mirror of
https://github.com/Ultimaker/Cura.git
synced 2025-07-20 13:17:51 -06:00
Fix print order for one-at-a-time mode
This commit is contained in:
parent
85f80f85b8
commit
95481b8560
3 changed files with 93 additions and 95 deletions
|
@ -1,112 +1,107 @@
|
||||||
# Copyright (c) 2015 Ultimaker B.V.
|
# Copyright (c) 2018 Ultimaker B.V.
|
||||||
# Cura is released under the terms of the LGPLv3 or higher.
|
# Cura is released under the terms of the LGPLv3 or higher.
|
||||||
|
|
||||||
|
import sys
|
||||||
|
|
||||||
from UM.Scene.Iterator import Iterator
|
from UM.Scene.Iterator import Iterator
|
||||||
from UM.Scene.SceneNode import SceneNode
|
from UM.Scene.SceneNode import SceneNode
|
||||||
from functools import cmp_to_key
|
|
||||||
from UM.Application import Application
|
|
||||||
|
|
||||||
## Iterator that returns a list of nodes in the order that they need to be printed
|
|
||||||
# If there is no solution an empty list is returned.
|
# Iterator that determines the object print order when one-at a time mode is enabled.
|
||||||
# Take note that the list of nodes can have children (that may or may not contain mesh data)
|
#
|
||||||
|
# In one-at-a-time mode, only one extruder can be enabled to print. In order to maximize the number of objects we can
|
||||||
|
# print, we need to print from the corner that's closest to the extruder that's being used. Here is an illustration:
|
||||||
|
#
|
||||||
|
# +--------------------------------+
|
||||||
|
# | |
|
||||||
|
# | |
|
||||||
|
# | | - Rectangle represents the complete print head including fans, etc.
|
||||||
|
# | X X | y - X's are the nozzles
|
||||||
|
# | (1) (2) | |
|
||||||
|
# | | |
|
||||||
|
# +--------------------------------+ +--> x
|
||||||
|
#
|
||||||
|
# In this case, the nozzles are symmetric, nozzle (1) is closer to the bottom left corner while (2) is closer to the
|
||||||
|
# bottom right. If we use nozzle (1) to print, then we better off printing from the bottom left corner so the print
|
||||||
|
# head will not collide into an object on its top-right side, which is a very large unused area. Following the same
|
||||||
|
# logic, if we are printing with nozzle (2), then it's better to print from the bottom-right side.
|
||||||
|
#
|
||||||
|
# This iterator determines the print order following the rules above.
|
||||||
|
#
|
||||||
class OneAtATimeIterator(Iterator.Iterator):
|
class OneAtATimeIterator(Iterator.Iterator):
|
||||||
|
|
||||||
def __init__(self, scene_node):
|
def __init__(self, scene_node):
|
||||||
super().__init__(scene_node) # Call super to make multiple inheritence work.
|
from cura.CuraApplication import CuraApplication
|
||||||
self._hit_map = [[]]
|
self._global_stack = CuraApplication.getInstance().getGlobalContainerStack()
|
||||||
self._original_node_list = []
|
self._original_node_list = []
|
||||||
|
super().__init__(scene_node) # Call super to make multiple inheritance work.
