), tm2)
def flip_y(polygon):
tm2 = [1, 0, 0, -1, 0, 0]
return affinity.affine_transform(affinity.translate(polygon, yoff = -machine_size[1]), tm2)
from shapely import affinity
from shapely.geometry import Polygon
node_list = []
for node in self._scene_node.getChildren():
if not issubclass(type(node), SceneNode):
continue
if node.callDecoration("getConvexHull"):
node_list.append(node)
convex_hull = node.callDecoration("getConvexHull")
if convex_hull:
xmin = min(x for x, _ in convex_hull._points)
xmax = max(x for x, _ in convex_hull._points)
ymin = min(y for _, y in convex_hull._points)
ymax = max(y for _, y in convex_hull._points)
convex_hull_polygon = Polygon.from_bounds(xmin, ymin, xmax, ymax)
if transform_x < 0:
convex_hull_polygon = flip_x(convex_hull_polygon)
if transform_y < 0:
convex_hull_polygon = flip_y(convex_hull_polygon)
if len(node_list) < 2:
self._node_stack = node_list[:]
return
node_list.append({"node": node,
"min_coord": [convex_hull_polygon.bounds[0], convex_hull_polygon.bounds[1]],
})
# Copy the list
self._original_node_list = node_list[:]
## Initialise the hit map (pre-compute all hits between all objects)
self._hit_map = [[self._checkHit(i,j) for i in node_list] for j in node_list]
# Check if we have to files that block eachother. If this is the case, there is no solution!
for a in range(0,len(node_list)):
for b in range(0,len(node_list)):
if a != b and self._hit_map[a][b] and self._hit_map[b][a]:
return
# Sort the original list so that items that block the most other objects are at the beginning.
# This does not decrease the worst case running time, but should improve it in most cases.
sorted(node_list, key = cmp_to_key(self._calculateScore))
todo_node_list = [_ObjectOrder([], node_list)]
while len(todo_node_list) > 0:
current = todo_node_list.pop()
for node in current.todo:
# Check if the object can be placed with what we have and still allows for a solution in the future
if not self._checkHitMultiple(node, current.order) and not self._checkBlockMultiple(node, current.todo):
# We found a possible result. Create new todo & order list.
new_todo_list = current.todo[:]
new_todo_list.remove(node)
new_order = current.order[:] + [node]
if len(new_todo_list) == 0:
# We have no more nodes to check, so quit looking.
todo_node_list = None
self._node_stack = new_order
return
todo_node_list.append(_ObjectOrder(new_order, new_todo_list))
self._node_stack = [] #No result found!
# Check if first object can be printed before the provided list (using the hit map)
def _checkHitMultiple(self, node, other_nodes):
node_index = self._original_node_list.index(node)
for other_node in other_nodes:
other_node_index = self._original_node_list.index(other_node)
if self._hit_map[node_index][other_node_index]:
return True
return False
def _checkBlockMultiple(self, node, other_nodes):
node_index = self._original_node_list.index(node)
for other_node in other_nodes:
other_node_index = self._original_node_list.index(other_node)
if self._hit_map[other_node_index][node_index] and node_index != other_node_index:
return True
return False
## Calculate score simply sums the number of other objects it 'blocks'
def _calculateScore(self, a, b):
score_a = sum(self._hit_map[self._original_node_list.index(a)])
score_b = sum(self._hit_map[self._original_node_list.index(b)])
return score_a - score_b
# Checks if A can be printed before B
def _checkHit(self, a, b):
if a == b:
return False
overlap = a.callDecoration("getConvexHullBoundary").intersectsPolygon(b.callDecoration("getConvexHullHeadFull"))
if overlap:
return True
else:
return False
## Internal object used to keep track of a possible order in which to print objects.
class _ObjectOrder():
def __init__(self, order, todo):
"""
:param order: List of indexes in which to print objects, ordered by printing order.
:param todo: List of indexes which are not yet inserted into the order list.
"""
self.order = order
self.todo = todo
node_list = sorted(node_list, key = lambda d: d["min_coord"])
self._node_stack = [d["node"] for d in node_list]

View file

@ -229,7 +229,7 @@ class ConvexHullDecorator(SceneNodeDecorator):
return offset_hull
def _getHeadAndFans(self):
return Polygon(numpy.array(self._global_stack.getProperty("machine_head_with_fans_polygon", "value"), numpy.float32))
return Polygon(numpy.array(self._global_stack.getHeadAndFansCoordinates(), numpy.float32))
def _compute2DConvexHeadFull(self):
return self._compute2DConvexHull().getMinkowskiHull(self._getHeadAndFans())

View file

@ -172,6 +172,9 @@ class GlobalStack(CuraContainerStack):
return False
return True
def getHeadAndFansCoordinates(self):
return self.getProperty("machine_head_with_fans_polygon", "value")
## private:
global_stack_mime = MimeType(