📝 Update some comments

Co-Authored-By: Andrew <18502096+classicrocker883@users.noreply.github.com>
This commit is contained in:
Scott Lahteine 2025-03-17 16:11:24 -05:00
parent 1938f12e3b
commit 0b0a097917
760 changed files with 23176 additions and 18994 deletions

View file

@ -2918,13 +2918,15 @@
//
//#define MAKEBOARD_MINI_2_LINE_DISPLAY_1602
//
// ANET and Tronxy 20x4 Controller
//
//#define ZONESTAR_LCD // Requires ADC_KEYPAD_PIN to be assigned to an analog pin.
// This LCD is known to be susceptible to electrical interference
// which scrambles the display. Pressing any button clears it up.
// This is a LCD2004 display with 5 analog buttons.
/**
* ANET and Tronxy 20x4 Controller
* LCD2004 display with 5 analog buttons.
*
* NOTE: Requires ADC_KEYPAD_PIN to be assigned to an analog pin.
* This LCD is known to be susceptible to electrical interference which
* scrambles the display. Press any button to clear it up.
*/
//#define ZONESTAR_LCD
//
// Generic 16x2, 16x4, 20x2, or 20x4 character-based LCD.
@ -3570,22 +3572,26 @@
// :[1,2,3,4,5,6,7,8]
//#define NUM_M106_FANS 1
// Use software PWM to drive the fan, as for the heaters. This uses a very low frequency
// which is not as annoying as with the hardware PWM. On the other hand, if this frequency
// is too low, you should also increment SOFT_PWM_SCALE.
/**
* Use software PWM to drive the fan, as for the heaters. This uses a very low frequency
* which is not as annoying as with the hardware PWM. On the other hand, if this frequency
* is too low, you should also increment SOFT_PWM_SCALE.
*/
//#define FAN_SOFT_PWM
// Incrementing this by 1 will double the software PWM frequency,
// affecting heaters, and the fan if FAN_SOFT_PWM is enabled.
// However, control resolution will be halved for each increment;
// at zero value, there are 128 effective control positions.
// :[0,1,2,3,4,5,6,7]
/**
* Incrementing this by 1 will double the software PWM frequency, affecting heaters, and
* the fan if FAN_SOFT_PWM is enabled. However, control resolution will be halved for each
* increment; at zero value, there are 128 effective control positions.
* :[0,1,2,3,4,5,6,7]
*/
#define SOFT_PWM_SCALE 0
// If SOFT_PWM_SCALE is set to a value higher than 0, dithering can
// be used to mitigate the associated resolution loss. If enabled,
// some of the PWM cycles are stretched so on average the desired
// duty cycle is attained.
/**
* If SOFT_PWM_SCALE is set to a value higher than 0, dithering can be used to mitigate the
* associated resolution loss. If enabled, some of the PWM cycles are stretched so on average
* the desired duty cycle is attained.
*/
//#define SOFT_PWM_DITHER
// @section extras
@ -3595,9 +3601,11 @@
// @section lights
// Temperature status LEDs that display the hotend and bed temperature.
// If all hotends, bed temperature, and target temperature are under 54C
// then the BLUE led is on. Otherwise the RED led is on. (1C hysteresis)
/**
* Temperature status LEDs that display the hotend and bed temperature.
* If all hotends, bed temperature, and target temperature are under 54C
* the BLUE led is on. Otherwise the RED led is on. (1C hysteresis)
*/
//#define TEMP_STAT_LEDS
// Support for BlinkM/CyzRgb

View file

@ -1419,24 +1419,24 @@
#define MICROSTEP_MODES { 16, 16, 16, 16, 16, 16 } // [1,2,4,8,16]
/**
* @section stepper motor current
* @section stepper motor current
*
* Some boards have a means of setting the stepper motor current via firmware.
* Some boards have a means of setting the stepper motor current via firmware.
*
* The power on motor currents are set by:
* PWM_MOTOR_CURRENT - used by MINIRAMBO & ULTIMAIN_2
* known compatible chips: A4982
* DIGIPOT_MOTOR_CURRENT - used by BQ_ZUM_MEGA_3D, RAMBO & SCOOVO_X9H
* known compatible chips: AD5206
* DAC_MOTOR_CURRENT_DEFAULT - used by PRINTRBOARD_REVF & RIGIDBOARD_V2
* known compatible chips: MCP4728
* DIGIPOT_I2C_MOTOR_CURRENTS - used by 5DPRINT, AZTEEG_X3_PRO, AZTEEG_X5_MINI_WIFI, MIGHTYBOARD_REVE
* known compatible chips: MCP4451, MCP4018
* The power on motor currents are set by:
* PWM_MOTOR_CURRENT - used by MINIRAMBO & ULTIMAIN_2
* known compatible chips: A4982
* DIGIPOT_MOTOR_CURRENT - used by BQ_ZUM_MEGA_3D, RAMBO & SCOOVO_X9H
* known compatible chips: AD5206
* DAC_MOTOR_CURRENT_DEFAULT - used by PRINTRBOARD_REVF & RIGIDBOARD_V2
* known compatible chips: MCP4728
* DIGIPOT_I2C_MOTOR_CURRENTS - used by 5DPRINT, AZTEEG_X3_PRO, AZTEEG_X5_MINI_WIFI, MIGHTYBOARD_REVE
* known compatible chips: MCP4451, MCP4018
*
* Motor currents can also be set by M907 - M910 and by the LCD.
* M907 - applies to all.
* M908 - BQ_ZUM_MEGA_3D, RAMBO, PRINTRBOARD_REVF, RIGIDBOARD_V2 & SCOOVO_X9H
* M909, M910 & LCD - only PRINTRBOARD_REVF & RIGIDBOARD_V2
* Motor currents can also be set by M907 - M910 and by the LCD.
* M907 - applies to all.
* M908 - BQ_ZUM_MEGA_3D, RAMBO, PRINTRBOARD_REVF, RIGIDBOARD_V2 & SCOOVO_X9H
* M909, M910 & LCD - only PRINTRBOARD_REVF & RIGIDBOARD_V2
*/
//#define PWM_MOTOR_CURRENT { 1300, 1300, 1250 } // Values in milliamps
//#define DIGIPOT_MOTOR_CURRENT { 135,135,135,135,135 } // Values 0-255 (RAMBO 135 = ~0.75A, 185 = ~1A)
@ -2642,19 +2642,23 @@
#define MAX_CMD_SIZE 96
#define BUFSIZE 4
// Transmission to Host Buffer Size
// To save 386 bytes of flash (and TX_BUFFER_SIZE+3 bytes of RAM) set to 0.
// To buffer a simple "ok" you need 4 bytes.
// For ADVANCED_OK (M105) you need 32 bytes.
// For debug-echo: 128 bytes for the optimal speed.
// Other output doesn't need to be that speedy.
// :[0, 2, 4, 8, 16, 32, 64, 128, 256]
/**
* Host Transmit Buffer Size
* - Costs 386 bytes of flash and TX_BUFFER_SIZE+3 bytes of SRAM (if not 0).
* - 4 bytes required to buffer a simple "ok".
* - 32 bytes for ADVANCED_OK (M105).
* - 128 bytes for the optimal speed of 'debug-echo:'
* - Other output doesn't need to be that speedy.
* :[0, 2, 4, 8, 16, 32, 64, 128, 256]
*/
#define TX_BUFFER_SIZE 0
// Host Receive Buffer Size
// Without XON/XOFF flow control (see SERIAL_XON_XOFF below) 32 bytes should be enough.
// To use flow control, set this buffer size to at least 1024 bytes.
// :[0, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048]
/**
* Host Receive Buffer Size
* Without XON/XOFF flow control (see SERIAL_XON_XOFF below) 32 bytes should be enough.
* To use flow control, set this buffer size to at least 1024 bytes.
* :[0, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048]
*/
//#define RX_BUFFER_SIZE 1024
#if RX_BUFFER_SIZE >= 1024
@ -3929,7 +3933,7 @@
/**
* Extra options for the M114 "Current Position" report
*/
//#define M114_DETAIL // Use 'M114` for details to check planner calculations
//#define M114_DETAIL // Use 'M114 D' for details to check planner calculations
//#define M114_REALTIME // Real current position based on forward kinematics
//#define M114_LEGACY // M114 used to synchronize on every call. Enable if needed.
@ -3976,7 +3980,6 @@
* Spend 28 bytes of SRAM to optimize the G-code parser
*/
#define FASTER_GCODE_PARSER
#if ENABLED(FASTER_GCODE_PARSER)
//#define GCODE_QUOTED_STRINGS // Support for quoted string parameters
#endif