|
||||||
|
|
||||||
|
def getMachineNearestCornerToExtruder(self, global_stack):
|
||||||
|
head_and_fans_coordinates = global_stack.getHeadAndFansCoordinates()
|
||||||
|
|
||||||
|
used_extruder = None
|
||||||
|
for extruder in global_stack.extruders.values():
|
||||||
|
if extruder.isEnabled:
|
||||||
|
used_extruder = extruder
|
||||||
|
break
|
||||||
|
|
||||||
|
extruder_offsets = [used_extruder.getProperty("machine_nozzle_offset_x", "value"),
|
||||||
|
used_extruder.getProperty("machine_nozzle_offset_y", "value")]
|
||||||
|
|
||||||
|
# find the corner that's closest to the origin
|
||||||
|
min_distance2 = sys.maxsize
|
||||||
|
min_coord = None
|
||||||
|
for coord in head_and_fans_coordinates:
|
||||||
|
x = coord[0] - extruder_offsets[0]
|
||||||
|
y = coord[1] - extruder_offsets[1]
|
||||||
|
|
||||||
|
distance2 = x**2 + y**2
|
||||||
|
if distance2 <= min_distance2:
|
||||||
|
min_distance2 = distance2
|
||||||
|
min_coord = coord
|
||||||
|
|
||||||
|
return min_coord
|
||||||
|
|
||||||
def _fillStack(self):
|
def _fillStack(self):
|
||||||
|
min_coord = self.getMachineNearestCornerToExtruder(self._global_stack)
|
||||||
|
transform_x = -int(round(min_coord[0] / abs(min_coord[0])))
|
||||||
|
transform_y = -int(round(min_coord[1] / abs(min_coord[1])))
|
||||||
|
|
||||||
|
machine_size = [self._global_stack.getProperty("machine_width", "value"),
|
||||||
|
self._global_stack.getProperty("machine_depth", "value")]
|
||||||
|
|
||||||
|
def flip_x(polygon):
|
||||||
|
tm2 = [-1, 0, 0, 1, 0, 0]
|
||||||
|
return affinity.affine_transform(affinity.translate(polygon, xoff = -machine_size[0]), tm2)
|
||||||
|
def flip_y(polygon):
|
||||||
|
tm2 = [1, 0, 0, -1, 0, 0]
|
||||||
|
return affinity.affine_transform(affinity.translate(polygon, yoff = -machine_size[1]), tm2)
|
||||||
|
|
||||||
|
from shapely import affinity
|
||||||
|
from shapely.geometry import Polygon
|
||||||
|
|
||||||
node_list = []
|
node_list = []
|
||||||
for node in self._scene_node.getChildren():
|
for node in self._scene_node.getChildren():
|
||||||
if not issubclass(type(node), SceneNode):
|
if not issubclass(type(node), SceneNode):
|
||||||
continue
|
continue
|
||||||
|
|
||||||
if node.callDecoration("getConvexHull"):
|
convex_hull = node.callDecoration("getConvexHull")
|
||||||
node_list.append(node)
|
if convex_hull:
|
||||||
|
xmin = min(x for x, _ in convex_hull._points)
|
||||||
|
xmax = max(x for x, _ in convex_hull._points)
|
||||||
|
ymin = min(y for _, y in convex_hull._points)
|
||||||
|
ymax = max(y for _, y in convex_hull._points)
|
||||||
|
|
||||||
|
convex_hull_polygon = Polygon.from_bounds(xmin, ymin, xmax, ymax)
|
||||||
|
if transform_x < 0:
|
||||||
|
convex_hull_polygon = flip_x(convex_hull_polygon)
|
||||||
|
if transform_y < 0:
|
||||||
|
convex_hull_polygon = flip_y(convex_hull_polygon)
|
||||||
|
|
||||||
if len(node_list) < 2:
|
node_list.append({"node": node,
|
||||||
self._node_stack = node_list[:]
|
"min_coord": [convex_hull_polygon.bounds[0], convex_hull_polygon.bounds[1]],
|
||||||
return
|
})
|
||||||
|
|
||||||
# Copy the list
|
node_list = sorted(node_list, key = lambda d: d["min_coord"])
|
||||||
self._original_node_list = node_list[:]
|
|
||||||
|
|
||||||
## Initialise the hit map (pre-compute all hits between all objects)
|
|
||||||
self._hit_map = [[self._checkHit(i,j) for i in node_list] for j in node_list]
|
|
||||||
|
|
||||||
# Check if we have to files that block eachother. If this is the case, there is no solution!
|
|
||||||
for a in range(0,len(node_list)):
|
|
||||||
for b in range(0,len(node_list)):
|
|
||||||
if a != b and self._hit_map[a][b] and self._hit_map[b][a]:
|
|
||||||
return
|
|
||||||
|
|
||||||
# Sort the original list so that items that block the most other objects are at the beginning.
|
|
||||||
# This does not decrease the worst case running time, but should improve it in most cases.
|
|
||||||
sorted(node_list, key = cmp_to_key(self._calculateScore))
|
|
||||||
|
|
||||||
todo_node_list = [_ObjectOrder([], node_list)]
|
|
||||||
while len(todo_node_list) > 0:
|
|
||||||
current = todo_node_list.pop()
|
|
||||||
for node in current.todo:
|
|
||||||
# Check if the object can be placed with what we have and still allows for a solution in the future
|
|
||||||
if not self._checkHitMultiple(node, current.order) and not self._checkBlockMultiple(node, current.todo):
|
|
||||||
# We found a possible result. Create new todo & order list.
|
|
||||||
new_todo_list = current.todo[:]
|
|
||||||
new_todo_list.remove(node)
|
|
||||||
new_order = current.order[:] + [node]
|
|
||||||
if len(new_todo_list) == 0:
|
|
||||||
# We have no more nodes to check, so quit looking.
|
|
||||||
todo_node_list = None
|
|
||||||
self._node_stack = new_order
|
|
||||||
|
|
||||||
return
|
|
||||||
todo_node_list.append(_ObjectOrder(new_order, new_todo_list))
|
|
||||||
self._node_stack = [] #No result found!
|
|
||||||
|
|
||||||
|
|
||||||
# Check if first object can be printed before the provided list (using the hit map)
|
|
||||||
def _checkHitMultiple(self, node, other_nodes):
|
|
||||||
node_index = self._original_node_list.index(node)
|
|
||||||
for other_node in other_nodes:
|
|
||||||
other_node_index = self._original_node_list.index(other_node)
|
|
||||||
if self._hit_map[node_index][other_node_index]:
|
|
||||||
return True
|
|
||||||
return False
|
|
||||||
|
|
||||||
def _checkBlockMultiple(self, node, other_nodes):
|
|
||||||
node_index = self._original_node_list.index(node)
|
|
||||||
for other_node in other_nodes:
|
|
||||||
other_node_index = self._original_node_list.index(other_node)
|
|
||||||
if self._hit_map[other_node_index][node_index] and node_index != other_node_index:
|
|
||||||
return True
|
|
||||||
return False
|
|
||||||
|
|
||||||
## Calculate score simply sums the number of other objects it 'blocks'
|
|
||||||
def _calculateScore(self, a, b):
|
|
||||||
score_a = sum(self._hit_map[self._original_node_list.index(a)])
|
|
||||||
score_b = sum(self._hit_map[self._original_node_list.index(b)])
|
|
||||||
return score_a - score_b
|
|
||||||
|
|
||||||
# Checks if A can be printed before B
|
|
||||||
def _checkHit(self, a, b):
|
|
||||||
if a == b:
|
|
||||||
return False
|
|
||||||
|
|
||||||
overlap = a.callDecoration("getConvexHullBoundary").intersectsPolygon(b.callDecoration("getConvexHullHeadFull"))
|
|
||||||
if overlap:
|
|
||||||
return True
|
|
||||||
else:
|
|
||||||
return False
|
|
||||||
|
|
||||||
|
|
||||||
## Internal object used to keep track of a possible order in which to print objects.
|
|
||||||
class _ObjectOrder():
|
|
||||||
def __init__(self, order, todo):
|
|
||||||
"""
|
|
||||||
:param order: List of indexes in which to print objects, ordered by printing order.
|
|
||||||
:param todo: List of indexes which are not yet inserted into the order list.
|
|
||||||
"""
|
|
||||||
self.order = order
|
|
||||||
self.todo = todo
|
|
||||||
|
|
||||||
|
self._node_stack = [d["node"] for d in node_list]
|
||||||
|
|
|
@ -229,7 +229,7 @@ class ConvexHullDecorator(SceneNodeDecorator):
|
||||||
return offset_hull
|
return offset_hull
|
||||||
|
|
||||||
def _getHeadAndFans(self):
|
def _getHeadAndFans(self):
|
||||||
return Polygon(numpy.array(self._global_stack.getProperty("machine_head_with_fans_polygon", "value"), numpy.float32))
|
return Polygon(numpy.array(self._global_stack.getHeadAndFansCoordinates(), numpy.float32))
|
||||||
|
|
||||||
def _compute2DConvexHeadFull(self):
|
def _compute2DConvexHeadFull(self):
|
||||||
return self._compute2DConvexHull().getMinkowskiHull(self._getHeadAndFans())
|
return self._compute2DConvexHull().getMinkowskiHull(self._getHeadAndFans())
|
||||||
|
|
|
@ -172,6 +172,9 @@ class GlobalStack(CuraContainerStack):
|
||||||
return False
|
return False
|
||||||
return True
|
return True
|
||||||
|
|
||||||
|
def getHeadAndFansCoordinates(self):
|
||||||
|
return self.getProperty("machine_head_with_fans_polygon", "value")
|
||||||
|
|
||||||
|
|
||||||
## private:
|
## private:
|
||||||
global_stack_mime = MimeType(
|
global_stack_mime = MimeType(
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue